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Abstract 

Regulatory mechanisms controlling the timing of developmental events are crucial for 

proper development to occur. ftz-f1 is expressed in a temporally-regulated manner following 

pulses of ecdysteroid and this precise expression is necessary for the development of Drosophila 

melanogaster. To understand how insect hormone ecdysteroids regulate the timing of FTZ-F1 

expression, we purified a DNA-binding regulator of ftz-f1. Mass spectroscopy analysis revealed 

this protein to be a fly homolog of mammalian B lymphocyte-induced maturation protein 1 

(Blimp-1). Drosophila Blimp-1 (dBlimp-1) is induced directly by 20-hydroxyecdysone, and its 

product exists during high ecdysteroid periods and turns over rapidly. Forced expression of 

dBlimp-1 and RNAi analysis indicate that dBlimp-1 acts as a repressor and controls the timing of 

FTZ-F1 expression. Furthermore its prolonged expression results in delay of pupation timing. 

These results suggest that the transient transcriptional repressor dBlimp-1 is important for 

determining developmental timing in the ecdysone-induced pathway. 
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Introduction 

The steroid hormone ecdysone and its active metabolite 20-hydroxyecdysone (20E) 

(hereafter referred to collectively as ecdysone) is responsible for many essential developmental 

processes, including insect molting, metamorphosis, oogenesis and embryogenesis (25, 40). The 

insect ecdysone response provides an excellent model for studying hormone function, in which 

temporally regulated induction of multiple genes is required to control complex developmental 

events. For instance, at the onset of metamorphosis in D. melanogaster, a large pulse of ecdysone 

causes the third instar larval to prepupal transition. Based on the observation of puffs on polytene 

chromosomes in cultured salivary glands more than 30 years ago, it has long been known that 

there are at least four categories of ecdysone-inducible genes (1-4, 38). The early genes are 

induced directly by the ecdysone-receptor complex and are repressed by their product(s). The 

early-late genes are also induced directly by ecdysone, but require ecdysone-induced gene 

product(s) for maximal induction. The late genes are induced by the early gene product(s), and the 

mid-prepupal genes are induced only after ecdysone levels have declined. In the last two decades, 

many of the genes belonging to these four groups have been cloned and their regulated expression 

profile has been confirmed. These include multiple transcription factors, which constitute an 

ecdysone-induced gene cascade. 

 ftz-f1 is a mid-prepupal gene (29) that encodes a nuclear receptor-type transcription 

factor (30). The beta isoform of the ftz-f1 gene product is expressed not only during the 

mid-prepupal period at the onset of metamorphosis, but also during late embryogenesis, just 

before larval ecdysis and eclosion (45, 51, 54, 55). All of these periods closely follow declines in 
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ecdysone levels. The importance of timing of ftz-f1 expression has been shown by rescue of ftz-f1 

mutants by temporally specific expression of βFTZ-F1 as well as developmental arrest by 

premature expression of βFTZ-F1 (55). Expression and/or induction of ftz-f1 after a decline in 

ecdysone levels has been reported in several insects besides Drosophila (17, 31, 46), suggesting 

that the temporally regulated expression of ftz-f1 is crucial for insect development.   

However, the mechanism by which ftz-f1 is temporally regulated is still unclear; only 

two transcriptional regulators have been identified to date (20, 28, 52). One is the early-late gene 

product DHR3, a nuclear receptor-type transcription factor that is expressed from just before 

puparium formation to the mid-prepupal period. Several lines of evidence support it to be a 

transcriptional activator for the ftz-f1 gene: (i) premature expression of DHR3 under the control of 

a heat shock promoter induces βFTZ-F1 (28, 52), (ii) βFTZ-F1 expression is reduced in a DHR3 

mutant (27), and (iii) DHR3 binds to three sites downstream of the transcription initiation site of 

the ftz-f1 locus (+150, +240 and +300), and mutations in these sites reduce expression of the ftz-f1 

promoter-LacZ fusion gene in transgenic flies (20).  

The other transcription factor known to regulate ftz-f1 is the early gene product E75B, 

which is also a member of the nuclear receptor superfamily, but lacks one zinc finger and thus 

cannot bind to DNA by itself. E75B is expressed around puparium formation, when ecdysone 

levels are high, and disappears after ecdysone levels decline during the mid-prepupal period. 

