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Vortex structure in spinor F=2 Bose-Einstein condensates
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Department of Physics, Okayama University, Okayama 700-8530, Japan
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Extended Gross-Pitaevskii equations for the rotating F=2 condensate in a harmonic trap are solved both
numerically and variationally using trial functions for each component of the wave function. Axially symmetric
vortex solutions are analyzed and energies of polar and cyclic states are calculated. The equilibrium transitions
between different phases with changing of the magnetization are studied. We show that at high magnetization
the ground state of the system is determined by interaction in “density” channel, and at low magnetization spin
interactions play a dominant role. Although there are five hyperfine states, all the particles are always con-
densed in one, two, or three states. Two interesting types of vortex structures are also discussed.

DOI: 10.1103/PhysRevA.72.063605 PACS number�s�: 03.75.Mn, 03.75.Lm, 05.30.Jp

I. INTRODUCTION

Properties of Bose-Einstein condensates �BEC’s� of
alkali-metal-atom gases attract a considerable current inter-
est. Recently quantized vortices and lattices of vortices have
been obtained experimentally in BEC clouds confined by
magnetic traps �1–4�. BEC’s can have internal degrees of
freedom associated with the hyperfine spin. Such conden-
sates are usually called spinor BEC’s. Examples of these
systems with hyperfine spin F=1 were found in optically
trapped 23Na �5�. In zero magnetic field, spin F=1 conden-
sate can be in two different states, which are called ferro-
magnetic and polar �6,7�. Depending on the values of inter-
action parameters, which determine coupling between
different hyperfine states, one of these states has a lowest
energy. Vortex matter in spinor BEC’s is represented by a
rich variety of rather exotic topological excitations. These
vortices were investigated in a large number of theoretical
works for the case F=1 �see, e.g., Refs. �8–17��.

In the most recent experiments, F=2 spinor Bose-Einstein
condensates have been created and studied �18–21�. How-
ever, superfluid phases in the F=2 BEC were analyzed only
for the case of the absence of magnetic field and rotation �22�
�see also Refs. �23,24��. Spinor F=2 BEC has one more
interaction parameter as compared to the F=1 BEC because
of the larger spin value. Therefore there are three possible
phases in absence of magnetic field: polar, ferromagnetic,
and cyclic states.

Due to the internal degree of freedom, a rich variety of
exotic vortices have been proposed in F=1 spinor BEC’s by
a large number of authors �25�. For instance, F=1 spinor
BEC’s with the ferromagnetic spin interaction exhibit SO�3�
symmetry in spin space, which means that the local spins
may sweep the whole or half the unit sphere. It has been
found that this topological excitation, called the Mermin-Ho
vortex, can be stabilized in the rotating system �8�. In the
case of F=2 spinor BEC’s, the possibility of such the core-
less vortex state has been predicted by Zhang et al. �26�.
However, in the possible kinds of atoms, such as 87Rb and
23Na, the estimated spin interactions are situated in the close
vicinity of the phase boundary between polar and cyclic
phases �22�; the detailed study on the rotating ground state

with the cyclic spin interaction is an unexplored region.
The aim of the present work is to study vortex structure in

rotating spinor F=2 condensate having finite magnetization.
The condensate wave function has five components. We
solved the extended Gross-Pitaevskii equations both numeri-
cally and variationally using trial functions for each compo-
nent of the wave function. There is a good agreement be-
tween the results of both methods. We restricted our
consideration only to the case of axially symmetric solutions.
Energies of polar, ferromagnetic, and cyclic states with vari-
ous sets of winding numbers for different components of the
order parameter were evaluated. The equilibrium transitions
between different phases with changing of the magnetization
were studied.

II. THEORETICAL FORMALISM

Consider two-dimensional F=2 condensate with N par-
ticles confined by the harmonic trapping potential

U�r� =
m��

2 r2

2
, �1�

where �� is a trapping frequency, m is the mass of the atom,
and r is the radial coordinate. The system is rotated with the
angular velocity �. The energy of the system depends on
three interaction parameters � , �, and �, which can be de-
fined as �22�

� =
1

7
�4g2 + 3g4� , �2�

� = −
1

7
�g2 − g4� , �3�

� =
1

5
�g0 − g4� −

2

7
�g2 − g4� , �4�

where �q=0,2,4�
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gq =
4��2

m
aq �5�

and aq is the scattering lengths characterizing collisions be-
tween atoms with the total spin 0, 2, and 4.

