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Line Adsorption in a Mean-Field Density-Functional Model

Kenichiro Koga1 and B. Widom2

1Department of Chemistry, Faculty of Science, Okayama University,
3-1-1 Tsushima-naka, Okayama 700-8530, Japan

2Department of Chemistry, Baker Laboratory, Cornell University,
Ithaca, New York 14853-1301, USA

Abstract

Recent ideas about the analog for a three-phase contact line of the Gibbs adsorption equation
for interfaces are illustrated in a mean-field density-functional model. With dτ the infinitesimal
change in the line tension τ that accompanies the infinitesimal changes dµi in the thermodynamic
field variables µi and with Λi the line adsorptions, the sum dτ+ΣΛidµi, unlike its surface analog,
is not 0. An equivalent of this sum in the model system is evaluated numerically and analytically.
A general line adsorption equation, which the model results illustrate, is derived.

1



1 Introduction

Three phases may meet at a line in which all three are in simultaneous contact with one
another. Associated with this line is a line tension τ , which is the excess grand-canonical free
energy per unit length of the contact line, and line adsorptions Λi, which are the linear excesses of
the several components, per unit length [1]. It had long been thought that if the thermodynamic
state of the three-phase equilibrium is displaced infinitesimally by infinitesimal changes dµi in the
thermodynamic field variables (such as the chemical potentials and temperature) µi, the resulting
infinitesimal change dτ in the line tension would be −ΣΛidµi. This would then have been the
analog of the Gibbs adsorption equation for interfaces, which relates the infinitesimal change dσ in
the interfacial tension σ to the surface adsorptions (surface excesses per unit area) Γi by

dσ = −
∑

i

Γidµi . (1.1)

The individual Γi in (1.1) are defined with respect to, and in general depend on, the arbitrary
location of a Gibbs dividing surface, but the sum −ΣΓidµi, and so also dσ, are invariant to that
choice. It was then surprising when it was discovered that not only do the individual line adsorptions
Λi depend on the arbitrary choice of location of the line, as expected, but the sum −ΣΛidµi does,
too [2]. It cannot, therefore, be dτ , which is known by independent arguments to be invariant.

Figure 1 is a view along the contact line, which is perpendicular to the plane of the figure and
passes through an arbitrarily chosen point in the plane. The equilibrium phases α, β, and γ fill the
dihedral angles between the αβ, βγ, and αγ interfaces. These interfaces meet at the contact line.
The surfaces (seen as lines in the figure) that meet at the contact line are taken to be the Gibbs
dividing surfaces of the several interfaces, and thus share with the contact line the arbitrariness in
its location. The eαβ , eβγ , and eαγ are unit vectors in the directions of the respective interfaces.
With σαβ , etc., the three interfacial tensions, the condition of mechanical stability is

σαβeαβ + σβγeβγ + σαγeαγ = 0 . (1.2)

There is no arbitrariness in any of the terms in (1.2).

It was shown in ref. [2] that, as expected, the line adsorptions Λi(r) depend on the arbitrary
location r of the point in the plane of Fig. 1 through which the contact line is chosen to pass, and
that (unexpectedly) so does ΣΛi(r)dµi, but that

−
∑

i

Λi(r)dµi − (eαβ dσαβ + eβγ dσβγ + eαγ dσαγ) · (r− r0) , (1.3)

where r0 is an arbitrary origin from which r is measured, does not: for any fixed r0, the expression
(1.3) is independent of r.

Because of (1.2), the invariant (1.3) is equally well

−
∑

i

Λi(r)dµi + (σαβ deαβ + σβγ deβγ + σαγ deαγ) · (r− r0) . (1.4)
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This form of the expression is important in interpreting in physical terms the origin of the non-
invariance of ΣΛidµi. We may also note here for later reference (Section 3) that while (1.3) and
(1.4) are invariant to r for any fixed r0, the value of these expressions for any fixed r obviously
depends on the choice of origin, r0, from which r is measured.

