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Abstract

This paper is devoted to the complete calculation of the additive structure of the
2-torsion of the integral cohomology of the infinite special linear group SL(Z) over
the ring of integers Z. This enables us to determine the best upper bound for the
order of the Chern classes of all integral and rational representations of discrete
groups.

1. Introduction

The Hopf algebra structure of the mod 2 cohomology of the infinite special and
general linear groups SL(Z) and GL(Z) over the ring of integers Z has been com-
pletely determined in [AMNY] as a module over the Steenrod algebra. For instance,
H∗(SL(Z);Z/2)%H∗(BSL(Z)+;Z/2) is the tensor product of a polynomial algebra
with an exterior algebra:

H∗(BSL(Z)+;Z/2)%H∗(BSO;Z/2)⊗H∗(SU ;Z/2)

%Z/2[w2, w3, . . . , wj , . . . ]⊗ ΛZ/2(u3, u5, . . . , u2k−1, . . . ) ,

where deg(wj) = j and deg(u2k−1) = 2k − 1.
The first goal of this paper is to investigate the mod 2 cohomological Bockstein
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spectral sequence

E∗1 (BSL(Z)+)%H∗(BSL(Z)+;Z/2) =⇒ (H∗(BSL(Z)+;Z)/torsion)⊗ Z/2
of the spaceBSL(Z)+ (see [Brd, sections 1–5]). By using the mod 2 Bockstein spectral
sequences of the spaces BSO and BSL(Fp)+ (for a prime p ≡ 5 mod 8) and the maps
h: BSL(Z)+ → BSO and fp: BSL(Z)+ → BSL(Fp)+ induced by the inclusion Z ↪→ R
and by the reduction mod p respectively, we compute the terms E∗r (BSL(Z)+) and
the differentials dr for all r > 1 (see Theorem 4·3 and Corollary 4·4). Of course, this
detects the 2-torsion of the integral cohomology H∗(BSL(Z)+;Z)% H∗(SL(Z);Z)
of the special linear group SL(Z). Theorem 4·7 actually provides an explicit addi-
tive presentation of the 2-torsion of H∗(BSL(Z)+;Z) by generators and relations
(see also Remark 4·8 for some partial information on the multiplicative structure).
It turns out that H∗(BSL(Z)+;Z) contains no cyclic direct summand of order 4
and that the set of all non-trivial elements of ΛZ/2(u4i+1, i > 1) is in one-to-one
correspondence with an additive basis ofH∗(BSL(Z)+;Z)/torsion (see Corollary 4·6).
Moreover, we are able to understand the effect of the induced homomorphisms
h∗: H∗(BSO;Z) → H∗(BSL(Z)+;Z) and f∗p : H∗(BSL(Fp)+;Z) → H∗(BSL(Z)+,Z)
on the 2-torsion elements: Theorem 4·9 asserts in particular that h∗ is injective on
the elements of order 2 and that f∗p is injective on all cyclic direct summands of order
2r with r > 3.

Notice that it is easy to extend these results to the integral cohomology
H∗(GL(Z);Z) % H∗(BGL(Z)+;Z) of the general linear group GL(Z) because of
the homotopy equivalence BGL(Z)+ ' BSL(Z)+ × BZ/2 (see for example [Ar1,
lemma 1·2]).

As a consequence, we obtain the exact order of all Chern classes cn(SL(Z)) ∈
H2n(SL(Z);Z) of the inclusion SL(Z) ↪→ GL(C) (see Proposition 5·2 and Theo-
rem 5·3) and deduce the best upper bound for the order of the Chern classes of
all integral and rational representations of discrete groups (see Corollary 5·6).

The paper is organized as follows. Sections 2 and 3 present the mod 2 Bockstein
spectral sequence for the spaces BSO and BSL(Fp)+ respectively. The mod 2 Bock-
stein spectral sequence and the 2-torsion of the integral cohomology of BSL(Z)+ are
computed in Section 4. Finally, Section 5 is devoted to the investigation of the order
of the Chern classes of integral and rational representations of discrete groups.

2. The mod 2 Bockstein spectral sequence for BSO

The determination of H∗(BSL(Z)+;Z/2) is based on cohomological calculations
involving the pull-back diagram

(BSL(Z)+)ˆ2
h−→ BSOˆ

2

↓ fp ↓ c
(BSL(Fp)+)ˆ2

b−→ BSUˆ
2 ,

where (−)ˆ2 denotes the completion at the prime 2, p any prime ≡ 3 or 5 mod 8, h
the map induced by the inclusion Z ↪→ R, fp the map induced by the reduction
mod p : Z →→ Fp, c the complexification and b the Brauer lift, and where the
homotopy fibres of both horizontal maps are SU 2̂ (for details of that construction,
see [AMNY], where the argument is presented for GL(Z) instead of SL(Z), or [Au,
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chapter 3]; notice also that an unstable version of this computation is given in [He]).
In order to go through the mod 2 Bockstein spectral sequence for BSL(Z)+, we
shall first consider the mod 2 Bockstein spectral sequence for the spaces BSO and
BSL(Fp)+, and the homomorphisms induced in cohomology by the maps h and fp.