The order parameter in F=2 case has five components �i
�i=−2,−1,0,1,2�. The free energy of the system can be writ-
ten as �6,7�

F =� dS�� j
*ĥ� j +

�

2
� j

*�k
*� j�k

+
�

2
� j

*�l
*�Fa� jk�Fa�lm�k�m

+
�

2
� j

*�k
*�−j�−k�− 1� j�− 1�k

− BzM − i�� · � j
*�� 	 r�� j� , �6�

where integration is performed over the system area, re-
peated indices are summed, Bz is the magnetic field, which is

treated as a Lagrange multiplier, ĥ and M are the one-body
Hamiltonian and magnetization, which are given by

ĥ = −
�2 �2

2m
+ U�r� , �7�

M =� dS��i�2i . �8�

Here Fa �a=x ,y ,z� is the angular momentum operator and it
can be expressed in a matrix form as

Fx =
1

2	
0 2 0 0 0

2 0 
6 0 0

0 
6 0 
6 0

0 0 
6 0 2

0 0 0 2 0
� , �9�

Fy =
i

2	
0 − 2 0 0 0

2 0 − 
6 0 0

0 
6 0 − 
6 0

0 0 
6 0 − 2

0 0 0 2 0
� , �10�

Fz =	
2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 − 1 0

0 0 0 0 − 2
� . �11�

It is convenient to introduce two additional order param-
eters �f=� j

*F jk�k / ���2 and 
= �−1� j� j
*�−j / ���2 character-

izing ferromagnetic ordering and formation of singlet pairs,
respectively �22�. In the absence of magnetic field and rota-

tion, BEC’s can be in three different states �22� that is easily
seen from Eq. �6�. These states are called ferromagnetic, cy-
clic, and polar �22�. In ferromagnetic phase, only one com-
ponent of the order parameter is nonzero: �−2=1. In cyclic
phase, �−1 ,�1=0 and �−2= 1

2ei�, �0=1/
2, �2= 1
2e−i�,

where � is an arbitrary phase �energy of the system is degen-
erate with respect to ��. In the polar phase, there are three
possibilities: in the first case �−2= �1/
2�ei�, �−1 ,�0 ,�1

=0, �2= �1/
2�ei, in the second case �−1= �1/
2�ei�,
�−2 ,�0 ,�2=0, �1= �1/
2�ei, and in the third case �0=1
and all other components are equal to zero. Here values of �
and  are arbitrary and the energy is degenerate with respect
to them. Depending on values of scattering lengths aq ferro-
magnetic, cyclic, or polar phase has the lowest energy �22�.
In the ferromagnetic phase, 
=0, ��f�=2; in cyclic phase,

=0, �f=0; in polar phase, �
�=1, �f=0.

Extended Gross-Pitaevskii equations can be obtained in a
standard way from the condition of minimum of free energy
of the system Eq. �6�:

�ĥ − � + ��k
*�k�� j + ���F��lm�F�� jk�l

*�m�k�

+ ��− 1� j�− 1�k�k
*�k� j − i�� · � 	 r� j − Bzj� j = 0,

�12�

where a chemical potential � is interpreted as the Lagrange
multiplier. We use the total number of particles N
=�dS�i�i

* and the magnetization M as independent vari-
ables.

III. VORTEX PHASES AND ENERGY

A. Classification of phases

Five nonlinear Gross-Pitaevskii equations, Eq. �12�, are
coupled and they can be solved numerically. However, some
important consequences can be derived from the preliminary
analysis of these equations. In this paper, we consider only
axially symmetric solutions of the Gross-Pitaevskii equa-
tions. In this case, each component of the order parameter � j
can be represented as

� j�r,�� = f j�r�exp�− Lj�� , �13�

where � is a polar angle and Lj is a winding number. Axial
symmetry of the solution implies that there are some con-
straints for the possible sets of Lj. It can be shown from Eq.
�12� that Lj obeys the following equations:

L2 + L1 + L−1 + L−2 − 4L0 = 0, �14�

L2 + L−2 − L−1 − L1 = 0, �15�

L2 − 2L−2 − 2L1 + 2L−1 = 0. �16�

Equations �14�–�16� were obtained under the condition that
all five components of the order parameter are nonzero. If
some of these components are equal to zero identically then
other possibilities appear for the Lj values. We list here all
the possible phases different from ordinary vortex-free state:
�1,1,1,1,1�, �−1,	 ,0,	 ,1�, �1,	 ,0,	 ,−1�, �	,0,	 ,1,	 �,
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�	,1,	 ,0,	 �, �0,	 ,1,	 ,2�, �2,	 ,1,	 ,0�, �	,2,	 ,1,	 �,
�	,1,	 ,2,	 �, �−2,−1,0,1,2�, �2,1,0,−1,−2�, �−1,0,1,2,3�,
�3,2,1,0,−1�, �4,3,2,1,0�, �0,1,2,3,4�. Here numbers denote
values of Lj, “	” denotes zero value of the corresponding
component of the order parameter. We restricted ourselves
only to the cases, when the largest winding number does not
exceed 4, vortices with higher winding numbers are assumed
to be nonstable.

B. Method

Now we can find the solutions of the Gross-Pitaevskii
equations for each phase listed above. For the solution of Eq.
�12�, we apply a numerical method, which was used before
in Ref. �27�.

Besides the numerical solution, we also use a variational
ansatz based on trial functions for each component of the
order parameter. It follows from Eq. �12� that each compo-
nent of the order parameter has an asymptotic f j�r��rLj at
r→0 and that in the expansion of f j�r� in powers of r there
are only terms proportional to rLj+2n, where n�0 is an inte-
ger number. Superfluid density vanishes at infinite distances
from the center of the potential well and f j�r�→0 at r→�.
Therefore we have chosen the following trial function:

f j�r� = Cj�� r

Rj
�Lj

+ aj� r

Rj
�Lj+2�exp�−

r2

2Rj
2� , �17�

where Cj , aj, and Rj are variational parameters. Parameters
Cj are not completely independent since they are related by
one equation that is a condition of equality of number of
atoms to the given number.

In the limit of noniteracting gas, Gross-Pitaevskii equa-
tion becomes linear with respect to the order parameter. In
this case, it is easy to see that aj =0. In the Thomas-Fermi
regime this is no longer valid and the system tries to mini-
mize its energy by changing parameters aj and Rj as com-
pared to the limit of an ideal gas. According to our estimates,
for the case of one-component order parameter, trial function
�17� is able to give rather accurate results for the energy and
for the rotation frequency of transition from the vortex-free
to the vortex state even in the “moderate” Thomas-Fermi
limit. Therefore in this paper we apply the method to the case
of five-component order parameter. Note that variational ap-
proaches were applied before for the analysis of vortex struc-
tures in mesoscopic superconductors within the Ginzburg-
Landau theory, see, e.g., Ref. �28�, and for vortices in scalar
and spinor BEC �29,30�.

Using Eq. �6� and the normalization condition for the or-
der parameter one can find the energy of the system analyti-
cally as a function of variational parameters for each set of
Lj. However, final expression for the energy is rather cum-
bersome and we do not present it here. Values of variational
parameters can be calculated by a numerical minimization of
the energy.

C. Results and discussion

We consider the situation, when the concentration of at-
oms in the z direction is equal to 2000 �m−1, and the scat-

tering length a0 equals 5.5 nm. According to the estimates
made in Ref. �22�, 23Na, 83Rb, 87Rb, 85Rb correspond to
points on the phase diagram in the a2–a4 vs the a0–a4 plane
�in absence of magnetic field and rotation�, which are situ-
ated in the close vicinity to the phase boundaries between
ferromagnetic, polar, and cyclic states �see Fig. 1 in Ref.
�22��. There are even some uncertainties in positions of these
points on the phase diagram because of the error bars in aq.
It was assumed in Ref. �22� that 23Na, 83Rb, and 85Rb BEC’s
are in polar, ferromagnetic, and cyclic states, respectively,
and 87Rb corresponds to the phase boundary between the
polar and cyclic states. In this paper, we perform all the
calculations for the polar state at �=� /50, �=−� /50. For
the cyclic state we put �=� /50, �=� /50. And for the state
situated on the phase boundary between cyclic and polar
state, which we call cyclic+polar, we use �=� /50, �=0. We
calculated the dependences of the energy of the system on