In a density-functional theory of line tension there is a free-energy-density functional Ψ, a
functional of the densities ρi(r) that are the thermodynamic conjugates of the field variables µi.
(When µi is the temperature, ρi is the entropy density). This Ψ is the density of the excess grand-
canonical free energy due to the inhomogeneities in the system. Most of this inhomogeneity free
energy comes from the interfaces, but when this is subtracted, what remains is that due to the
contact line. In Fig. 2 is shown a Neumann triangle, the sides of which are perpendicular to the
interfaces and of lengths proportional to the respective interfacial tensions. The contact line is
taken to pass through an arbitrary point in the triangle at the distances Rαβ , Rβγ , and Rαγ from
the triangle’s sides. This, then, defines the locations of the Gibbs dividing surfaces that meet at
the contact line. The line tension τ is then obtained from

τ = lim
Rαβ→∞, etc.

[
min
ρi(r)

∫
A

Ψda− (σαβ Rαβ + σβγ Rβγ + σαγ Rαγ)
]

(1.5)

where the integration is through the area A of the triangle with da an element of area, where the
integral is minimized with respect to the densities ρi(r) of which Ψ is a functional, and where, with
the contact line fixed at its arbitrarily chosen position, one takes the thermodynamic limit in which
the Rαβ , etc., all become infinite proportionally to one another: Rαβ = `αβR, etc., with R → ∞
while `αβ , `βγ , `αγ are fixed.

In a general mean-field density-functional theory [2, 3] the functional Ψ is of the form

Ψ = e [ρ1(r), ρ2(r), . . .]−
∑

i

µiρi(r) + p(µ1, µ2, . . .) + K (1.6)

where e(ρ1, ρ2, . . .) is the mean-field-theory energy density, a function of the ρi alone, independent of
the µi; where p(µ1, µ2, . . .) is the mean-field-theory pressure, a function of the µi alone, independent
of the ρi; and where K is a non-local functional of the ρi, independent of the µi. It then follows
that [2, 3]

−
∑

i

Λidµi = dτ ′ (1.7)

where dτ ′ is that part of the infinitesimal change in the right-hand side of (1.5) that comes from
all sources other than the change in the shape of the Neumann triangle itself; i.e., dτ ′ is what dτ
would have been had there been no contributions to it from the infinitesimal changes in the contact
angles, as measured by the deαβ , etc. in (1.4), that also result from the infinitesimal changes dµi.
The latter contributions to dτ , missing from dτ ′ and therefore from −ΣΛidµi, also depend on the
arbitrary location of the contact line because the energetic cost of any given contact-angle distortion
depends on the physical environment of the contact line at which that distortion occurs [2]. This
contribution to dτ , in its dependence on the location of the contact line, exactly cancels that in
−ΣΛidµi and leaves dτ invariant [2]. That is the essential physical content of (1.4).

The purpose of the present study is to demonstrate in a model mean-field density-functional
theory that dτ 6= dτ ′, and thus to illustrate the (formerly surprising) fact that dτ 6= −ΣΛidµi; and
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to note explicitly that, while dτ ′ depends on the arbitrary location r of the contact line, dτ does
not, and that

dτ ′ − (eαβdσαβ + eβγdσβγ + eαγdσαγ) · (r− r0) (1.8)

also does not. [Cf.(1.3)]. This observation will lead in Section 3 to the recognition and derivation
of a general adsorption equation for the contact line, which the model results illustrate.

The matter of the inequality dτ 6= dτ ′ was also addressed earlier [3] with an example in which
the Ψ in (1.6) was of the form

Ψ = F [ρ1(r), ρ2(r); b] + K , (1.9)

with F (ρ1, ρ2; b) a function of two densities ρ1, ρ2 and only one independently variable thermody-
namic field b, and with K a non-local functional of ρ1(r) and ρ2(r) that is independent of b. With
such a Ψ, the derivative dτ ′/db, which is the part of dτ/db that comes from differentiating the
right-hand side of (1.5) with respect to b while ignoring the dependence on b of the shape of the
Neumann triangle over which Ψ is integrated, is then

dτ ′

db
= lim

Rαβ→∞, etc.

[∫
A

∂F

∂b
da−

(
dσαβ

db
Rαβ +

dσβγ

db
Rβγ +

dσαγ

db
Rαγ

)]
. (1.10)

The ρ1(r) and ρ2(r) in ∂F/∂b are those that minimize
∫

Ψda in (1.5). As in the derivation of
(1.7) [3], in differentiating the right-hand side of (1.5) with respect to b one need not consider
the implicit b-dependence in the minimizing ρi(r) themselves because the variational integral is
stationary with respect to them. Only the explicit b-dependence in Ψ need be taken into account.
(This is analogous to the Hellmann-Feynman theorem of molecular quantum mechanics.)

