Chemistry

Organic Chemistry fields

Okayama University

Year~2008

Facile synthetic procedure for and electrochemical properties of hexa(2-thienyl)benzenes directed toward electroactive materials

Kenta Yoshida^{*} Koichi Mitsudo[‡] Ichiro Morimoto[†] Hideo Tanaka^{**}

*Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University

 $^\dagger \text{Division}$ of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University

 ‡ Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, mitsudo@cc.okayama-u.ac.jp

 ** Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, tanaka95@cc.okayama-u.ac.jp

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information Repository.

http://escholarship.lib.okayama-u.ac.jp/organic_chemistry/9

Graphical Abstract

Facile synthetic procedure for and electrochemical properties of hexa(2-	Leave this area blank for abstract info.			
thienyl)benzenes directed towards electroactive materials	RhCl ₃ ·3H ₂ O (8 mol %)			
Kenta Yoshida, Ichiro Morimoto, Koichi Mitsudo,* Hideo Tanaka*	$\pi = \xi$			
Division of Chemistry and Biochemistry, Graduate School of Na University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan	tural Science and Technology, Okayama			

Facile synthetic procedure for and electrochemical properties of hexa(2-thienyl)benzenes directed towards electroactive materials

Kenta Yoshida, Ichiro Morimoto, Koichi Mitsudo,^{*} Hideo Tanaka^{*}

Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan

Abstract— In the presence of $RhCl_3 \cdot 3H_2O$ and *i*-Pr₂NEt, the cyclotrimerization of di(2-thienyl)acetylenes proceeded smoothly to afford hexa(2-thienyl)benzenes. CV analysis of the hexa(2-thienyl)benzenes showed that they may be useful as electroactive materials.

© 2008 Elsevier Science. All rights reserved

Keywords: Rh/amine catalyst; Cyclotrimerization; Hexa(2-thienyl)benzene; Electroactive material.

Over the past decade, extended π -conjugated compounds¹ have been studied for use as materials in organic electroluminescent devices^{2,3} and energy storage devices.^{4,5} Recently, two-dimensional aromatic cores, such as starburst hexaarylbenzene derivatives, have been synthesized, and their electrochemical and photochemical properties have been intensively studied.⁶ However, there have been only a few reports on the construction of hexaheteroarylbenzenes, such as hexa(2-thienyl)benzene derivatives, because they are difficult to synthesize. One way to construct hexathienylbenzene derivatives is Stilletype coupling of hexabromobenzene and thienylstannane, wherein the reaction should use a large amount of toxic stannanes.⁷ Another way is transition metals-catalyzed cyclotrimerization of dithienylacetylenes.⁸ However, the trimerization of internal alkynes bearing heteroaryl groups is inhibited by the steric hindrance of products and the coordination of hetero-atoms to the central metal of the catalyst. For instance, Weber and co-workers reported that the reaction of di-2-thienylacetylene catalyzed by product. $RuH_2(CO)(PPh_3)_3$ gave a dimerized а benzothiophene derivative, as the major product (63%) and hexa(2-thienyl)benzene was obtained in only 5% yield.8 One approach to solving this problem is to introduce large substituents at the 5-position of thiophene moieties. Müllen and co-workers reported that Co₂(CO)₈ catalyzed the cyclization of di(5-n-C₁₂H₂₅-thiophen-2-yl)acetylene to give hexathienylbenzene derivatives in 61% yield.^{8b} To our knowledge, there are no other reports on the efficient construction of hexathienylbenzene derivatives, although

they should be novel, intriguing building blocks for not only electroactive materials but also photo-materials.

Recently, we found that the cyclotrimerization of internal alkynes proceeds efficiently in the presence of the RhCl₃/*i*-Pr₂NEt catalyst.⁹ These successful results prompted us to investigate the application of our methods to the synthesis of hexathienylbenzene derivatives. We report here the RhCl₃/*i*-Pr₂NEt-catalyzed cyclotrimerization of di(2-thienyl)acetylenes, and the electrochemical properties of the resulting starburst-type benzene derivatives.

