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Abstract 

 

Several D-amino acids have been identified in plants.  However, the biosynthetic pathway to them is unclear.  

In this study, we cloned and sequenced a cDNA encoding a serine racemase from barley which contained an 

open reading frame encoding 337 amino acid residues.  The deduced amino acid sequence showed significant 

identity to plant and mammalian serine racemases and contained conserved pyridoxal 5-phosphate (PLP)-binding 

lysine and PLP–interacting amino acid residues.  The purified gene product catalyzed not only racemization of 

serine but also dehydration of serine to pyruvate.  The enzyme requires PLP and divalent cations such as Ca2+,

Mg2+, or Mn2+, but not ATP, whereas mammalian serine racemase activity is increased by ATP.  In addition to 

the results regarding the effect of ATP on enzyme activity and the phylogenetic analysis of eukaryotic serine 

racemases, the antiserum against Arabidopsis serine racemase did not form a precipitate with barley and rice 

serine racemases.  This suggests that plant serine racemases represent a distinct group in the eukaryotic serine 

racemase family and can be clustered into monocot and dicot types. 

 

Keywords: Hordeum vulgare L.; Oryza sativa; Gramineae; Pyridoxal 5-phosphate; Serine racemase; Serine 

dehydratase; D-Amino acid 
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1. Introduction 

 

Serine racemase, which catalyzes racemization of L- and D-amino acids, is found in mammals as a 

biosynthetic enzyme for D-serine (1a), with the latter acting as an agonist at the glycine site of the 

N-methyl-D-aspartate receptor in the mammalian nervous system (Dunlop et al., 1986; Nagata et al., 1989; 

Hashimoto et al., 1992; Hashimoto et al., 1993; Nagata et al., 1994; Hashimoto et al., 1995).  Mammalian serine 

racemase is an unique enzyme that catalyzes not only serine (1a, 1b) racemization but also dehydration of 1a and 

1b to pyruvate (2) in the presence of divalent cations; this distinguishes it from bacterial amino acid racemases 

(Cook et al., 2002; De Miranda et al., 2002; Strisovsky et al., 2003; Foltyn et al., 2005) (Fig. 1).  In plants, 

several D-amino acids have been discovered in pea seedlings (Ogawa et. al., 1977), barley grain, hops blossoms 

(Erbe and Bruckner, 2000), and tobacco leaves (Kullman et al., 1999).  Recently, a serine racemase gene was 

cloned from Arabidopsis thaliana and expressed to produce a protein that has both racemase and dehydratase 

activities (Fujitani et al., 2006).  This gene also has 46 and 45% identity to human and mouse serine racemases, 

respectively, and the pyridoxal 5-phosphate (PLP)-binding domain is conserved as with mammalian serine 

racemases.  The PLP-dependent A. thaliana serine racemase also requires divalent cations but not ATP, whereas 

there is synergy between Mg2+ and ATP in the activity of mammalian serine racemases.  These reports suggest 

that this plant serine racemase is distinct from mammalian serine racemases. However, there has been no report 

on the cloning and characterization of plant serine racemases except for that in A. thaliana.

In this report, we describe the isolation and characterization of a cDNA encoding serine racemase from barley.  

In addition, we obtained a rice serine racemase by cloning a cDNA encoding a homolog of barley serine 

racemase and compared the structure-function relationships of plant and mammalian serine racemases. 

 

2. Results 

 

2.1. Sequence analysis of barley serine racemase 

 

The resulting nucleotide sequence of the barley serine racemase cDNA, except for the poly(A) sequence, is 

1380 bp in length and contains an open reading frame encoding a polypeptide of 337 amino acid residues with a 

calculated molecular mass of 35.7 kDa (HvSR, AB271213).  The deduced amino acid sequence of HvSR 
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showed 89% identity with that of a putative rice serine racemase in data banks (OsSR, AL606647), and 68, 46, 

45, and 28% identity with a serine racemase from A. thaliana (AtSR, AB206823, Fujitani et al., 2006), as well as 

human (hSR, AF169974, De Miranda et al., 2000) and mouse (mSR, AF148321, Wolosker et al., 1999) serine 

racemases, and catalytic domain of L-threonine dehydratase from Escherichia coli (EcTD, Swiss-Plot no. 