The particular F and K for the present numerical study, as for the earlier one [3], are

F (ρ1, ρ2; b) = 2
(
3ρ2

2 + b2ρ2
1

)2 + 4b2
(
3ρ2

2 − b2ρ2
1

)
+ 2b4 − 32bρ3

2 (1.11)

and
K =

1
2

(
| ∇ρ1 |2 + | ∇ρ2 |2

)
. (1.12)

In the bulk phases, ρα
1 = −1, ρα

2 = 0; ρβ
1 = 0, ρβ

2 = b; ργ
1 = 1, ργ

2 = 0. At these densities F = 0,
while F > 0 for all other ρ1, ρ2.

Also, as earlier, we specialize to the case b =
√

3, where the three phases play symmetrical roles
in the phase equilibrium and the contact angles are all 120◦. The earlier study [3] compared dτ ′/db
with dτ/db at b =

√
3 for one choice of location of the contact line. Here we make that comparison

with a range of choices, and at the same time verify the invariance of dτ/db and of

dτ ′

db
−

(
dσαβ

db
eαβ +

dσβγ

db
eβγ +

dσαγ

db
eαγ

)
· (r− r0) . (1.13)

In Section 2 we outline the numerical methods used and tabulate the numerical results; in
Section 3 we analyze the results of the calculations and derive a properly invariant adsorption
equation for the contact line, which the model results illustrate; and in Section 4 we provide a brief
summary.
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2 Numerical methods and results

Here we evaluate the line tension τ and the derivatives dτ/db and dτ ′/db. First we calculate
the equilibrium density profiles ρ1(z) and ρ2(z) for each interface far from the contact line, and
then obtain the surface tensions. This determines the contact angles and the boundary conditions
for the equilibrium densities ρ1(r) and ρ2(r) of the system that include the three phases in contact.
With the boundary conditions we calculate ρ1(r) and ρ2(r) over a rectangular area that includes
the three phases in contact. We then evaluate τ from the Kerins-Boiteux integral [4]

τKB =
∫

A
(Ψ− 2F [ρ1, ρ2])da (2.1)

and dτ ′/db from (1.10), both with the equilibrium ρ1(r) and ρ2(r). The dτ/db is accurately evalu-
ated from τ at b± ε.

For the interfaces far from the contact line, we obtain the ρ1(z) and ρ2(z) that minimize∫∞
−∞Ψ(z)dz by solving the one-dimensional Euler-Lagrange equations subject to the boundary

conditions of bulk densities at the extremes. With the model functional Ψ the Euler-Lagrange
equations may be solved analytically for the αγ interface and the surface tension is σαγ = 8b2/3
for any b; in the fully symmetric case b =

√
3 the density profiles for the other two interfaces

are also given analytically and the tensions associated with the three interfaces have the common
value: σαβ = σβγ = σαγ = 8 [5]. In cases of arbitrary b, the density profiles and tensions for the
αβ and βγ interfaces are obtained numerically. In such numerical calculations, we discretize the
Euler-Lagrange equations with a 5-point difference equation in z, and then solve the discretized
equations iteratively with a successive overrelaxation (SOR) method [6]. The criterion for conver-
gence is an rms difference of less than 1 × 10−15 between iterates. As a check, we also evaluate
the density profiles and tensions numerically at b =

√
3, taking the range of z to be [−3 : 3] and

the grid spacing to be 0.003. Then the converged profiles completely overlap with the analytical
profiles and the surface tensions evaluated from the numerical profiles are accurate to 8 digits.

The equilibrium densities ρ1(r) and ρ2(r) over the region that includes the three phases in
contact are obtained by solving the two-dimensional Euler-Lagrange equations. The Euler-Lagrange
equations are discretized with a 9-point stencil over a rectangular box. The size of the box is chosen
such that the equilibrium densities near the boundaries of the box have their bulk-phase values in
all three phases. When b =

√
3, we use a box of dimension 3 × 3 length units with a spacing

∆x(= ∆y) of 0.003. We solve the discretized two-dimensional Euler-Lagrange equations iteratively
with the SOR method. The criterion of convergence is taken to be an rms difference of less than
1× 10−12 between iterates.