Let us start by looking at the mod 2 Bockstein spectral sequence

E∗1 (BSO) % H∗(BSO;Z/2)%Z/2[w2, w3, . . . , wj , . . . ]

=⇒ (H∗(BSO;Z)/torsion)⊗ Z/2 .
Its first differential is d1 = Sq1 and we know by Wu’s formula (see for instance [MT,
part I, p. 138, theorem 5·12]) that for i > 1, Sq1(w2i) = w2i+1, Sq1(w2i+1) = 0, and
that Sq1(w2

j) = 0 for j > 1. Thus, we may deduce that

E∗2 (BSO)%Z/2[w2
2, w

2
4, . . . , w

2
2i, . . . ]

is concentrated in degrees ≡ 0 mod 4. Since dr is of degree 1, it is then obvious that
dr = 0 for all r > 2. Consequently, we have proved the following result.

Proposition 2·1.

(a) The mod 2 Bockstein spectral sequence for BSO has the property that E∗1 (BSO)%
Z/2[wj , j > 2] and E∗r (BSO)%E∗∞(BSO)%Z/2[w2

2i, i > 1] for all r > 2.
(b) All non-trivial 2-torsion elements of H∗(BSO;Z) have order exactly equal to 2.
(c) H∗(BSO;Z)/torsion%Z[p4i, i > 1], where p4i is of degree 4i and represents an

element of H4i(BSO;Z) whose reduction mod 2 is w2
2i ∈ H4i(BSO;Z/2).

Remark 2·2. The additive and multiplicative structures of the 2-torsion of
H∗(BSO;Z) has been obtained a long time ago in [Brn, theorem 1·5], and [F, theo-
rem 1] (see also [Bo, theorem 24·7 and proposition 25·6], [CV, theorem 1], and [ThE,
theorem A]). For completeness, let us recall here its additive structure, which can also
be determined by the argument we shall use in the next sections (see Lemma 3·6 and
Theorems 3·7 and 4·7): if Ψ denotes the graded Z-algebra Z[q2i+1, i > 1]⊗Z[p4i, i > 1]
with deg(q2i+1) = 2i+1 and deg(p4i) = 4i, then the 2-torsion subgroup of H∗(BSO;Z)
is additively isomorphic to the graded Ψ-module generated by

{GA |A running over all non-empty finite subsets of N1 = N− {0}}
with relations generated by {

2GA ,
∑
i∈A

q2i+1GA−{i}

}
.

Here, the element G{i1,... ,it} ∈ H∗(BSO;Z) is of degree 2(
∑t

j=1 ij) + 1 and reduces

mod 2 to the class
∑t

j=1 w2ij+1w2i1 · · ·w2i(j−1)w2i(j+1) · · ·w2it ∈ H∗(BSO;Z/2).

3. The mod 2 Bockstein spectral sequence for BSL(Fp)+

Let us consider the space BSL(Fp)+ for any prime number p ≡ 5 mod 8. Its mod
2 cohomology is

H∗(BSL(Fp)+;Z/2)%Z/2[c2, c3, . . . , ck, . . . ]⊗ ΛZ/2(e2, e3, . . . , ek, . . . )
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with deg(ck) = 2k and deg(ek) = 2k− 1 (see [Q, theorem 1]). The first differential of
its mod 2 Bockstein spectral sequence

E∗1 (BSL(Fp)+) % Z/2[ck, k > 2]⊗ ΛZ/2(ek, k > 2)

=⇒ (H∗(BSL(Fp)+;Z)/torsion)⊗ Z/2
is trivial since d1(ck) = Sq1(ck) = 0 and d1(ek) = Sq1(ek) = 0 for all k > 2 according
to [Ar4, lemmas 3 and 4]. Thus,

E∗2 (BSL(Fp)+)%E∗1 (BSL(Fp)+) .

In order to understand the higher differentials dr, let us recall the definition of
dr (see [Brd, section 1]). If x ∈ En

r (BSL(Fp)+), then there is an element x̃ ∈
Hn(BSL(Fp)+;Z/2r) such that the homomorphism θr: Hn(BSL(Fp)+;Z/2r) →
Hn(BSL(Fp)+;Z/2) induced by the natural surjection Z/2r →→ Z/2 sends x̃ onto
x. Let βr: Hn(BSL(Fp)+;Z/2r) → Hn+1(BSL(Fp)+;Z) denote the Bockstein homo-
morphism associated with the short exact sequence

0 −→ Z ·2r−→ Z −→ Z/2r −→ 0

and red2: Hn+1(BSL(Fp)+;Z) → Hn+1(BSL(Fp)+;Z/2) the reduction mod 2. Then,
the differential dr: En

r (BSL(Fp)+)→ En+1
r (BSL(Fp)+) is defined by

dr(x) = red2(βr(x̃)) .

