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Abstract The role of flagellin glycosylation on motility was investigated in Pseudomonas 1 

syringae pv. tabaci. The swimming activity of glycosylation-defective mutants was 2 

prominently decreased in a highly viscous medium. The mutants showed differences in 3 

polymorphic transitions and in bundle formation of flagella, indicating that glycosylation 4 

stabilizes the filament structure and lubricates rotation of the bundle.  5 

 6 

Pseudomonas syringae pv. tabaci 6605 is a phytopathogenic bacterium that causes 7 

wildfire disease in tobacco plants (10, 26). The cell possesses several flagella at the cell pole 8 

when grown in liquid cultures. Our previous study revealed that the flagella of this bacterial 9 

strain are indispensable for intrinsic virulence on the host tobacco plant and that flagellin, the 10 

major component protein of the flagellum, is a major elicitor of hypersensitive cell death in 11 

non-host plants (10, 23, 26-28). Furthermore, the flagellin of P. syringae was found to be 12 

glycosylated at six serine residues by the products of the orf1 and orf2 genes that are located 13 

in a glycosylation island (26, 29, 30). Recently, the orf1 and orf2 genes in the P. syringae 14 

glycosylation island have been renamed fgt1 (flagellar glycosyltransferase 1) and fgt2, 15 

respectively. To examine the roles of glycosylation in bacterial virulence and interactions 16 

with plants, we constructed a glycosylation-defective mutant (∆fgt1), a partially defective 17 

mutant (∆fgt2), single Ser/Ala-substituted mutants (S143A, S164A, S176A, S183A, S193A, 18 

and S201A) and a six serine-substituted mutant (6 S/A) (26). Using these mutants, we 19 

demonstrated that glycosylation of flagellin is required for virulence towards host tobacco 20 

plants and swarming and adhesion abilities; thus, glycosylation may play an important role in 21 

determining host specificity (26). 22 

In this study, swimming ability, polymorphic flagellar transitions at various pH and 23 

salt concentrations, and bundle formation were analyzed to compare the structural and 24 

functional differences between flagella of the wild type (WT) and glycosylation-defective 25 
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mutants.  1 

Effect of viscosity on swimming of WT and glycosylation-defective mutants. 2 

WT and mutant strains were grown in LB media supplemented with 10 mM MgCl2 3 

with vigorous agitation at 25°C for 24 h. The overnight cultures were left standing without 4 

agitation for another 6 h. While WT cells remained in suspension, the ∆fgt1 and 6 S/A mutant 5 

cells were precipitated (Fig. 1). To investigate the cause of this phenomenon, the proportions 6 

of swimming cells in the supernatant and precipitate from each sample were compared. The 7 

swimming bacteria were observed by phase contrast microscopy equipped with a video 8 

recording system. Approximately 200 cells were counted to calculate the percentage of 9 

swimming cells. More than 60% of WT cells in suspension culture swam, whereas 18% of 10 

∆fgt1 and 19% of 6 S/A mutant cells in the supernatant of each culture did. Furthermore, only 11 

6% of ∆fgt1 and 7% of 6 S/A mutant cells in culture precipitates swam. These results might 12 

indicate that a defect of swimming ability in these mutants causes the aggregation of cells. 13 

For a more precise investigation of the ability of the flagella to propel the cell in 14 

liquid culture, the effect of viscosity was examined by conventional phase contrast 15 

microscopy according to the previously reported method (3). Cells were cultured overnight in 16 

LB medium supplemented with 10 mM MgCL2 and inoculated into MMMF minimal medium 17 

(50 mM potassium phosphate buffer, 7.6 mM (NH4)2SO4, 1.7 mM MgCl2, and 1.7 mM NaCl, 18 

pH 5.7) supplemented with 10 mM each mannitol and fructose and cultured at 23°C for 24 h. 19 

The viscosity was increased by addition of polyvinylpyrrolidone K 90 (PVP; Wako Pure 20 

Chemical Industries) to the MMMF culture medium. As shown in Fig. 2A, approximately 21 

83% of WT cells swam in the absence of PVP, while about 65-75% of cells from the ∆fgt1, 22 

∆fgt2, six serine-substituted (6 S/A), S176A, and S183A mutants swam. In the presence of 23 