As noted earlier [3], the line tension τ is evaluated more accurately from the Kerins-Boiteux
integral (2.1) than from the original variational formula (1.5). This is illustrated by plotting τ as
a function of grid spacings ∆x and extrapolating to ∆x = 0. Figure 3 shows that when b =

√
3,

τKB is essentially constant with ∆x ≤ 0.003 while τ from the variational formula varies with ∆x
and converges to τKB only when it is extrapolated to ∆x = 0. The extrapolated values of τ and
τKB are −0.577399 and −0.577349, respectively. Note that −1/

√
3 = −0.577350269..., which will

be commented on in Section 3.

We evaluate dτ ′/db from (1.10). Since the integrand ∂F/∂b is non-zero along the interfaces, like
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the integrand Ψ in (1.5) and unlike the integrand Ψ− 2F in (2.1), its numerical integral gives rise
to noticeable numerical error depending on the grid spacing. Thus, to evaluate dτ ′/db accurately,
we need to extrapolate the numerical results of several grid spacings to ∆x = 0, just as we needed
to do when evaluating τ from the variational formula. In addition, the accuracy of the numerical
evaluation is improved as follows: Express the terms (dσαβ/db)Rαβ+· · · , which are to be subtracted
from the integral in (1.10), as the integrals over the same area over which ∂F/∂b is integrated; then
subtract the sum of their integrands from ∂F/∂b; and finally perform the numerical integration of
the resulting integrand, which is non-zero only around the contact line, like the integrand Ψ− 2F
in (2.1). Even with this short-ranged integrand, extrapolation of the numerical results to zero grid
spacing is necessary to achieve the desired precision.

The derivative dτ/db at given b is evaluated accurately from τ at b ± 0.001; use of five points,
τ at b, b± 0.001, b± 0.002, gives essentially the same results.

We evaluate dτ ′/db at four locations of the contact line: r0 = 0, r1 = −(1/2)eαγ , r2 =
−(1/2)eαγ +(1/2)gαγ , r3 = (1/2)gαγ , where all the vectors are measured from the symmetry point
of the phase equilibrium as origin and gαγ is a unit vector that is perpendicular to eαγ and is rotated
from it counterclockwise. Figure 4 shows the four locations of the contact line at which dτ ′/db is
evaluated and compared with dτ/db. In the fully symmetric case b =

√
3, dτ/db = −0.333353 and

dτ ′/db = −0.333344 if the location of the contact line is chosen to be the symmetry point; the two
are deemed to be identical. If this had been true for any location of the contact line, what was
in earlier times thought to be the line adsorption equation would have been correct. But we find
dτ ′/db 6= dτ/db at r1 and r2, while dτ ′/db = dτ/db at r3, as shown in Table I. It is also confirmed
that the sum of dτ ′/db and

dτ ′′

db
= −

(
dσαβ

db
eαβ +

dσβγ

db
eβγ +

dσαγ

db
eαγ

)
· r (2.2)

is independent of r and is equal to dτ/db.

Further calculations are done for a range of b. Over this range, ρ1(z) in the αβ and βγ interfaces
far from the contact line is still almost exactly antisymmetric about the point z at which ρ1(z) =
−1/2 and +1/2, respectively, and, in the αγ interface, is still exactly antisymmetric about the
z at which ρ1(z) = 0. Those define “midlines” of the three interfaces, and where the midlines,
extrapolated into the region of the contact line, intersect, they define a “symmetry point”. To
numerical accuracy, this symmetry point proves still to have many of the properties the exact
symmetry point at b =

√
3 has. Points r0 and r1 are defined as before (Fig. 4). In Fig. 5 are plotted

dτ/db and dτ ′/db against b at r0 and r1. The results for dτ ′/db at the symmetry point coincide
with those for dτ/db; i.e., the identity dτ ′/db = dτ/db holds at the symmetry point not only in
the fully symmetric case but, to numerical accuracy, in any of the cases of b in this range. The
difference between dτ/db and dτ ′/db at r1 is larger than the absolute value of dτ/db in this range
of b. We note the large discrepancy is brought about when the arbitrary location of the contact
line is displaced in a special direction from the symmetry point by an amount comparable to half
the interfacial thickness. The difference decreases with decreasing b, which also means decreasing
contact angle β [5]. This trend is consistent with the fact noted earlier [2] that ΣΛidµi will become
invariant with respect to the location of the contact line as β → 0 (the wetting transition).
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3 Analysis and discussion

In the preceding section, τ, dτ/db, and dτ ′/db were evaluated numerically for the fully symmetric
case b =

√
3 for several different choices of location of the contact line. It was noted that the properly

extrapolated values of τ and dτ/db are independent of the location of the contact line, that dτ ′/db
is not, and that

dτ

db
=

dτ ′

db
−

(
dσαβ

db
eαβ +

dσβγ

db
eβγ +

dσαγ

db
eαγ

)
· r , (3.1)

where r is the location of the contact line measured from the symmetry point of the phase equi-
librium as origin. The dependence on r of the separate terms on the right-hand side of (3.1) thus
cancels in the combination.