Let us apply this to the case of the space BSL(Fp)+.

Definition 3·1. For any integer r > 2, let Nr = {k ∈ N | v2(k) = r− 2}, where v2(−)
is the 2-adic valuation (in other words, Nr = {k = 2r−1i + 2r−2 | i > 0}).

Remark 3·2. For any prime p ≡ 5 mod 8 and any integer r > 2, Nr = {k ∈
N | v2(pk − 1) = r}. In order to check this, it is sufficient to show that v2(pk − 1) =
v2(k) + 2 for any positive integer k. Let us write p = 4m + 1 with m odd. Then
pk − 1 =

∑k
t=1

(
k
t

)
4tmt. For t > 2, one has

v2

((
k

t

)
4tmt

)
= 2t + v2

(
k(k − 1) · · · (k − t + 1)

t!

)
> 2t + v2(k)− v2(t!) > v2(k) + t + 1 > v2(k) + 3 ,

since v2(t!) 6 t− 1. This implies that v2(pk − 1) = v2(4km) = v2(k) + 2.

Lemma 3·3. Let p be any prime ≡ 5 mod 8 and r be any integer > 2. If k ∈ Nr, then
the class ek belongs to E2k−1

s (BSL(Fp)+) for all s 6 r and dr(ek) = ck ∈ E2k
r (BSL(Fp)+).

Proof. If k belongs to Nr, then r = v2(pk − 1) by Remark 3·2. Thus, according
to [Q, section 3], ek is the image of an element ẽk ∈ H2k−1(BSL(Fp)+;Z/2r) under
the homomorphism θr and consequently, ek ∈ E2k−1

r (BSL(Fp)+). Moreover, it follows
from [Q, lemma 5] that dr(ek) = red2(βr(ẽk)) = ck.

We get the complete calculation of the mod 2 Bockstein spectral sequence for the
space BSL(Fp)+.

Theorem 3·4. For any prime p ≡ 5 mod 8, the mod 2 Bockstein spectral sequence
for BSL(Fp)+ satisfies:
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(a) E∗2 (BSL(Fp)+) % E∗1 (BSL(Fp)+) % Z/2[ck, k > 2] ⊗ ΛZ/2(ek, k > 2) and

d2(ek) = ck whenever k ∈ N2 = {odd positive integers};
(b) for any r > 3, E∗r (BSL(Fp)+)% Z/2[ck, k ∈ Ns for s > r] ⊗ ΛZ/2(ek, k ∈ Ns

for s > r) and dr(ek) = ck whenever k ∈ Nr;
(c) E∗∞(BSL(Fp)+) = 0.

By looking at the differential graded Z/2 algebras

Fs = Z/2[ck, 2 6 k ∈ Ns]⊗ ΛZ/2(ek, 2 6 k ∈ Ns) , δs(ek) = ck , for s > 2 ,

one can write the Er terms of the mod 2 Bockstein spectral sequence of BSL(Fp)+

as follows.

Corollary 3·5. For any prime p ≡ 5 mod 8 and for any integer r > 2,
E∗r (BSL(Fp)+)%

⊗
s>r Fs with the differential dr = δr on Fr and dr = 0 on Fs when

s > r.

The knowledge of the mod 2 Bockstein spectral sequence determines the additive
structure of the 2-torsion of the integral cohomology H∗(BSL(Fp)+;Z) since the
elements of the image of dr detect the elements of order 2r in H∗(BSL(Fp)+;Z). Let
us start with the following observation.

Lemma 3·6. Consider a set N and the differential graded Z/2 algebra

DN = Z/2[xn, n ∈ N ]⊗ ΛZ/2(yn, n ∈ N ) ,

where the differential is a derivation δ given by δ(yn) = xn. Then the image of δ is the
Z/2[xn, n ∈ N ] module generated by{

HA =
∑
a∈A

xa
∏

b∈A−{a}
yb |A running over all non-empty finite subsets of N

}
with the relations generated by{∑

a∈A
xaHA−{a} |A running over all non-empty finite subsets of N

}
.

Proof. Let us write P for the polynomial tensor factor Z/2[xn, n ∈ N ] ofDN . Since
δ2 = 0, one has δ(P ) = 0 and the fact that δ is a derivation shows thatDN →→ Im(δ) is
a morphism of P -modules. The elements of the form

∏
a∈A ya, where A runs over all

non-empty finite subsets of N , generate DN as a P -module. Therefore, the image of
δ is generated, as a P -module, by the elements HA = δ(

∏
a∈A ya). We get obviously

the relations
∑

a∈A xaHA−{a} = δ2(
∏
a∈A ya) = 0 and there are no other relations

because H∗(DN , δ)%Z/2.