P04969, Gallagher, et al., 1998), respectively.  The amino acid sequence alignment (Fig. 2) shows that plant and 

mammalian serine racemases belong to the fold type II PLP enzymes and that Lys62 which binds to PLP, Phe61 

and Gly241, which sandwich the PLP ring, Ser315, the side-chain of which is hydrogen-bonded to the pyridium 

nitrogen of PLP, and Asn89, which stabilizes the 3’ oxygen of PLP by a hydrogen bond in the PLP-binding 

domain of E.coli threonine dehydratase, a typical fold type II PLP enzyme, correspond to Lys67, Phe66, Gly246, 

Ser322, and Asn94 of HvSR, respectively, and all of these residues were conserved in rice, A. thaliana, human, 

and mouse serine racemases.  The glycine-rich loop which coordinates the phosphate group of PLP is composed 

of a triglycine loop (Gly194–196 of HvSR) in the three plant serine racemases known it contains a tetraglycine 

loop in human and mouse serine racemases.  The phylogenetic tree presented shows that plant serine racemases 

represent a distinct group from mammalian serine racemases, and that the monocot serine racemases of barley 

and rice are distinct from the dicot serine racemase of A. thaliana (Fig. 3). 

 

2.2. Purification and enzyme activity of recombinant barley serine racemase 

 

SDS-PAGE analysis of E. coli cells harboring pHvSR contained an extra protein with the expected molecular 

mass of ca. 36 kDa, the expression level of which reached ca. 10% of the total protein after 8 h of 

isopropyl-ß-D-thiogalactopyranoside (IPTG) induction.  Purification of recombinant HvSR by Ni-NTA column 

chromatography yielded ~95% pure preparation (Fig. 4).  The purified HvSR was incubated with 5 µM PLP 

and 1 mM CaCl2 which activates AtSR and mammalian serine racemases (Cook et al., 2002; De Miranda et al., 

2002; Strisovsky et al., 2003), and the formation of 1a and 2 was determined.  The specific activities for 

racemization of L-serine (1b) to 1a, and dehydration of 1b to 2, were 14 and 228 nmol/min/mg, respectively, and 

those for racemization of 1a to 1b, and dehydration of 1a to 2, were 2.2 and 89 nmol/min/mg, respectively 

 The purified rice serine racemase expressed in E.coli cells harboring pOsSR, had a molecular mass ~36 kDa, 

as estimated by both the deduced amino acid sequence and SDS-PAGE, respectively.  It was also purified by 

Ni-NTA column chromatography (Fig. 4), and displayed racemase and dehydratase activities for 1b of 10 and 

214 nmol/mg/min, respectively, and those for 1a of 1.5 and 77 nmol/mg/min, respectively 
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2.3. Enzymatic characterization of recombinant barley serine racemase 

 

A maximum at 420 nm in the absorption spectrum of the purified HvSR disappeared after dialysis against a 

buffer containing 10 mM sodium borohydride with a loss of enzyme activity (Fig. 5).  Additionally, the enzyme 

activity of HvSR was inhibited completely by 0.1 mM hydroxylamine (data not shown), indicating that HvSR 

depends on PLP and is bound to PLP through a Schiff base (Grishin et al., 1995). 

The optimum pH and concentration of CaCl2 in the racemization and dehydration of 1b were examined in a 

reaction mixture containing 10 µM PLP.  HvSR has maximum activities for both racemization and elimination 

at pH 8.5 in the presence of 1mM CaCl2.