2% PVP, the percentages of swimming cells of all bacterial strains except the WT were 24 

decreased. In the presence of 6% PVP, the rates of swimming cells of the WT and four single 25 
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serine-substituted mutants (S143A, S164A, S193A, and S201A) were 50-55%, and those of 1 

other mutant strains (∆fgt1, ∆fgt2, 6 S/A, S176A, and S183A) were decreased to about 2 

30-38%. We previously reported that ∆fgt1 (∆orf1), ∆fgt2 (∆orf2), 6 S/A, S176A, and S183A 3 

mutants were impaired in pathogenicity on host tobacco plants and reduced adhesion and 4 

swarming abilities on SWM plate (0.5% agar, 0.5% peptone, 0.3% yeast extract) (26). The 5 

lower swimming ability of the glycosylation-defective mutants in viscous medium may be 6 

one of the causes of these phenotypes.  7 

The swimming speed was calculated by tracing the tracks of individual bacteria 8 

recorded on videotape and measuring the distance traveled in a period of time (3). The 9 

swimming speed profiles against viscosity of WT and mutant strains are shown in Fig. 2B. In 10 

the absence of PVP, WT cells swam in MMMF medium at 83 µm/s, four single 11 

serine-substituted mutants (S143A, S164A, S193A, and S201A) swam at 70-76 µm/s, and the 12 

other mutants (∆fgt1, ∆fgt2, 6 S/A, S176A, and S183A) swam at 59-69 µm/s. In 2% PVP, the 13 

swimming speed of all bacterial strains was slightly decreased. The viscosity effect was more 14 

prominent in 6% PVP; the cell swimming speeds of WT, four single serine-substituted 15 

mutants (S143A, S164A, S193A, and S201A) and the ∆fgt1, ∆fgt2, 6 S/A, S176A, and S183A 16 

mutants were 45 µm/s, 24-28 µm/s, and 17-23 µm/s, respectively.  17 

Because the reductions of the percentage of swimming cells and the swimming 18 

speed might be due to a regulatory effect on gene expression, we performed an immunoblot 19 

analysis to measure flagellin protein accumulation. Each overnight culture (LB with 10 mM 20 

MgCl2) was centrifuged, and the concentration of cells was adjusted to 2 x 10
8
 cfu ml

-1
. 21 

Proteins were separated by 12% SDS-polyacrylamide gel electrophoresis, and an antibody 22 

that was raised against purified flagellin from P. syringae pv. tabaci was used (27). However, 23 

the amounts of flagellin protein from each mutant were almost identical (data not shown), 24 

indicating that there are no significant difference in flagella numbers in WT and 25 
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glycosylation-defective mutant strains. 1 

Polymorphic transition and bundle formation of flagellar filaments from WT and 2 

glycosylation-defective mutants. 3 

 The bacterial flagellum is a filament consisting of flagellin protein, and the helical 4 

shape, which is defined by the helical parameters of pitch (P) and diameter (D), is essential 5 

for movement. Despite the different primary structures of flagellins, flagellar helices are 6 

similar among the same family (22). In peritrichously flagellated species such as Escherichia 7 

coli and Salmonella typhimurium, the left-handed helical filament named “Normal” is the 8 

common form in smoothly swimming cells, and the right-handed form called “Curly” appears 9 

only transiently during cell tumbling (16). These two shapes are reversibly converted under 10 

various environmental conditions such as changes in pH, salt concentration, and temperature. 11 

Other polymorphs include “Coiled” and “Semi-Coiled”, which are not very effective for 12 

movement. In an extreme case, the Straight form was found in non-motile mutants with 13 

amino acid substitutions (18). However, in polar flagellated species such as the marine 14 

bacterium Idiomarina loihiensis and Pseudomonas aureginosa, the helical parameters are 15 

smaller than those of peritrichously flagellated species. For example, the Normal form of the 16 

polar flagellum is similar to the Curly form of the peritrichous flagellum in pitch and 17 

diameter but is left-handed. (22). We categorized the left-handed curly-like filaments as 18 

small-Normal (S-Normal), and assumed that P. syringae pv. tabaci flagella might belong to 19 

this flagellar group.  20 

 To compare the nature of flagellar filaments of WT and glycosylation-defective 21 

mutants of P. syringae pv. tabaci 6605, the helical parameters of each polymorph were 22 

measured, as shown in Table 1. The polymorphic transitions due to changes in pH and salt 23 

concentration were examined as described by Kamiya and Asakura (13). Flagellar filaments 24 

were purified as described previously (22). The polymorphic shapes of filaments observed by 25 