Because E75B binds directly to DHR3 and inhibits its activator function, DHR3 can activate ftz-f1 

only after ecdysone levels have declined (52). However, the temporal pattern of ftz-f1 expression 

is preserved in DHR3 and E75B mutants (8, 27), and mutations in the DHR3 binding sites of the 
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ftz-f1 promoter-lacZ fusion gene have no effect on the timing of β-galactosidase expression in 

transgenic flies (20).  Thus, all these results suggest that temporal regulation of ftz-f1 expression is 

achieved by other factors.   

 To understand how ftz-f1 expression is temporally regulated, we have analyzed the 

cis-regulatory region of the ftz-f1 locus to identify developmentally regulated factors that bind to 

these regions (20). One factor, designated Factor I-4, binds to the region upstream of the 

transcriptional start site of ftz-f1, and is expressed during mid-embryogenesis and the early 

prepupal period. Here, we determined the binding site of Factor I-4, identified its gene based on 

the information on purified protein, and analyzed its biological function during development 

including the regulation of the ftz-f1 gene.  

 

Materials and Methods 

Gel mobility shift assay 

Binding was performed at 25oC for 1 hour in 10 μl reaction buffer (15 mM Tris-HCl at pH 7.8, 

150 mM NaCl, 0.1 mM EGTA, 1 mM EDTA, 1 mM DTT, 0.2% Igepal CA-630 (Sigma), 1 mM 

NaPO4 at pH 7.8, 10% glycerol), containing 20 fmol 32P-labeled DNA probe, 2 μg 

poly(dI-dC)-poly(dI-dC) (Pharmacia), 100 ng salmon sperm DNA, 10 μg yeast tRNA, 50 μg 

bovine serum albumin fraction V (Sigma), and 1 μl nuclear extract or fraction.  Complex and free 

probe were separated by agarose gel electrophoresis and detected as previously described (50). 

Site I-4 DNA was obtained by hybridization of synthesized oligonucleotides carrying 5’- 

GTTTCACTTTGGCTTTCCGTTTTGG and the complementary sequence. Site I-4m DNA was 
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similarly obtained using synthesized oligonucleotides carrying 

5’-GTTTCACTTTAGATCTCCGTTTTGG and the complementary sequence. The mutant Site 

I-4m2 DNA was generated similarly, using the sequence 5'- 

AAAAGTCTGACTCTGGCTCTGCGTTTGGG. For the supershift assay, 1 μl of anti-dBlimp-1  

or anti-βFTZ-F1 serum was added to the incubation mixture and further incubated for 30 minutes 

and loaded on the gel. Oligonucleotides carrying FTZ-F1 binding site in the EDG84A promoter, 

EDG84F1, was used to detect βFTZ-F1 (33). 

 

Methylation interference 

Methylation interference was performed as previously described by Kageyama et al. (20) using an 

Eco52I-HincII fragment carrying base pairs –70 to –470 and labeled at the Eco52I site by T4 

polynucleotide kinase and [α-32P]ATP.   

 

Preparation of nuclear extracts and purification of Factor I-4 

Staged nuclear extracts were prepared as previously described by Ueda et al. and Kageyama et al. 

(20, 51). Nuclear extracts from 8 to 16 hour embryos were prepared as previously described Ueda 

et al. (51), except that 0.2% Igepal CA-630 was added to Solution II and III. All purification steps 

were performed on ice or in the cold room. 25 ml nuclear extract from 130 g mid-stage embryos 

was loaded on S Sepharose columns. After washing with Buffer L (10 mM Hepes-NaOH at pH 

7.9, 1 mM EDTA, 0.1% Igepal CA-630, 20% Glycerol, 1 mM DTT) containing 150 mM NaCl, 
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Factor I-4 was eluted by Buffer L containing 250 mM NaCl. 2.4 ml S Sepharose fraction 

containing high Factor I-4 activity was adjusted to 5.6 ml by L buffer after addition of 7 mg Site I 

DNA-latex resin, 112 μg shared salmon sperm DNA, 11.2 μg poly(dI-dC)-poly(dI-dC) and 112 