Let us deduce the following explicit description of the additive structure of the
2-torsion of H∗(BSL(Fp)+;Z). Observe in particular that there is no direct summand
of order 2 in H∗(BSL(Fp)+;Z).

Theorem 3·7. Let p be any prime ≡ 5 mod 8 and consider the graded Z algebra

Φ = Z[ak, k > 2]⊗ ΛZ(bk, k even > 2) ,

where deg(ak) = 2k and deg(bk) = 2k − 1.
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As a graded abelian group, the 2-torsion subgroup of H∗(BSL(Fp)+;Z) is additively

isomorphic to the graded Φ-module generated by

{HA,r | r > 2 , A running over all non-empty finite subsets of Nr}
with relations generated by

2rHA,r,
akHA,r for all k ∈ Ns with 2 6 s < r,
bkHA,r for all k ∈ Ns with 2 6 s 6 r,∑
k∈A

akHA−{k},r for all r > 2, A ⊂ Nr.

The element H{k1,... ,kt},r ∈ H∗(BSL(Fp)+;Z) is of degree 2(
∑t

j=1 kj)− t+ 1 and reduces
mod 2 to the class

∑t
j=1 ckjek1 · · · ek(j−1)ek(j+1) · · · ekt ∈ H∗(BSL(Fp)+;Z/2).

Proof. Let us denote by Pr the polynomial tensor factor Z/2[ck, 2 6 k ∈ Nr] of
Fr for r > 2. According to Corollary 3·5, the image of dr is

Im(dr) = Im(δr)⊗
(⊗
s>r

Fs

)
and Lemma 3·6 implies that Im(dr) is the (Pr⊗ (

⊗
s>r Fs))-module generated by the

HA,rs, where A runs over all non-empty finite subsets of Nr, with the relations given
by Lemma 3·6. By definition of Φ, the generators ak and bk of the Z algebra Φ are
in one-to-one correspondence with the classes ck and ek respectively, which generate
the Z/2 algebra

P2 ⊗
(⊗

s>2

Fs

)
%Z/2[ck, k > 2]⊗ ΛZ/2(ek, k even > 2) .

The assertion then follows by gluing together the information on Im(dr) for r > 2.

Remark 3·8. The additive structure of H∗(BSL(Fp)+;Z) has been already calcu-
lated in [Hu], but in a completely different way.

4. The mod 2 Bockstein spectral sequence for BSL(Z)+

Finally, let us investigate the mod 2 Bockstein spectral sequence

E∗1 (BSL(Z)+) % Z/2[wj , j > 2]⊗ ΛZ/2(u2k−1, k > 2)

=⇒ (H∗(BSL(Z)+;Z)/torsion)⊗ Z/2
for the mod 2 cohomology of the space BSL(Z)+. Since the induced homomor-
phism h∗: H∗(BSO;Z/2) → H∗(BSL(Z)+;Z/2) sends the Stiefel–Whitney classes
wj ∈ Hj(BSO;Z/2) onto the corresponding classes wj ∈ Hj(BSL(Z)+;Z/2), we
have again Sq1(w2i) = w2i+1, Sq1(w2i+1) = 0 for i > 1 and we know from [AMNY,
lemma 12] that Sq1(u2k−1) = 0 for k > 2. Therefore, we obtain theE2-term as follows:

E∗2 (BSL(Z)+)%E∗2 (BSO)⊗ΛZ/2(u2k−1, k > 2)%Z/2[w2
2i, i > 1]⊗ΛZ/2(u2k−1, k > 2) .

Because of the naturality of the mod 2 Bockstein spectral sequence with respect
to h∗, we may deduce from Section 1 that all higher differentials dr are trivial on
Z/2[w2

2i, i > 1], r > 2.
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Lemma 4·1. For all positive integers r and i, one has dr(u4i+1) = 0 inE4i+2

r (BSL(Z)+).

Proof. This is true if r = 1. For r > 2, dr(u4i+1) is of the form dr(u4i+1) =∑
s w(s)⊗ u(s), where w(s) is a product of classes w2

2i (i > 1) and u(s) a product of
classes u2k−1 (k > 2). According to [AMNY, proposition 7], the classes u2k−1 (k > 2)
are primitive cohomology classes, in other words, µ∗(u2k−1) = u2k−1 ⊗ 1 + 1⊗ u2k−1,
where µ∗ is the coproduct H∗(BSL(Z)+;Z/2)→ H∗(BSL(Z)+ ×BSL(Z)+;Z/2) pro-
vided by the H-space structure of BSL(Z)+. In particular, it follows from the fact
that E∗r (BSL(Z)+) is a differential Hopf algebra (see [Brd, proposition 4·7]) that
µ∗(dr(u4i+1)) = dr(µ∗(u4i+1)) and consequently that dr(u4i+1) is primitive. However,
for
∑

sw(s)⊗u(s) to be primitive, it is necessary to have u(s) primitive, which is only
possible if u(s) = 1 or u(s) = u2k−1 for some k. In both cases, the element w(s)⊗ u(s)
cannot lie in degree 4i + 2 since deg(w(s)) ≡ 0 mod 4. Consequently, the sum must
be empty and we get dr(u4i+1) = 0.