The racemase activities for converting various 1b to 1a acids were examined in a reaction mixture containing 

1 mM CaCl2 at pH 8.5.  HvSR showed high substrate specificity with regard to 1b, 14 nmol/mg/min, whereas 

L-alanine, L-glutamine, and L-arginine were poorer substrates: the activities were 1.9, 0.74, and 1.7 

nmol/mg/min, respectively.  The Km and Vmax were estimated in a reaction mixture containing 1 mM CaCl2, 10 

µM PLP at pH 8.5, with corresponding values for converting 1b to 1a being 2.6 mM and 21 nmol/mg/min, and 

for 1a to 1b of 9.0 mM and 455 nmol/mg/min, respectively.  Additionally the Km and Vmax for dehydratase 

activity from 1b to 2 were 2.7 mM and 2.8 nmol/mg/min, whereas those of 1a to pyruvate were 8.3 mM and 161 

nmol/mg/min, respectively. 

 

2.4 Effects of divalent cations and ATP 

 

The effects of divalent cations and ATP on 1b racemization and dehydration activities were analyzed by 

adding 1 mM divalent ion to a reaction mixture at pH 8.5 (Fig. 6).  Racemase activity was increased 2.9-, 3.8-, 

and 3.8-fold by addition of Mg2+, Ca2+, and Mn2+, whereas EDTA, Fe2+, or Ni2+ inhibited this activity.  The 

addition of Mg2+, Ca2+, and Mn2+ also increased dehydratase activity 13-, 11-, and 13-fold, respectively, whereas 

Fe2+ showed only a 2.8-fold increase and Ni2+ inhibited the activity.  HvSR was not activated by 1mM ATP, and 

the activity with the combination of 1mM Mg2+and 1mM ATP was slightly decreased compared to that in the 

presence of 1mM Mg2+.

2.5 Immunological properties 
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An immunological comparison among plant serine racemases was performed by Ouchterlony double diffusion 

(Fig. 7).  Anti-HvSR serum formed one line not only with purified recombinant HvSR but also with purified 

recombinant OsSR and AtSR; however, anti-AtSR serum formed a precipitate with AtSR and no line was 

detected with HvSR and OsSR. 

 

3. Discussion 

 

We demonstrated that barley serine racemase, HvSR, is a bifunctional PLP-dependent enzyme that catalyzes 

not only racemization of 1a and 1b but also dehydration of 1a and 1b to 2. The enzyme activity of HvSR and A. 

thaliana serine racemase, AtSR, are enhanced by addition of divalent cations such as Ca2+, Mg2+, and Mn2+.

Fe2+ inhibits racemase activity of HvSR whereas that of AtSR is slightly increased by addition of Fe2+ (Fujitani et 

al., 2006).  While the combined effect of Mg2+ and ATP on mouse serine racemase leads to an increase in 1a 

production, there was no synergy between Mg2+ and ATP on HvSR activity, as with AtSR.  These results 

suggest that the protein structure interacting with ATP might be different between plant and mammalian serine 

racemases.  The amino acid residues that interact with PLP (Phe61, Lys62, Asn89, Gly241, Ser315) are 

conserved in HvSR, with other plant and mammalian serine racemases, which belong to the fold type II group of 

PLP enzymes (Gallagher et al., 1998), except for the glycine-rich loop, which consists of a triglycine and a 

tetraglycine in plant and mammalian serine racemases, respectively.  These results show that plant serine 

racemase represents a distinct group in the eukaryotic serine racemase family. 

 The amino acid sequence identities of HvSR with OsSR and AtSR (89 and 68%, respectively) and the 

phylogenetic tree suggest that plant serine racemases can be clustered into monocot and dicot types.  To show 

the structural differences between serine racemases of monocot and dicot plants, we prepared anti-HvSR and 

anti-AtSR sera, and then purified recombinant rice serine racemase with both racemase and dehydratase 

activities: the latter was obtained by expression of an open reading frame of the putative rice serine racemase 

gene in DDBJ, EMBL, and GenBank data banks.  The specific cross-reactivity of the anti-AtSR serum against 

AtSR by the Ouchterlony test supports the possibility that there may be monocot and dicot clusters in plant 

serine racemase based on a comparison of the three plant enzymes examined so far. 