As a parenthetical remark we may note that the numerical values obtained for τ and dτ/db at
b =

√
3 are very close to

τ = − 1√
3
,

dτ

db
= −1

3
. (3.2)

Because of the ubiquitous appearance of 3 and
√

3 in this fully symmetrical three-phase equilibrium
it is very likely that these are exact, but proving it remains a challenge to analytical theory. What
has been established analytically [3] is that in this symmetric case,

dσαβ

db
=

dσβγ

db
=

22√
3
,

dσαγ

db
=

16√
3

, (3.3)

while the contact angles are all 120◦, so that eαβ + eβγ = −eαγ . [Equivalently, in this symmetric
case σαβ = σβγ = σαγ , so eαβ + eβγ + eαγ = 0, by (1.2).] Therefore (3.1) is equally well

dτ

db
=

dτ ′

db
+ 2

√
3 eαγ · r . (3.4)

We saw from the numerical results in Section 2 that when r had a non-vanishing component in
the direction of eαγ then dτ/db 6= dτ ′/db and dτ ′/db depended on r, whereas when r was chosen
perpendicular to eαγ then, but only then, dτ/db = dτ ′/db. These are clearly in accord with (3.4).

In Figure 6 the contact line is again perpendicular to the plane of the figure, where it passes
through an arbitrarily chosen point P . This point is at r, as measured from the symmetry point
of the three-phase equilibrium. Then dτ/db, which is independent of the location P , and dτ ′/db,
which is not, are related by (3.4). The dashed line in the figure passes through the symmetry point
and is orthogonal to eαγ . The same point P , which is at r measured from the symmetry point
as origin, is at r′ when measured from an origin elsewhere on the dashed line, as indicated in the
figure. Then (3.4) would continue to hold with r replaced by any such r′, because r and r′ have
the same component in the eαγ direction (see figure), so the same scalar product with eαγ .

This property of the fully symmetrical model, if one recalls (1.7), may now be seen to be a
special case of a general line adsorption equation, unrelated to any model symmetry, which we
shall first anticipate and later derive. In Fig. 7, which is again for any plane perpendicular to the
contact line, is indicated the direction σαβ deαβ + σβγ deβγ + σαγ deαγ that is determined by the
infinitesimal changes dµi in the system’s thermodynamic field variables. Our assertion is now that
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there is in that plane a special line, shown dashed in the figure, perpendicular to σαβ deαβ + · · · ,
with the property that

dτ = −
∑

i

Λi(r) dµi + (σαβ deαβ + σβγ deβγ + σαγ deαγ) · (r− r0) (3.5)

when the contact line is chosen to pass through an arbitrary point r in the plane, with r0 any point
on the special line. Thus, r − r0 in (3.5) is the arbitrary location of the contact line as measured
from an origin that is any point on the special line.

We remark first, from (1.4), that the right-hand side of (3.5) is invariant to the choice of r for
any r0, whether on the special line or not. But, as noted in the Introduction, the invariant value
in question depends, in general, on r0. Thus, it is not for any r0 that the right-hand side of (3.5)
could be the physically measurable dτ . But (3.5) itself determines some r0 for which the invariant
value is indeed dτ , independently of r. Once such an r0 is identified, any r0 on a line that passes
through that one and is orthogonal to σαβ deαβ + · · · will have the same property. That is our
special line. Its existence, and the form (3.5) for the line adsorption equation, which had already
been conjectured [7], will be formally derived below.

From (3.5), choosing any such r0 for the location of the contact line yields

dτ = −
∑

i

Λi (r0) dµi . (3.6)

This is as close as it is possible to come to a relation analogous to the Gibbs adsorption equation
(1.1).