First, we performed the trimerization of di(2-thienyl)acetylene **1a** (Scheme 1). In the presence of RhCl₃•3H₂O (8 mol %) and *i*-Pr₂NEt (30 mol %), a solution of di(2-thienyl)acetylene (**1a**) in toluene was heated to reflux for 24 h to afford hexa(2-thienyl)benzene (**2a**)¹⁰ in 14% yield and 44% of **1a** was recovered. Although the dimerization did not take place, as we expected, the yield of **2a** was unsatisfactory. The low reactivity might be attributable to the coordination of a thienyl group to the Rh center. To suppress this coordination, we next used *i*-PrOH as a solvent, and the yield of **2a** increased to 49%.

Corresponding authors. Tel.: +81-86-251-8072; fax: +81-86-251-8079.

E-mail addresses: tanaka95@cc.okayama-u.ac.jp (H. Tanaka), mitsudo@cc.okayama-u.ac.jp (K. Mitsudo)

Scheme 1. RhCl₃/*i*-Pr₂NEt-catalyzed cyclotrimerization of 1a.

To evaluate the catalytic activity of RhCl₃/*i*-Pr₂NEt, the cyclotrimerization of **1a** was carried out using several catalysts (Table 1). Notably, the reaction using RhCl₃•3H₂O in *i*-PrOH showed higher reactivity than with other catalysts which are frequently used for the trimerization reaction of acetylene derivatives (entry 1). With toluene or 1,4-dioxane as a solvent, the yield of 2a decreased (entries 2 and 3). When the reaction was carried out using RhCl(PPh₃)₃ (Wilkinson's catalyst) in *i*-PrOH or toluene, 2a was obtained in respective yields of only 5% and 26% (entries 4 and 5). [Rh(cod)₂][BF₄] (cationic catalyst) was ineffective, and starting material 1a was recovered (entries 6 and 7). When $Co_2(CO)_8$ was used in *i*-PrOH, the corresponding product was not obtained at all (entry 8). With 1,4-dioxane as a solvent, the corresponding product was obtained in 37% yield (entry 9). It is likely that RhCl₃/*i*-Pr₂NEt catalyst might be electron-rich due to the coordination of *i*-Pr₂NEt, and could promote the efficient formation of metallacycle intermediates.

Table 1

1

Cyclotrimerization of 1a using several catalysts

2	RhCl ₃ ·3H ₂ O/ <i>i</i> -Pr ₂ NEt	Toluene	24	14	44
3	RhCl ₃ ·3H ₂ O/ <i>i</i> -Pr ₂ NEt	Dioxane	24	11	87
4	RhCl(PPh ₃) ₃	<i>i</i> -PrOH	24	5	73
5	RhCl(PPh ₃) ₃	Toluene	48	26	54
6	$[Rh(cod)_2][BF_4]$	<i>i</i> -PrOH	24	-	68
7	$[Rh(cod)_2][BF_4]$	Toluene	48	-	71
8	$Co_2(CO)_8$	<i>i</i> -PrOH	24	-	-
9	$Co_2(CO)_8$	Dioxane	24	37	-

^a Isolated yield.

In a similar manner, we performed the cyclotrimerization of di(2-thienvl)acetylenes bearing substituents on the 5position of their thienyl groups (Table 2). In toluene and i-PrOH, the cyclotrimerization of alkyne 1b, bearing a 5methylthienyl group, gave the cycloadduct in respective yields of 63% and 50% (entries 1 and 2).11 Notably, the reactivity of **1b** in toluene was similar to that in i-PrOH, which is different from that of 1a, probably because the methyl group on α -position of thienyl group might reduce the coordination ability of the thienyl group. Indeed, in toluene, the cyclotrimerization of alkyne 1c, bearing a 5acetylthienyl group which also can coordinate to the Rh center, gave cycloadduct $2c^{12}$ in only 4% yield and 1c was recovered in 20% yield (entry 3). With *i*-PrOH as a solvent, the yield of 2c dramatically increased to 50% (entry 4). These results suggest that RhCl₃/*i*-Pr₂NEt catalyst might be more active in toluene than *i*-PrOH, but *i*-PrOH would suppress the coordination of a thienyl group to the Rh center.