 Recently, an aspartate racemase gene was cloned from a bivalve mollusk and expressed to characterize its 
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enzyme properties (Abe et al., 2006).  The aspartate racemase is a PLP-dependent enzyme and has both 

racemase and dehydratase activities.  The amino acid sequence shows 38, 39, 32, 30, and 36 % identities to 

human, mouse, barley, rise, and A. thaliana serine raceases, respectively, and contains conserved PLP-interacting 

amino acid residues, corresponding to Phe61, Lys62, Asn89, Gly241, and Ser315 of E. coli threonine 

dehydratase.  Interestingly, its enzyme activity was decreased by ATP but not by EDTA, whereas mammalian 

serine racemases was activated by both divalent cations and ATP.  In contrast to the eukaryotic racemases, plant 

serine racemase activity was increased by divalent cations but not by ATP.  This suggests that the interaction of 

the enzyme with ATP and the divalent cation restricts the substrate specificity of eukaryotic racemases. 

 A novel mechanism of mammalian serine racemase has been proposed, whereby dehydratase activity of serine 

racemase regulates the intracellular 1a level.  This effect occurs especially in brain areas, since a D-amino acid 

oxidase, which degrades D-amino acids in mammalian cells, is restricted to the cerebellum and brainstem and a 

dehydratase activity-deficient serine racemase mutant accumulates 1a (Foltyn et al., 2005).  Several D-amino 

acids and D-amino acid-containing peptides have been identified in plants.  However, both 1a and D-alanine 

inhibit plant growth at low concentrations (Erikson et at., 2004), indicating that D-amino acid level should be 

strictly regulated in plant cells.  There is no previous report on a plant D-amino acid oxidase, and the serine 

racemase is the only known enzyme that degrades 1a in plants.  The specific activities of racemization and 

dehydration for 1b were as follows: 14 and 228 nmol/min/mg with regard to HvSR, 10 and 214 nmol/min/mg 

with regard to OsSR, and 4.1 and 86 nmol/min/mg with regard to AtSR (Fujitani et al., 2006), respectively: the 

corresponding dehydratase activities were about 20-fold higher than racemase activity.  This is as contrast to the 

dehydration/racemization ratio of about 0.7 for mouse serine racemase (De Miranda et al., 2002).  These results 

thus suggest that the main physiological function of plant serine racemase might be to degrade 1a rather than 

produce 1a.

4. Experimental 

 

4.1. Plant material and growth conditions 

 

The seeds of barley, Hordeum vulgare L., cv. Haruna nijo, were germinated and cultured in a hydroponic 
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solution that consisted of 4 mM KNO3, 1 mM NaNO3, 1 mM NaH2PO4, 1 mM MgSO4, 1 mM CaCl2, 45 µM

Fe-citrate, 18 µM H3BO3, 4.6 µM MnSO4, 1.5 µM ZnSO4, 1.5 µM CuSO4, and 1.5 µM Na2MoO4. The pH of 

the culture solution was adjusted to 5.5 with NaOH.  After one week of cultivation, the roots were harvested, 

frozen in liquid N2, and stored at -80 ˚C. 

 

4.2. Rapid amplification of cDNA ends PCR (RACE PCR) 

Total RNA was isolated from the storage roots using the RNeasy Plant Mini Kit (Qiagen) and adaptor-ligated 

cDNA was synthesized from 1 µg of total RNA using the SMART RACE cDNA Amplification Kit (Clontech) 

according to the manufacture’s instructions.  The primers for 3- and 5-RACE, 

5-GCCTTGAACTTTTGGAGCAAGTCCCTG-3 and 5-TCCCTATTTTGCTGCTCTCATGCCAAG-3, 

respectively, were synthesized based on the conserved nucleotide sequences from truncated barley genes 

(Accession nos. BJ450541 and CA023779) and PCR was performed on the cDNA with a synthesized primer and 

the universal primer mixture (“UPM”) supplied in the kit.  Fragments of about 280 and 800 bp amplified by 3- 

and 5-RACE PCR, respectively, were cloned into a pGEM-T vector (Promega) and subjected to nucleotide 

sequencing on both strands using a BigDye terminator v1.1 cycle sequencing kit (Applied Biosystems) with a 

series of synthetic primers. 
 