Now, let us consider any prime p ≡ 5 mod 8 and the homomorphism

f∗p : H∗(BSL(Fp)+;Z/2)%Z/2[ck, k > 2]⊗ ΛZ/2(ek, k > 2) −→ H∗(BSL(Z)+;Z/2)

induced by the reduction mod p. We shall replace the generators u4i−1 (for i > 1)
of the exterior subalgebra ΛZ/2(u2k−1, k > 2) of H∗(BSL(Z)+;Z/2) by

ε4i−1 = f∗p (e2i) = u4i−1 +
2i−2∑
j=2

w2
ju4i−2j−1 ∈ H4i−1(BSL(Z)+;Z/2)

(see [AMNY, theorem 13]). Thus, the first two terms of the mod 2 Bockstein spectral
sequence of BSL(Z)+ can be expressed as

E∗1 (BSL(Z)+)%H∗(BSL(Z)+;Z/2)

%Z/2[wj , j > 2]⊗ ΛZ/2(ε4i−1, i > 1)⊗ ΛZ/2(u4i+1, i > 1) ,

E∗2 (BSL(Z)+)%Z/2[w2
2i, i > 1]⊗ ΛZ/2(ε4i−1, i > 1)⊗ ΛZ/2(u4i+1, i > 1) .

Let us consider again the sets of integers Nr = {k = 2r−1i + 2r−2 | i > 0} introduced
in Definition 3·1.

Lemma 4·2. For any r > 3, if k ∈ Nr, then ε2k−1 belongs to E∗s (BSL(Z)+) for all
s 6 r and dr(ε2k−1) = w2

k.

Proof. By naturality of the mod 2 Bockstein spectral sequence with respect to f∗p ,
this follows from the equality

dr(ek) = ck for k ∈ Nr

given by Lemma 3·3, from the definition ε2k−1 = f∗p (ek) (where k is even since k ∈ Nr

with r > 3) and the formula f∗p (ck) = w2
k (see [Ar3, Lemma 1·4]).

This argument implies also the vanishing of d2, because w2
k = 0 in E∗2 (BSL(Z)+)

when k belongs to N2 = {odd positive integers}. Let us summarize the information
we obtain on E∗r (BSL(Z)+).

Theorem 4·3. The mod 2 Bockstein spectral sequence for BSL(Z)+ satisfies:
(a) E∗1 (BSL(Z)+)% H∗(BSL(Z)+;Z/2)% Z/2[wj , j > 2] ⊗ ΛZ/2(ε4i−1, i > 1) ⊗
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ΛZ/2(u4i+1, i > 1) and d1(w2i) = w2i+1, d1(w2i+1) = 0, and d1 is trivial on all
classes ε4i−1 and u4i+1 (i > 1).

(b) E∗2 (BSL(Z)+)%E∗3 (BSL(Z)+)%Z/2[w2
k, k even > 2]⊗ΛZ/2(ε2k−1, k even > 2)

⊗ ΛZ/2(u4i+1, i > 1).
(c) For any r > 3,

E∗r (BSL(Z)+)%Z/2[w2
k , k ∈ Ns for s > r]

⊗ ΛZ/2(ε2k−1, k ∈ Ns for s > r)⊗ ΛZ/2(u4i+1, i > 1)

and dr(ε2k−1) = w2
k whenever k ∈ Nr.

(d) E∗∞(BSL(Z)+)%ΛZ/2(u4i+1, i > 1).

The calculation of the differentials in that mod 2 Bockstein spectral sequence
enables us to split its E1-term as a tensor product of differential graded Z/2-algebras:

E∗1 (BSL(Z)+)%D1 ⊗
(⊗

s>3

Ds

)
⊗D∞ ,

where
D1 = Z/2[w2i+1, i > 1]⊗ ΛZ/2(w2i, i > 1) , δ1(w2i) = w2i+1 ,

Ds = Z/2[w2
k, k ∈ Ns]⊗ ΛZ/2(ε2k−1, k ∈ Ns) , δs(ε2k−1) = w2

k , for s > 3 ,

D∞ = ΛZ/2(u4i+1, i > 1) , δ∞ = 0 .

The spectral sequence can then be described in the following simple way.

Corollary 4·4. The mod 2 Bockstein spectral sequence for BSL(Z)+ satisfies:
(a) E∗1 (BSL(Z)+)%D1⊗ (

⊗
s>3 Ds)⊗D∞ and the first differential is d1 = δ1 on D1

and d1 = 0 on Ds when 3 6 s 6∞.
(b) E∗2 (BSL(Z)+)%E∗3 (BSL(Z)+) and for r > 3, E∗r (BSL(Z)+)% (

⊗
s>rDs)⊗D∞

with the differential dr = δr on Dr and dr = 0 on Ds when r < s 6∞.
(c) E∗∞(BSL(Z)+)%D∞.