μg yeast tRNA. The mixture was incubated for 30 minutes on ice, and then supernatant was 

removed after centrifugation at 15,000 rpm for 15 minutes. After the resin was washed three times 

with 1 ml L buffer containing 200 mM NaCl, Factor I-4 was recovered as supernatant by 

incubating with 230 μl L buffer containing 500 mM NaCl for 10 minutes. 200 μl of the 

supernatant was diluted with 470 μl L buffer containing 40 μg shared salmon sperm DNA, 4 μg 

poly(dI-dC)-poly(dI-dC) and 40 μg yeast tRNA, and mixed with 5 mg latex resin carrying 

mutated Site I-4 DNA. After incubation for 30 minutes and centrifugation, 660 μl supernatant was 

recovered, mixed with 3.5 mg wild-type Site I-4 DNA-latex resin, and then the mixture was 

incubated for 30 minutes. After the supernatant was removed, the resin was washed three times 

with 1 ml L Buffer containing 200 mM NaCl, and then the factor was eluted twice by 200 μl L 

Buffer containing 500 mM NaCl. Site I-4 DNA-affinity resin and mutated Site I-4 DNA-affinity 

resin were prepared as previously described (16) using latex beads as resin. Synthesized 

oligonucleotides, 5'-TTTCACTTTCGCTTTCCGTTTGGGGG and 5’- 

AAACGGAAAGCGAAAGTGAAACCCCC, and 5'- 

GATCCGTCTGACTCTGGCTCTGGCTCTGGCTCTGGCTCTGCGTTTGA and 

5’-GATCTCAAACGCAGAGCCAGAGCCAGAGCCAGAGCCAGAGTCAGACG, were used 

for making wild-type and mutated Site I-4 DNA-latex resin, respectively.   
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Plasmid construction for forced expression of dBlimp-1 

A cDNA clone (RE26660) containing the entire dBlimp-1 coding region was obtained from 

Research Genetics. Double strand oligonucleotides obtained by hybridization of two synthesized 

oligonucleotides, 5’-AATTCTAGTCGCCATGCA and 5’-TGGCGACTAG and a 1.1 kb 

EcoT22I-SalI fragment of RE26660 were inserted between the EcoRI and SalI sites in pBluescript 

II. The established plasmid was digested with SalI and ApaI, and a 2kb SalI- ApaI fragment from 

RE26660 was inserted. After a NotI linker was inserted at the blunt-ended KpnI site, an EcoRI and 

NotI digest of this plasmid was ligated into the EcoRI and NotI sites of pCaSpeR-HS plasmid to 

establish transgenic fly lines expressing dBlimp-1 under control of the heat shock promoter. To 

construct a P-element expressing Flag-tagged dBlimp-1 protein, double strand oligonucleotides 

obtained by hybridization of two synthesized oligonucleotides, 

5’-GATCATCGAATGCACGTAGATCTGGTAC and 5’-CAGATCTACGTGCATTCGAT, was 

inserted into the FbaI and KpnI sites of RE26660, and then the EcoRI-NotI fragment of the 

obtained plasmid was inserted into the pCaSpeR-HS plasmid as described above. 

 

Plasmid construction for dBlimp-1 RNAi 

A 550 bp DNA fragment spanning the beginning of the second exon to the beginning of third exon 

was obtained by PCR on genomic DNA using primer 5'- 

ATCAGATCTTGCATGGACATCACAACCACAACCAT, which contains a BglII site, and 

5'-TAGAATTCGCTGCTCCAAACTCCTTCAGTCTGCAAG, which contains an EcoRI site. A 

450 bp DNA fragment from the beginning to the end of the second exon was obtained by PCR on 
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genomic DNA using primer 

5'-ATAGCGGCCGCTTGCATGGACATCACAACCACAACCATCT, which contains an Eco52I 

site, and 5'-AAGAATTCACATTTGGCGTTGAGTAGACCATGGA which contains an EcoRI 

site. After ligation of the two fragments using their EcoRI sites, ligated DNA was digested with 

BglII and Eco52I, and was inserted into the pUAST vector using the BglII and NotI sites.   