Table 2 RhCl₃/*i*-Pr₂NEt-catalyzed cyclotrimerization of **1**

Entry	1	R	Solvent	2	Yield (%) ^a	Recov. 1 (%) ^a
1	1b	Me	Toluene	2b	63	-
2	1b	Me	i-PrOH	2 b	50	18
3	1c	Ac	Toluene	2c	4	20
4	1c	Ac	i-PrOH	2c	50	-

^a Isolated yield.

Next, we subjected 2a to cyclic voltammetry (CV) measurements (Fig. 1). The growth of redox waves was observed in the potential range from 0.2 to 0.8 V during the sequential potential cycling ($\times 100$), which suggested the formation of an electroactive film on the surface of the working electrode. In fact, a film was observed on the surface of the electrode. This suggests that the extension of π -conjugation of **2a** might occur during the electrooxidation. Next, to investigate the main coupling position of a 2a-based film, we measured the CV of 2b bearing a methyl group at the 5-position of the thienyl groups. In CV, no significant increase in redox waves was observed, which suggests that electrooligomerization might occur at the 5-position of the thienyl groups. No film was observed on the working electrode during the electrooxidation of 2b.

Fig. 1. Cyclic voltammograms of 2a (10 mM) in TEABF₄/PC (1 M) solution. Scan rate: 100 mVs⁻¹.

The generated film was then subjected to CV analysis (Fig. 2). CV of the film showed two distinct redox responses: one in the potential range from 0.2 to 0.8 V (*p*-doping), and the other from -1.5 V to -2.8 V (*n*-doping), which are similar to those of frequently used polythiophene

derivatives reported by Ferraris.¹³ The maximum potential difference between redox waves of n- and p-doping were 3.5 V, which indicated a 3.5-eV band gap.

Fig. 2. CVs of **2a**-based film formed after CVs in Fig. 1. Electrolyte: **2a** (10 mM) in TEABF₄/PC (1 M) solution. Scan rate: 100 mVs⁻¹. Number of cycling: 5^{th} cycle.

In summary, a simple method for constructing hexathienylbenzenes has been developed, and their fundamental electrochemical properties have been clarified. We found that hexa(2-thienyl)benzene (2a) generated films by sequential potential cycling (CV). Though the exact structure of the film has not been clear yet, it should be a novel type polymer or oligomer containing thiophene linked at 2 and 5 positions. In addition, these 2a-based films may be a candidate for the electroactive materials in energy storage devices. Further studies on hexaheteroarylbenzenes are underway in our laboratory.

Acknowledgments

We thank the SC-NMR Laboratory of Okayama University for ¹H and ¹³C NMR analyses.

References

- For a review, see: Baumgatner, T.; Réau, R. Chem. Rev. 2006, 106, 4681–4727.
- 2. For a review, see: Dini, D. Chem. Mater. 2005, 17, 1933–1945.
- (a) Carpi, F.; Rossi, D. D. *Opt. Laser Technol.* 2006, 38, 292–305; (b) Assaka, A. M.; Rodrigues, P. C.; Oliveira, A. R. M.; Ding, L.; Hu, B.; Karasz, F. E; Akcelrud, L. *Polymer* 2004, 45, 7071–7081.
- For reviews, see: (a) Wohlgenanut, M.; Vardeny, Z. V. J. *Phys.: Condens. Matte.* 2003, *15*, R83–R107; (b) Abruña, H. D.; Matsumoto F.; Cohen, J. L.; Jin, J.; Roychowdhury, C.; Prochaska, M.; van Dover, R. B.; DiSalvo, F. J.; Kiya, Y.; Henderson, J. C.; Hutchison, G. R. *Bull. Chem. Soc. Jpn.* 2007, *80*, 1843–1855.
- (a) Suematsu, S.; Mitsudo, K.; Katagiri, F.; Tanaka, H. *Electrochemistry* 2007, 75, 54–57; (b) Chen, T.; Wang, L.; Jiang, G.; Wang, W.; Wang, X. j.; Zhou, J.; Wang, J.; Chen, C.; Wang, W.; Gao, H. *J. Electroanal. Chem.* 2006, 586, 122–127; (c) Coppo, P.; Turner, M. L. *J. Mater. Chem.* 2005, 15, 1123–1133.