Remark 4·5. Let us mention that the mod 2 Bockstein spectral sequence for the
group SL3(Z[ 1

2 ]) has been recently computed (see [He, Section 4·3]).

The following interesting observations are immediate consequences of Theorem
4·3(b) and (d) and Corollary 4·4(b) and (c).

Corollary 4·6.
(a) There is no cyclic direct summand of order 4 in H∗(BSL(Z)+;Z).
(b) The set of all non-trivial elements of ΛZ/2(u4i+1, i > 1) is in one-to-one correspon-

dence with an additive basis of H∗(BSL(Z)+;Z)/torsion.

By applying Lemma 3·6 again, we get an explicit description of the additive struc-
ture of the 2-torsion of the integral cohomology H∗(BSL(Z)+;Z). In order to for-
mulate the main result of this section, let us use again the notation introduced in
Remark 2·2 and Definition 3·1: N1 = N−{0} and Nr = {k = 2r−1i+ 2r−2 | i > 0} for
r > 3.

Theorem 4·7. Consider the graded Z-algebra

Ω = Z[ωk,1, k ∈ N1]⊗ Z[ωk,r, k ∈ Nr with r > 3]⊗ ΛZ(z2k−1, k > 2) ,

where deg(ωk,1) = 2k + 1, deg(ωk,r) = 2k when r > 3 and deg(z2k−1) = 2k − 1.
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As a graded abelian group, the 2-torsion subgroup of H∗(BSL(Z)+;Z) is additively

isomorphic to the graded Ω-module generated by

{JA,r | r = 1 or r > 3 , A running over all non-empty finite subsets of Nr}
with relations generated by

2rJA,r,
ωk,sJA,r for all s < r and all k ∈ Ns, when r > 3,
z2k−1JA,r for all k ∈ Ns with 3 6 s 6 r, when r > 3,∑
k∈A

ωk,rJA−{k},r for r = 1 and r > 3, A ⊂ Nr.

The element J{k1,... ,kt},1 ∈ H∗(BSL(Z)+;Z) is of degree 2(
∑t

j=1 kj) + 1 and reduces
mod 2 to the class

∑t
j=1 w2kj+1w2k1 · · ·w2k(j−1)w2k(j+1) · · ·w2kt ∈ H∗(BSL(Z)+;Z/2).

For r > 3, the element J{k1,... ,kt},r ∈ H∗(BSL(Z)+;Z) is of degree 2(
∑t

j=1 kj) − t + 1

and reduces mod 2 to the class
∑t

j=1 w
2
kj
ε2k1−1 · · · ε2k(j−1)−1ε2k(j+1)−1 · · · ε2kt−1 ∈

H∗(BSL(Z)+;Z/2).

Proof. For r = 1 or r > 3, let us call Pr the polynomial tensor factor ofDr. Because
of the splitting of E∗r (BSL(Z)+) given by Corollary 4·4, the image of dr is

Im(dr) = Im(δr)⊗
(⊗
s>r

Ds

)
⊗D∞

and Lemma 3·6 implies that Im(dr) is the (Pr ⊗ (
⊗

s>rDs) ⊗ D∞) module gener-
ated by the JA,rs, where A runs over all non-empty finite subsets of Nr, with the
relations provided by Lemma 3·6. Now, let us denote by Ω the graded Z-algebra
Ω = Z[ωk,1, k ∈ N1]⊗Z[ωk,r, k ∈ Nr with r > 3]⊗ΛZ(z2k−1, k > 2) whose generators
are in one-to-one correspondence with those of

P1 ⊗
(⊗

s>3

Ds

)
⊗ D∞%Z/2[w2k+1, k > 1]⊗ Z/2[w2

k, k even > 2]

⊗ ΛZ/2(ε2k−1, k even > 2)⊗ ΛZ/2(u2k−1, k odd > 3)

as follows: ωk,1 corresponds to w2k+1, ωk,r to w2
k when r > 3 and k ∈ Nr, z2k−1 to ε2k−1

when k is even and to u2k−1 when k is odd. The assertion of the theorem then follows
by gluing together the information on the elements of order 2r in H∗(BSL(Z)+;Z)
given by the determination of Im(dr) for r > 1.

Remark 4·8. The isomorphism established in Theorem 4·7 is an additive isomor-
phism: for instance, for 3 6 s < r, k ∈ Ns and A a non-empty finite subset of Nr, the
product of the elements of H∗(BSL(Z)+;Z) corresponding to J{k},s and JA,r under
that isomorphism is non-trivial, even if the reduction mod 2 of J{k},s is w2

k, which is
the generator of Ds corresponding to the generator ωk,s of Ω (that product is actu-
ally an element of order 2s in H∗(BSL(Z)+;Z) which reduces mod 2 to the reduction
mod 2 of (

∑
k∈A ωk,r

∏
i∈A−{k} z2i−1) J{k},s, where (

∑
k∈A ωk,r

∏
i∈A−{k} z2i−1) ∈ Ω).