4.3. Cloning of serine racemase gene 

Based on the putative open reading frame of the barley serine racemase gene predicted by the RACE PCR 

experiment, primers were designed as follows: sense primer, 5-GCCATATGGGAAGCAGAGATGACGATG- 3, 

which creates an NdeI site (underlined), and antisense primer, 5-GACTCGAGTTTATACAAGGAATC- CCAT-3, 

which creates an XhoI site (underlined).  The open reading frame was amplified by reverse-transcription PCR 

(RT-PCR) using the OneStep RT-PCR kit (Qiagen) with total RNA from the barley roots.  The PCR product of 

1026 bp was cloned into the pGEM-T vector and the NdeI- and XhoI-digested fragment of the plasmid was cut 

out and subcloned into an NdeI- and XhoI-digested pET20b(+) vector (Novagen), in which the endogenous stop 

codon of the serine racemase gene was replaced by a polyhistidine tag gene.  The resulting plasmid, pHvSR, 

was transformed into E. coli BL21(DE3) pLysS cells. 
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The open reading frame of the rice serine racemase gene was amplified with total RNA from the rice, Oryza 

sativa, cv. Nipponbare, and the primers were designed based on the putative gene (AL606647), as follows: sense 

primer, 5- CCCATATGGGGAGCAGAGGTGGAAGTGG-3, which creates an NdeI site (underlined), and 

antisense primer, 5-CCCTCGAGACGTTTATAGAGAGACTCCC-3, which creates an XhoI site (underlined) by 

OneStep RT-PCR.  The NdeI- and XhoI-digested fragment of the 1032 bp PCR product was subcloned into an 

NdeI- and XhoI-digested pCold I vector (Takara), in which a polyhistidine tag gene is fused upstream from the 

start codon.  The resulting plasmid, pOsSR, was transformed into E. coli BL21 cells. 

 

4.4. Expression and purification of serine racemase 

E. coli cells harboring pHvSR were grown at 25 ˚C in Luria-Bertani (LB) medium containing 50 µg/ml of 

ampicillin.  When the OD600 became 0.5, isopropyl-β-D-thiogalactopyranoside (IPTG) was added to the culture 

at a final concentration of 0.5 mM.  After cultivation at 25 ˚C for 6 h, the cells were harvested by centrifugation 

and frozen at -80 ˚C for at least 2 h.  In the case of E. coli cells harboring pOsSR, the culture of 0.5 OD600 was 

incubated at 15 ˚C for 30 min and cultured at 15 ˚C for 8 h with 0.5mM IPTG.  The frozen cell pellets were 

suspended in a BugBuster™ HT protein extraction reagent (Novagen) according to the manufacturer’s 

instructions.  The resulting recombinant protein was purified using an Ni-NTA CC (Qiagen) initially 

equilibrated in 20 mM Tris-HCl buffer (pH 7.9) containing 0.5 M NaCl and 5 mM imidazole (Buffer A).  The 

column was next washed with Buffer A, followed by 60 mM imidazole in Buffer A, with the absorbed protein 

finally eluted with 1 M imidazole in Buffer A.  The enzyme solution was collected, dialyzed against a 20 mM 

Tris-HCl buffer (pH 7.5) containing 1 mM DTT and 10 µM PLP, and concentrated by an Ultracent-30 (Tohso).   

 

4.5. Enzyme and protein assays 

 

The serine racemase and dehydratase activities were assayed by calculating the hydroxyperoxide production 

with amino acid oxidase-peroxidase-OPA and by calculating the pyruvate production with 

2,4-dinitrophenylhydrazine, respectively, according to the method described previously (Fujitani et al., 2006).  