Taguchi et al., J.Bacteriol 

 

 

6 

dark field light microscopy and diagrams of the polymorphs observed are shown in Fig. 3A 1 

and 3B. At low pH (pH 5.0-7.0), the shapes of flagella filaments were dominantly 2 

Semi-Coiled, and S-Normal (left-handed Curly-like) filaments were also found at a low NaCl 3 

concentration (0.1 M). When the pH was further shifted to acidic, the filaments were changed 4 

to the Coiled form and then the Straight form. At pH 3.0 and 0.1 M NaCl concentration, 5 

flagella filaments were depolymerized.  6 

On the other hand, various abnormal shapes of flagella filaments were observed in 7 

the ∆fgt1 and 6 S/A mutants between pH 4.0 to 7.0 in a wide range of salt concentrations. 8 

These results suggest that the filaments from non-glycosylated mutants show no distinct 9 

polymorphic forms and do not take on proper polymorphs in response to the change of 10 

environmental conditions. Because single filaments of the non-glycosylated mutant showed 11 

different shapes at the same time, we called them “undulant” filaments. When the pH was 12 

further shifted to acidic, filaments from both mutants changed to the Straight form and then 13 

were depolymerized. In the cases of single Ser/Ala-substituted mutants, the polymorphic 14 

transition of flagella filaments was similar to that of the WT. Moreover, there was no 15 

correlation between the polymorphic transition and viscosity in flagella filaments from both 16 

WT and mutants (data not shown). 17 

We suspected that undulant filaments from non-glycosylated mutants might be 18 

structurally unstable and, thus, measured the amounts of unpolymerized flagellin present in 19 

the spent medium. The protein from the supernatant of overnight cultures of each strain was 20 

precipitated by the addition of trichloroacetic acid at a final concentration of 10% (w/v) and 21 

dissolved in 1/100 of the original volume of PBST buffer (137 mM NaCl, 8.1 mM Na2HPO4, 22 

2.68 mM KCl, 1.47 mM KH2PO4, and Tween-20, pH 7.4). The immunoblot analysis revealed 23 

no significant difference in the amounts of intact flagellin from each mutant and WT strain. 24 

Furthermore, we did not detect broken filaments in the spent media by electron microscopy 25 
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(data not shown). These results suggest that the filament formation of glycosylation-defective 1 

mutants was normal.  2 

Peritrichous flagella form a bundle when the cell is swimming smoothly. The 3 

bundle formation of flagella on WT and non-glycosylated mutant cells was compared by dark 4 

field microscopy. The shapes of flagella have been reported as bright particles with twisted 5 

bundles when seen by dark field microscopy under strong illumination (19). Using this 6 

method, bundled flagella were observed only on slowly moving or resting cells. The flagellar 7 

bundles on WT cells were too loose to observe, while irregular flagellar bundles were 8 

constantly observed in ∆fgt1 and 6 S/A mutants (Fig. 4A). The binding between filaments 9 

appeared tight on electron microscopy, although this seldom occurs in WT cells (Fig.4B). We 10 

also examined the bundle formation using flagella ejected from WT and non-glycosylated 11 

mutants, followed by PEG precipitation (22). Many thick flagellar bundles were observed 12 

only in preparations of the mutants. Furthermore, bundled flagella were also found frequently 13 

in the precipitated samples from non-glycosylated mutants shown in Fig. 1 by dark field 14 

microscopy and electron microscopy (data not shown). These results suggested that the 15 

surface charge or hydrophobic properties of the filament of the non-glycosylation mutants 16 

might be changed so that more than two filaments interact tightly along their length. This 17 

irregular entanglement of filaments would result in a reduction of swimming ability in these 18 

mutants. 19 

Glycosylation of the surface structure has been reported for pili (6, 7), for S-layers 20 