- (a) Chebny, V. J.; Shukla, R.; Rathore, R. J. Phys. Chem. A 2006, 110, 13003–13006; (b) Rosokha, S. V.; Neretin, I. S.; Kochi, J. K. J. Am. Chem. Soc. 2006, 128, 9394–9407; (c) Mamane, V.; Gref, A.; Lefloch, F.; Riant, O. J. Organomet. Chem. 2001, 637, 84–88.
- Wu, I.-Y.; Lin, J. T.; Tao, Y.-T.; Balasubramaniam, E. Adv. Mater. 2000, 12, 668–669.
- (a) Lu, P.; Cai, G.; Li, J.; Weber, W. P. J. Heterocycl. Chem. 2002, 39, 91–92; (b) Geng, Y.; Fechtenkötter, A.; Müllen, K. J. Mater. Chem. 2001, 11, 1634–1641.
- Yoshida, K.; Morimoto, I.; Mitsudo, K.; Tanaka, H. Chem. Lett. 2007, 36, 998–999.
- 10. General procedure for Rh/amine-catalyzed cyclotrimerization of alkyne **1**: To a solution of RhCl₃·3H₂O (11 mg, 0.04 mmol) in *i*-PrOH (3.0 mL) were added *i*-Pr₂NEt (26 μ L, 0.15 mmol) and di(2-thienyl)acetylene **1a** (96 mg, 0.50 mmol). The mixture was stirred at reflux for 24 h. After being cooled to room temperature, the reaction mixture was filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/toluene 5:1) to afford hexa(2-thienyl)benzene **2a** (47 mg, 49%) as yellow solids: R_f = 0.27 (hexane/toluene 5:1); ¹H NMR (600 MHz, CDCl₃) δ 6.59 (dd, J = 3.6, 1.2 Hz, 6H), 6.68 (dd, J = 5.4, 3.6 Hz, 6H), 7.08 (dd, J = 5.4, 1.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 125.8, 126.2, 129.1, 137.0,

140.7; IR (KBr) 3068, 2923, 2360, 1647, 1381, 694 cm $^{-1}$; Anal. Calcd for $C_{30}H_{18}S_6$: C, 63.12; H, 3.18. Found: C, 63.08; H, 3.36.

- 11. Hexakis(5-methyl-2-thienyl)benzene (**2b**): Yellow solids; R_f = 0.23 (hexane/toluene 5:1); ¹H NMR (600 MHz, CDCl₃) δ 6.33 (s, 12H), 2.30 (s, 18H); ¹³C NMR (150 MHz, CDCl₃) δ 15.2, 123.9, 128.7, 137.0, 138.8, 140.2; IR (KBr) 3068, 2912, 2855, 2357, 1747, 1442, 1219, 800 cm⁻¹; Anal. Calcd for C₃₆H₃₀S₆: C, 66.01; H, 4.62. Found: C, 66.09; H, 4.53.
- 12. Hexakis(5-acetyl-2-thienyl)benzene (**2c**): Colorless solids; $R_f = 0.07$ (hexane/EtOAc 3:1), ¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, J = 3.6 Hz, 6H), 6.67 (d, J = 3.6 Hz, 6H), 2.43 (s, 18H); ¹³C NMR (150 MHz, CDCl₃) δ 26.7, 130.9, 131.8, 136.5, 145.8, 146.7, 190.7; IR (KBr) 3080, 1658, 1471, 1381, 1274 cm⁻¹.
- (a) Neef, C. J.; Brotherston, I. D.; Ferraris, J. P. *Chem. Mater.* 1999, *11*, 1957–1958; (b) Loveday, D. C.; Hmyene, M.; Ferraris, J. P. *Synth. Met.* 1997, *84*, 245–246; (c) Guerrero, D. J.; Ren, X.; Ferraris, J. P. *Chem. Mater.* 1994, *6*, 1437–1443.

Supplementary Material