More generally, the above mod 2 Bockstein spectral sequence calculation provides
the following multiplicative relations mod 2 between the additive generators of the
2-torsion subgroup of H∗(BSL(Z)+;Z) given by Theorem 4·7.
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If 1 6 s < r, then it is obvious that

JA,rJB,s ≡
(∑
k∈A

ωk,r
∏

i∈A−{k}
z2i−1

)
JB,s mod 2 .

If r > 3 and if red2 denotes again the reduction mod 2, one has

red2(JA,rJB,r) = red2(JA,r) δr

(∏
j∈B

ε2j−1

)
= δr

(
red2(JA,r)

∏
j∈B

ε2j−1

)
= δr

(∑
k∈A

w2
k

∏
i∈A−{k}

ε2i−1

∏
j∈B

ε2j−1

)
.

The fact that the classes ε2i−1 are exterior implies that

red2(JA,rJB,r) = δr

( ∑
k∈A such that
A−{k}wB=6

w2
k

∏
i∈A−{k}xB

ε2i−1

)

=
∑

k∈A such that
A−{k}wB=6

w2
k δr

( ∏
i∈A−{k}xB

ε2i−1

)

and finally that

JA,rJB,r ≡
∑

k∈A such that
A−{k}wB=6

ωk,r JA−{k}xB,r mod 2 .

If r = 1, the formula

JA,1JB,1 ≡
∑

k∈A such that
A−{k}wB=6

ωk,1 JA−{k}xB,1 mod 2

does still hold but the classes ε2i−1 should be replaced by w2i in the argument.
Finally, the above computation helps us to understand, at the prime 2, the

homomorphisms h∗: H∗(BSO;Z) → H∗(BSL(Z)+;Z) and f∗p : H∗(BSL(Fp)+;Z) →
H∗(BSL(Z)+;Z) induced by the inclusion Z ↪→ R and by the reduction mod p, when
p ≡ 5 mod 8.

Theorem 4·9.
(a) The homomorphism h∗: H∗(BSO;Z) → H∗(BSL(Z)+;Z) is injective on the tor-

sion classes of H∗(BSO;Z).
(b) For every generator of infinite order p2k in H2k(BSO;Z) with k even, h∗(p2k) is

an element of order 2r if k belongs to Nr, r > 3 (up to odd torsion).
(c) For p ≡ 5 mod 8, the image of any generator of any cyclic direct summand of

order 4 in H∗(BSL(Fp)+;Z) under the homomorphism f∗p : H∗(BSL(Fp)+;Z)→
H∗(BSL(Z)+;Z) has order 2 in H∗(BSL(Z)+;Z).

(d) For any r > 3, the homomorphism f∗p (with p ≡ 5 mod 8) is injective on all cyclic
direct summands of order 2r in H∗(BSL(Fp)+;Z).
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Proof. Assertion (a) is obvious since the Stiefel–Whitney classes wj ∈ Hj(BSO;Z)

correspond to the elements wj ∈ Hj(BSL(Z)+;Z) via h∗. The fact that the reduction
mod 2 of p2k is w2

k ∈ H2k(BSO;Z/2), by Proposition 2·1(c), and that dr(ε2k−1) = w2
k

if k ∈ Nr, according to Theorem 4·3(c), implies (b). According to Theorem 3·7, the
generators of the cyclic direct summands of order 2r in H∗(BSL(Fp)+;Z) belong to
the Φ-module generated by the HA,r’s, where A = {k1, . . . , kt} is a finite subset of
Nr and one has:

f∗p (red2(HA,r)) = f∗p

(
t∑
j=1

ckjek1 · · · ek(j−1)ek(j+1) · · · ekt
)

=
t∑
j=1

w2
kj
ε2k1−1 · · · ε2k(j−1)−1ε2k(j+1)−1 · · · ε2kt−1

since f∗p (ckj ) = w2
kj

by [Ar3, lemma 1·4]. If r = 2, N2 = {odd positive integers} and
Assertion (c) follows from the equality

d1(wkj−1wkjε2k1−1 · · · ε2k(j−1)−1ε2k(j+1)−1 · · · ε2kt−1)

= w2
kj
ε2k1−1 · · · ε2k(j−1)−1ε2k(j+1)−1 · · · ε2kt−1

when kj is odd. If r > 3, then Assertion (d) is a consequence of

dr

(
t∏
j=1

ε2kj−1

)
=

t∑
j=1

w2
kj
ε2k1−1 · · · ε2k(j−1)−1ε2k(j+1)−1 · · · ε2kt−1

in E∗r (BSL(Z)+).