In the fully symmetrical model we analyzed, the special line had of necessity, by symmetry, to
pass through the symmetry point of the three-phase equilibrium. That it had to be orthogonal to
eαγ was again a consequence of the model’s symmetry: as the field variable b changes (in particular,
but not only, when it changes from

√
3), the α and γ contact angles remain equal, as do σαβ and σβγ ,

so dσαβ/db and dσβγ/db remain equal and eαβ + eβγ continues to lie in the direction of eαγ . Thus,
the only unique direction in the model, as b changes, is that of eαγ or the direction orthogonal to it.
Therefore, from (3.1), the special line, which is the locus of choices of r for which dτ/db = dτ ′/db,
had to be orthogonal to eαγ .

The form (3.5) anticipated for the line adsorption equation is now derived by completing an
argument begun earlier [2]. It was remarked above, in the Introduction, that what had been missing
from −ΣΛi dµi as an expression for dτ were contributions to the energy from changes in the contact
angles that would accompany the changes dµi in the thermodynamic state. These contributions
were earlier [2] expressed as scalar combinations of the infinitesimal changes dα, dβ, and dγ in the
contact angles α, β, and γ (the dihedral angles between planes, named after the corresponding
phases). (Such terms in the energy differential appear also in a general thermodynamic analysis
by Boruvka and Neumann [8].) We see from (1.4) that it would be more convenient, although
equivalent, now to take these terms as combinations of deαβ , deβγ , and deαγ . These then enter the
fundamental energy differential as the additional reversible-work terms L(fαβ ·deαβ +fβγ ·deβγ +fαγ ·
deαγ), where L is the length of the contact line and the fαβ , etc. are phenomenological coefficients.
These additional terms in the energy differential then appear in dτ in the same way the previously
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introduced dα, dβ, dγ had [2]; i.e., now, as

dτ = −
∑

i

Λi dµi + (fαβ · deαβ + fβγ · deβγ + fαγ · deαγ) . (3.7)

As explained in the Introduction, the added terms in the energy would depend on the arbitrary
location r of the contact line about which the contact angles were changing. Here, that means that
the phenomenological coefficients in (3.7) are functions fαβ(r), etc., of that choice. We may identify
the combination of them in (3.7) by choosing for a location of the contact line any r0 for which

fαβ(r0) · deαβ + fβγ(r0) · deβγ + fαγ(r0) · deαγ = 0 ; (3.8)

i.e., for which (3.6) holds; while r is any other location; so that, from (3.7) and the invariance of
dτ , ∑

i

Λi(r) dµi −
∑

i

Λi(r0) dµi = fαβ(r) · deαβ + fβγ(r) · deβγ + fαγ(r) · deαγ . (3.9)

But for any r and r0, from the known [2] invariance of (1.4),∑
i

Λi(r) dµi −
∑

i

Λi(r0) dµi = (σαβ deαβ + σβγ deβγ + σαγ deαγ) · (r− r0) . (3.10)

We have therefore identified the right-hand side of (3.9) as that of (3.10), with r0 specifically a
choice of location of the contact line for which (3.6) holds. With this identification, (3.7) is the
anticipated adsorption equation (3.5). Once any r0 is identified, any other r0 lying on a line through
that one and orthogonal to σαβ deαβ + · · · will do as well; that is the special line.

From (3.9) and (3.10) one might identify formally the individual coefficient fαβ(r), etc., as
fαβ(r) = σαβ(r− r0), etc., but then they will themselves vary with the particular r0 that is chosen
on the special line. Also, for any such r0 one would then have fαβ(r0), etc., all vanishing separately,
not only in the combination (3.8), which seems artificial. Thus, there may be no objective way of
separating the individual terms in the sum fαβ(r) · deαβ + · · · . In any case the three f(r) are not
independent because the de are not, being related by the identity (1.2).

It is remarked in Section 2 (see Fig. 5) that the numerical results are consistent with the re-
quirement [2] that −ΣΛidµi become invariant to the location of the contact line, and equal to dτ ,
as a wetting transition is approached. In that limit the right-hand side of (3.9) vanishes, as does
the coefficient of r− r0 on the right-hand side of (3.10).

4 Summary

Adsorptions Λi at the line of mutual contact of three phases are the line analog of the surface
adsorptions Γi in the Gibbs adsorption equation. Just as the Γi depend on the arbitrary location
of the Gibbs dividing surface, so also do the Λi depend on the arbitrary location of the contact
line. When the state of the phase equilibrium changes through infinitesimal changes dµi in the
thermodynamic field variables there result infinitesimal changes dσ in the several interfacial tensions
σ and dτ in the line tension τ . Whereas in the Gibbs adsorption equation dσ = −ΣΓidµi both sides
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are invariant to the arbitrary choice of dividing surface, the analogous −ΣΛidµi for the contact line
still depends on the arbitrary choice of location of the line, and so cannot be dτ , which is known
to be invariant to that choice.