FIG. 1. �Color online� Dependences of energies of different vor-
tex phases on the magnetization for cyclic �a�, polar �b�, and
polar+cyclic �c� states. The energy is measured in units of ���.
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the magnetization for these three phases for different vortex
states, when the system is rotated with the frequency �
=0.4��. Our results obtained by the numerical solution to
the Gross-Pitaevskii equations are presented in Fig. 1 for
cyclic �a�, polar �b�, and cyclic+polar �c� states. In Table I
we show numerically and variationally calculated values of
the magnetization, at which the transitions occur between
different phases for the case of cyclic state �Fig. 1�a��. In
this table, “a” denotes the transition between �−1,0,1,2,3�
and �	 ,0 , 	 ,1 , 	 � states, “b” between �	 ,0 , 	 ,1 , 	 � and
�−2,−1,0,1,2� states, and “c” between �−2,−1,0,1,2� and
�−1, 	 ,0 , 	 ,1� states. There is a good agreement between
the numerical and variational results.

In general case, there can be phase differences between
functions f j�r�. Axial symmetry of the solution implies that
there are some constraints on phases, which are similar for
the constraints on winding numbers and can be also obtained
from the GP equation �12�. The energy of the system is then
degenerate with respect to remaining phases, as in the non-
rotating case, which was discussed above.

In all states under study, it also turns out that for the
condensate it is energetically favorable to be distributed be-
tween one, two, or three hyperfine states and not between
four or five.

It can be seen from Fig. 1 that, in all cases, at zero mag-
netization, states with nonzero winding numbers are ener-
getically favorable due to the rotation of the system. By
changing the magnetization it is possible to jump from one
vortex phase to another one. The transitions between differ-
ent phases are discontinuous. Note that in this paper we con-

sider only the thermodynamical transitions between different
states. Actual position of transition line between different
vortex phases is controlled by local stability of states and
therefore the prehistory of the system.

Which state has the lowest energy at given magnetization
depends on many factors. For instance, at high magnetiza-
tion, close to M /N=2, condensate has to be concentrated
mostly in the state with mF=2. Since our system is rotated
with the frequency enough to create a vortex, for the conden-
sate it is favorable energetically to have winding number 1 in
this state. For other particles, which are not in mF=2 state, it
is energetically favorable to be in a superfluid phase with
winding number 0 in order to occupy the inner part of the
trap, where the trapping potential is small. That is why in all
three phase diagrams presented in Fig. 1 vortex phase �−1,
	 ,0 , 	 ,1� has the lowest energy at high magnetization. The
dependences of the density of particles in each hyperfine
state on the distance from the potential well center is shown
in Fig. 2�a� for the case of polar phase at M /N=1.87. Spatial

TABLE I. Values of the magnetization corresponding to the
transitions between different ground states for the case of cyclic
phase �Fig. 1�a��, which were calculated numerically and
variationally.

a b c

Numerical 0.34 0.79 1.36

Variational 0.38 0.76 1.40

FIG. 2. The spatial variation of the density of particles in different hyperfine states normalized by the total density at the system axis and
the order parameters 
 and ��f� for different vortex phases. �a� and �b� correspond to the �−1, 	 ,0 , 	 ,1� polar phase at M /N=1.87; �c� and
�d� to the �−2,−1,0,1,2� phase at M /N=1.21; �e� and �f� to the cyclic+polar �−1,0,1,2,3� state at M /N=0.18. Dotted lines show the total
density of particles. The total number of particles is 10 000.
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variations of the order parameters 
 and ��f� are presented
in Fig. 2�b�. It can be seen from Fig. 2�b� that 
 is maximum
in the center of the potential well and vanishes at the infinity.
At the same time, ��f� has a minimum at r=0 and tends to 2
at r→�. This is because close to r=0 a component with
mF=0 has a maximum and all other components are small.
Therefore 
, which characterizes a formation of singlet
pairs, has a maximum at r=0, and ��f�=0. Far from the
center of the cloud, the density of particles with mF=2 is
much larger than that for mF=0 and the densities in all other
hyperfine states are very small. For this reason, 
=0 and
��f�=2 at r→�.