5. Chern classes of integral representations of groups

For n > 1, let us call cn(SL(Z)) ∈ H2n(SL(Z);Z) the nth Chern class of the
inclusion σ: SL(Z) ↪→ GL(C), i.e. cn(SL(Z)) = σ∗(cn), where cn denotes the nth
universal Chern class of degree 2n in H∗(BGL(C);Z) % Z[c1, c2, . . . , cn, . . . ] and
σ∗: H∗(BGL(C);Z) → H∗(BSL(Z);Z)%H∗(SL(Z);Z) the homomorphism induced
by σ. The order of cn(SL(Z)) has been only determined up to a factor 2.

Definition 5·1. For any positive even integer n, letEn be the denominator ofBn/n,
where Bn is the nth Bernoulli number; for instance, B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 and
E2 = 12, E4 = 120, E6 = 252.

Proposition 5·2. The Chern classes cn(SL(Z)) are all torsion classes. If n is odd,
then cn(SL(Z)) is of order 2 in H2n(SL(Z);Z). If n is even, then the order of cn(SL(Z))
in H2n(SL(Z);Z) is equal to 2En when n ≡ 2 mod 4, and to En or 2En when n ≡ 0
mod 4.

Proof. See [EM1, section 5], [EM2, main theorem], and [Ar1, Einleitung and
Korollar 2·5].

The determination of the exact order of cn(SL(Z)) in the case where n ≡ 0
mod 4 now follows from the mod 2 Bockstein spectral sequence calculations pre-
sented in Theorem 4·3 and Corollary 4·4.
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Theorem 5·3. For any positive even integer n, the Chern class cn(SL(Z)) is a torsion

class of order 2En in H2n(SL(Z);Z).

Proof. The odd-primary part of the order of cn(SL(Z)) is given by Proposition 5·2.
For all integers r > 3, we know from Lemma 4·2 that dr(ε2n−1) = w2

n when n ∈ Nr.
Therefore, the fact that red2(cn(SL(Z))) = w2

n for all n > 1 (see [MT, part I, p. 137,
theorem 5·11]) implies that for n even, cn(SL(Z)) is of order 2r in Hn(SL(Z);Z)
when n ∈ Nr (r > 3). On the other hand, according to von Staudt’s theorem (see
[BS, p. 384, theorem 4]), 2t divides En if and only if 2t−1 divides n. Thus, if n ∈
Nr = {n ∈ N | v2(n) = r − 2}, then the 2-primary part of En is 2r−1. Consequently,
the 2-primary parts of the order of cn(SL(Z)) and of the integer 2En coincide for
any even integer n > 2.

Remark 5·4. The same result holds for the Chern classes cn(GL(Z)) of the general
linear group GL(Z) as there is a homotopy equivalence BGL(Z)+ ' BSL(Z)+×BZ/2
(see for instance [Ar1, lemma 1·2]).

The knowledge of the order of the Chern classes of SL(Z) produces the following
result on the Chern classes of the linear groups over the field of rationals Q.

Corollary 5·5. The Chern classes cn(SL(Q)) and cn(GL(Q)) are all torsion classes.
If n is odd, they are of order 2. If n is even, the order of cn(SL(Q)) and of cn(GL(Q)) is
equal to 2En.

Proof. Since the order of cn(SL(Q)) and of cn(GL(Q)) is a positive multiple of the
order of cn(SL(Z)), a lower bound for it is given by Proposition 5·2 and Theorem 5·3.
The assertion then follows from [Ar2, theorem 11].

For any complex representation ρ: G→ GL(C) of any discrete group G, the Chern
classes of ρ are cn(ρ) = ρ∗(cn) ∈ H2n(G;Z), where ρ∗ is the induced homomorphism
H2n(BGL(C);Z)→ H2n(BG;Z)%H2n(G;Z). Of course, the above calculations pro-
duce the following consequence for any integral representation ρ : G → GL(Z) ↪→
GL(C) or any rational representation ρ : G → GL(Q) ↪→ GL(C) of any discrete
group G.

Corollary 5·6. The best upper bound for the order of the nth Chern class cn(ρ) of
any integral or rational representation ρ of any discrete group G is equal to 2 when n is
odd and to 2En when n is even.

Proof. Since ρ is an integral representation, respectively a rational representation,
cn(ρ) is the image of cn(GL(R)) under the induced homomorphism H2n(GL(R);Z)→
H2n(G;Z), whereR = Z, respectivelyR = Q. Consequently, the order of cn(ρ) divides
the order of cn(GL(R)) which has been obtained in Proposition 5·2, Theorem 5·3,
Remark 5·4 and Corollary 5·5. It turns out that the order of cn(SL(Z)) is the best
possible upper bound since one can chooseG = SL(Z) and ρ the inclusion intoGL(C).

Remark 5·7. The assertion of Corollary 5·6 is of particular interest because the
best upper bound for the order of the nth Chern class of any integral representation
of any finite group is smaller, i.e. only equal to En (see [EM1, theorem 4·12], and
[ThC, p. 89]).
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