(24), and for flagella (1, 5, 8, 9, 12, 27, 29, 31). In gram-negative bacteria, glycosylation has 21 

been shown to play important roles in adhesion (4, 14), solubility (17), immune response (2, 22 

20, 25, 32), motility, and flagella filament assembly (21). Further, it was also pointed out that 23 

glycosylation of flagellin in Archae may increase the structural stability of the filament and 24 

its resistance to proteolysis (15). We previously demonstrated that all the glycosylation sites 25 
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of the flagellin molecule in P. syringae pv. tabaci 6605 are located on the putative 1 

surface-exposed region and that glycosylation might be involved in pathovar-specific 2 

recognition (11, 26, 30). This exposed surface region is also considered to be a major antigen 3 

for the adaptive immune system in mammals (33). Very recently, we identified the glycan 4 

structure at serine 201 (S201) of flagellin from P. syringae pv. tabaci and pv. glycinea by 5 

sugar composition analysis, mass spectrometry, and 
1
H and 

13
C NMR spectroscopy. The S201 6 

glycan was composed of an unique trisaccharide consisting of two rhamnosyl residues and 7 

one modified 4-amino-4,6-dideoxyglucosyl residue (29). Further analysis to elucidate the 8 

glycan structure is in progress. 9 

The results obtained in this study revealed that flagellin glycosylation facilitates 10 

proper flagellar suprastructures that contribute to the proper swimming ability of the 11 

bacterium. The regular transitions of flagella morphology indicate that glycosylation of the 12 

filament surface increases the slippage between filaments and contributes to smooth 13 

swimming. Previously we found that glycosylation of flagellin is required for bacterial 14 

virulence (26, 30). The reduction of motility eventually impairs the virulence of 15 

glycosylation-defective mutants. In nature, flagellin glycosylation may enhance the 16 

swimming ability on the viscous and sticky surface of tobacco leaves. Together with our 17 

previous results, it is likely that glycosylation of flagellin in P. syringae pv. tabaci 6605 is 18 

indispensable for virulence on the host tobacco plant. 19 

 20 
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 1 

Table 1. Helical parameters of flagella filaments of P. syringae 

Polymorphic form Handedness Pitch (µm) Diameter (µm) 

Normal Left 1.59 0.18 

Semi-Coiled Left 1.49 0.39 

Coiled Left 1.04 0.65 
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Figure legends 1 

FIG. 1. Two-night culture of wild-type (WT), fgt1-deleted mutant (∆fgt1), and six 2 

serine-substituted mutants (6 S/A). Bacterial strains were incubated in LB supplemented with 3 

10 mM MgCl2 for 24 h at 25°C with agitation, then for 20 h without agitation.  4 

FIG. 2. (A) Effect of viscosity on swimming motility of WT and glycosylation-defective 5 

mutants (∆fgt1, fgt2-deleted mutant (∆fgt2), 6S/A, and 6 strains of single Ser/Ala-substituted 6 

mutants (S143A, S164A, S173A, S183A, S193A, and S201A) from P. syringae pv. tabaci 7 

6605. The percentage of swimming cells is indicated. Viscosity was increased by the addition 8 

of polyvinylpyrrolidone (PVP). (B) Effect of viscosity on swimming speed of WT and 9 

glycosylation-defective mutants from P. syringae pv. tabaci 6605.  10 

FIG. 3. Polymorphic transitions of flagella filaments from WT and glycosylation-defective 11 

mutants from P. syringae pv. tabaci 6605. (A) Dark field light micrographs of flagella. 12 

Typical images of Coiled, Semi-Coiled, and a mixture of Semi-Coiled and Normal filaments 13 

prepared from WT and undulant filaments prepared from ∆fgt1 and 6 S/A mutants strains. (B) 14 

Phase diagrams of polymorphs by pH and NaCl concentration. (SC: Semi-Coiled, No: 15 

Normal, Co: Coiled, St: Straight, DP: depolymerized).  16 

FIG. 4. Bundle formation of flagella from glycosylation-defective mutants. (A) Bundle 17 

formation of flagella in swimming bacteria (WT, ∆fgt1 and 6 S/A mutants) under a dark field 18 

microscope. (B) Electron micrographs of each strain. Insets are magnifications of the 19 

entangled flagella.  20 
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