For lower magnetization, condensate has to be distributed
between the states with mF=0,1,2. It turns out that again in
all phase diagrams in Fig. 1 the ground state is represented
by the phase �−2,−1,0,1,2� in rather broad range of M. This
is due to the fact that, in this case, it is favorable to put most
of the particles in the state with winding number 0 in order to
occupy the inner part of the trap. Most of remaining particles
are condensed to the state with winding number 2 occupying
the outer part of the trap and thus decreasing the energy of
interaction �in “density” channel� of particles with mF=0 and
2. Typical profiles of the particles densities in different hy-

perfine states for this vortex phase are shown in Fig. 2�c� for
the cyclic state at M /N=1.21. Figure 2�d� indicates r depen-
dences of the order parameters 
 and ��f�, which physically
are similar to that in the case of �−1, 	 ,0 , 	 ,1� state shown
in Figs. 2�a� and 2�b�.

At lower M particles have to be distributed between sev-
eral states with different mF. In this case, spin interactions
become important and therefore the sequences of phase tran-
sitions for different phase diagrams in Fig. 1 are different.
We can conclude that at high magnetizations M �1 the state
with lowest energy is mostly determined by interactions in
the density channel, whereas at low magnetization M �0,
spin interactions play an important role. In Figs. 2�e� and 2�f�
we present the r dependences of the superfluid density in
different hyperfine states and order parameters 
 and ��f� for
the cyclic+polar �−1,0,1,2,3� state at M /N=0.18, where this
phase has the lowest energy. In this case, particles are dis-
tributed between states mF=−1 and mF=1. The state with
mF=−1 has a winding number 0, and these particles occupy
a space with minimal trapping potential. All other particles
are condensed in the state with winding number 2 thus de-
creasing the interaction energy in the density channel. As a
result, the order parameter 
 is nonzero everywhere except
of the point r=0, since at any r�0 there are particles in the
states with mF= ±1, and the formation of singlet pairs is
possible. The order parameter ��f� is nonzero at r=0 and
r→�, since in both cases there are particles condensed in the
states with nonzero mF. At the same time, at small values of
r most of particles are condensed in the state with mF=−1
and at larger r in the state with mF=1. Therefore there is an
abrupt change in the spin direction at intermediate values of
r. This results in the vanishing of ��f� near the vortex core.

In Fig. 3 we show the spin texture, �fx and �fy, for the
phases �−1,0,1,2,3� and �−2,−1,0,1,2� in the cyclic state. In
the first case, in the vortex-core region, the spins are polar-
ized along the z direction. In the outer region the spin van-
ishes and 
 grows, where the spin amplitude has a node and
the pure polar state forms. In the second case, in the outer
region, the spins are polarized along the z direction. In the
core region, the spins lean toward the origin. At the origin,
the spin vanishes and the pure polar state forms �
=1�, be-
cause the spin texture exhibits the two-dimensional radial
disgyration in the core region. Note that �−2,−1,0,1,2� and
�−1,0,1,2,3� vortices were not described before in the litera-
ture.

IV. CONCLUSIONS

In summary, we analyzed the vortex structure in spinor
F=2 condensate using extended Gross-Pitaevskii equations.
We considered only axially symmetric vortices. Based on
symmetric configurations, all possible vortex states were
classified. The Gross-Pitaevskii equations were solved both
numerically and by the variational method using trial func-
tions for the order parameter. Spatial distribution of the par-
ticles density and the order parameters 
 and ��f� were ob-
tained. Energies of different vortex phases were found as a
function of magnetization, when the system is rotated with

FIG. 3. Spin textures, �fx and �fy, for the cyclic �−1,0,1,2,3�
phase at M /N=0.16 �a� and the cyclic �−2,−1,0,1,2� phase at
M /N=1.21 �b�.
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the frequency �=0.4��. We found that at high magnetiza-
tion the energy of the system is mostly determined by the
interaction in the density channel, whereas at low magneti-
zation spin interaction plays an important role. Also, two
different types of vortices were described.
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