In Section 2, a mean-field density-functional model is analyzed numerically to illustrate these
issues. In Section 3 it is seen that the equivalent of −ΣΛidµi for that model is some dτ ′ that
differs from dτ because in dτ ′ no account is taken of the changes in the contact angles that result
from the changes dµi in the thermodynamic state. When terms proportional to the infinitesimal
changes in the contact angles are incorporated in the fundamental energy differential the result is
a properly invariant line adsorption equation. That is the equation (3.5) as derived in Section 3.
Before being formally derived it is first anticipated based on the results of the model calculations
and the previously known invariances of the expressions (1.3) and (1.4). This form of the adsorption
equation had already been conjectured [7]. It is remarked in Section 2 (see Fig. 5) that the numerical
results are consistent with the requirement [2] that −ΣΛidµi become invariant and equal to dτ ,
and the distinction between dτ and dτ ′ in the density-functional models disappear, as a wetting
transition is approached.

The line adsorption equation, Eq.(3.5), entails the existence of a special line in any plane
perpendicular to the contact line, with r0 any point on that line. Then with any choice r for
the location of the point in the plane through which the contact line passes, and with the Λi(r)
evaluated with that choice, the right-hand side of (3.5) is the same for all r and is the invariant
dτ . Had r0 not been a point on the special line the right-hand side of (3.5) would still have been
invariant to r but would not have been equal to dτ .

The special line was identified for the model functional studied in Section 2 and is shown as the
vertical dashed line in Fig. 6, perpendicular to the direction eαγ and passing through the symmetry
point of the fully symmetric model phase equilibrium. The density-functional model was thus
important both for illustrating and for providing clues to the construction of a properly invariant
line adsorption equation.
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Table 1: Comparison of dτ ′/db with dτ/db at four locations of the contact line in the fully symmetric
case (b =

√
3).

r dτ/db dτ ′/db dτ ′′/db dτ ′/db + dτ ′′/db

r0 −0.333353 −0.333344 0 −0.333344
r1 −0.333353 1.398707 −1.732051 −0.333344
r2 −0.333353 1.398707 −1.732051 −0.333344
r3 −0.333353 −0.333344 0 −0.333344
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Figure Captions

Fig. 1. The three-phase contact line is perpendicular to the figure plane, where it appears
as a point; its arbitrary location is the intersection of the three dividing surfaces, which appear as
lines in the figure. The phases α, β, and γ occupy the dihedral angles between planes. The eαβ ,
etc., are unit vectors in the directions of the interfaces.

Fig. 2. The sides of the Neumann triangle, shown dashed in the figure, are perpendicular to
the interfaces. The contact line is at the distances Rαβ , Rβγ , and Rαγ from the triangle’s sides.

Fig. 3. The line tension in the fully symmetric case b =
√

3 against the grid spacing ∆x.
Filled and open circles are the results obtained from the variational formula and the Kerins-Boiteux
integral, respectively.

Fig. 4. Four locations of the contact line. The point P0 is the symmetry point; P1, P2, and P3

are given by the vectors r1 = −(1/2)eαγ , r2 = −(1/2)eαγ +(1/2)gαγ , and r3 = (1/2)gαγ , measured
from P0.

Fig. 5. dτ/db and dτ ′/db at P0 and P1, two locations of the contact line in Fig. 4. Filled
circles: dτ/db; crosses: dτ ′/db at P0; and open circles: dτ ′/db at P1.

Fig. 6. The contact line is perpendicular to the plane of the figure, where it passes through
an arbitrarily chosen point P . This point is at r, measured from the symmetry point of the fully
symmetric phase equilibrium (b =

√
3). The same point P is at r′, as measured from an arbitrary

origin on the dashed line, which is orthogonal to eαγ and passes through the symmetry point of
the phase equilibrium.

Fig. 7. The solid line is a vector in the direction σαβdeαβ + σβγdeβγ + σαγdeαγ , in any plane
perpendicular to the contact line. The dashed line is a special line in that plane and is orthogonal
to that vector.
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Fig. 6
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