The 1b solution used in the enzyme assay was pre-treated with D-amino acid oxidase and catalase to remove any 

contaminating 1a according to De Miranda et al. (2002).  L-Amino acid oxidase was used to remove 

contaminating 1b in the 1a solution.  Protein concentrations were quantified according to Bradford (1976) with 
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bovine serum albumin as the standard. 

 

4.6. Antiserum preparation 

The purified recombinant serine racemase of barley or A. thaliana was mixed with either Freund’s complete 

adjuvant (for the first injection) or incomplete adjuvant (for following injections).  The emulsified mixture 

containing protein (1 mg) was used to immunize a male Japanese white rabbit by subcutaneous injection 

followed by four subsequent injections, once every two weeks.  Titration of the antiserum was performed by 

standard enzyme-linked immunosorbent assay (ELISA). 

 

4.7. Computer analysis 

 

Analysis and translation of the nucleotide sequences were performed using GENETYX-MAC (Software 

Development).  The homology searches, alignments, and phylogenetic analyses of the amino acid sequences 

were performed using BLAST (Altschul et al., 1990; Karlin and Altschul, 1990), CLUSTAL W (Tompson et al., 

1994), and TreeView (Page, 1996) programs, respectively. 
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Figure legends 

 

Fig. 1.  Reaction pathways of D-serine (1a) and L-serine (1b) by mammalian serine racemase. 

 

Fig. 2.  Alignment of the deduced amino acid sequences of barley and rice serine racemases with those of A. 

thaliana, human, and mouse serine racemases, as well as E. coli biosynthetic L-threonine dehydratase.  Barley, 

rice, A. thaliana, human, and mouse serine racemases (HvSR, OsSR, AtSR, hSR, and mSR) correspond to 

GenBank accession nos. AB271213, AL606647, AB206823, AF169974, and AF148321, respectively, whereas 
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the E. coli biosynthetic L-threonine dehydratase (EcTD) corresponds to Swiss-Plot accession no. P04968. Gaps, 

indicated by dashes, are introduced in the sequences to maximize the homology.  Identical amino acid residues 

among either serine racemases or all six of the enzymes are represented by black boxes.  The closed arrowhead, 

open arrowheads, and asterisks indicate the PLP-binding Lys, amino acid residues that interact with PLP, and the 

glycine-rich loop, respectively.   

 

Fig. 3.  Phylogenetic analysis of eukaryotic serine racemases.  The scale bar represents 0.1 amino acid 

substitutions per site. 

 

Fig. 4.  Analysis of the expression of serine racemase genes from barley and rice in E. coli cells by 

SDS-polyacrylamide gel.  Total cell lysate (lane 1), soluble protein (lane 2), purified enzyme following Ni-NTA 

column chromatography (CC) (lane 3) from E. coli cells harboring pHvSR, soluble protein (lane 4) and purified 

enzyme following Ni-NTA CC (lane 5) from E. coli cells harboring pOsSR.  Gels were obtained using 15% 

SDS-PAGE with molecular mass marker series (lane M) for calibration, with detection by Coomassie Brilliant 

Blue R-250 staining. 

 

Fig. 5.  Absorption spectra of purified HvSR before and after NaBH4 incubation.  The spectra of the purified 

HvSR (1mg/ml) before and after dialyzing against 500 volumes of 20 mM Tris-HCl (pH 7.5) containing 1 mM 

DTT, 10µM PLP, and 10 mM sodium borohydride are shown as solid and dashed lines, respectively. 

 

Fig. 6.  Effects of divalent cations and ATP on racemase and dehydratase activities of barley serine racemase.  

Racemase (black columns) and dehydratase (white columns) activities of the purified recombinant enzyme were 

assayed in the presence of 1mM EDTA, 1mM metal chloride, or 1mM ATP.  The results represent the average ± 

s.e. of three experiments. 

 

Fig. 7. Ouchterlony double diffusion of the purified recombinant plant serine racemases. Ab1, anti-HvSR 

serum; Ab2, anti-AtSR serum; 1, OsSR; 2,HvSR; 3, AtSR.  