 

Antibody preparation 

An EcoRI-SalI digest of dBlimp-1 cDNA in pCaSpeR-HS was inserted into the EcoRI and SalI 

sites of pET28b to express the N-terminal half (from 1 to 372 aa.) of dBlimp-1 in E. coli. The 

established plasmid was transformed into E. coli BL21DE3 (LysS), and the N-terminal half of 

Blimp-1 was expressed according to the manufacturer's protocol and subjected to immunization 

after purification. 

 

RNA extraction and Northern blotting 

RNA was prepared using Sepasol-I super (Nakarai) according to the manufacturer's protocol. 

Northern blotting was performed as described in Molecular Cloning (44). 

 

RT-PCR 

For quantitative real-time RT-PCR, cDNA was synthesized using random 9-mer oligonucleotides 

and ReverTra Ace (Toyobo) and RNA was treated with RNase free DNase I (Takara), and used as 

a template for real-time PCR using a LightCycler system (Roche).  The following synthetic 
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oligonucleotides were used for detecting reverse transcripts: 5'-CGCACCTCCAGAAGCATCAT 

and 5’-GGGCAGAGATCACAGGCATA were used for dBlimp-1, 

5’-AGCCGCAGCAGCAAATG and 5’-ACCCGAGTGGTGCAGAT were for E75A, and 

5’-CCACCAGTCGGATCGATATG and 5’-CACGTTGTGCACCAGGAACT were for rp49 

(23). 

 

In vitro culture of salivary glands 

Thirty pairs of salivary glands from middle stage of third instar larvae were cultured in Schneider 

medium in the presence or absence of 5 mM 20E or 70 mM cycloheximide.   

 

Fly work 

All flies used in the transformation study had a y1 Df(1)w67c1 background. Nuclear extracts were 

prepared from an Oregon-R strain. dBlimp-1P14751 was were kindly gifted from Dr. T. Aigaki and 

Sgs-2 flies were from Dr. A.J. Andres. hs-Gal4 lines were obtained from Genetic Stock Research 

Center in the National Institute of Genetics.  Flies were raised at 25°C on 10% glucose, 8% corn 

meal, 4% ebios and 0.7% agar medium containing propionic acid and butyl-p-hydroxybenzoate as 

antifungal agents. Staging of mid to late third instar larvae was determined by observation of GFP 

signal in Sgs-2 larvae (9) or by that of gut in larvae cultured in Bromophenol Blue 

(BPB)-containing food (21). Staging after puparium formation was done by incubating newly 

transformed white prepupae at 25°C. Transgenic fly lines were established by germ line 

transformation using the established plasmid. 
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Western blotting  

Western blotting was performed as described previously (33). Amounts of protein loaded in each 

lane were checked by staining the membrane again using anti-α-tubulin antibody. 

 

Results 

Determination of the Factor I-4 binding site in the ftz-f1 promoter 

To determine the precise binding site of Factor I-4 in the ftz-f1 promoter, a methylation 

interference assay was performed using an Eco52I-HincII fragment (bases –470 to –70) that 

includes the restriction fragment to which Factor I-4 was previously shown to bind (20).  As 

shown in Fig. 1A, four guanine residues located at positions –333, -337, -339, and -343 exhibited 

methylation interference upon Factor I-4 binding. To confirm this result, a gel mobility shift assay 

was performed using a 25 bp double-stranded oligonucleotide encompassing these positions (Site 

I-4) as a probe (Fig. 1B). As expected, a complex was clearly observed. This complex disappeared 

upon addition of cold Site I-4 DNA, but not by Site I-4m DNA carrying base substitutions, 

indicating that the factor binds with strong sequence specificity to the identified position. A 

developmental gel mobility shift assay revealed that the factor is present at high levels from 9-15 

hours after egg laying (AEL), then rapidly disappears during the embryonic stage (Fig. 1C left). 

At the onset of metamorphosis, the factor is present from –3 hours after puparium formation 

(APF) to 4 hours APF, with a peak from 0 to 2 hours APF. It then reappears from 10 to 14 hours 

APF (Fig. 1C right).  These observations corroborate previous results obtained using the larger 
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restriction fragment (20).  These results indicate that Factor I-4 binds to the DNA sequence around 

340 bp upstream of the ftz-f1 transcriptional start site. 

 

Purification of Factor I-4 from embryonic nuclear extract 

To identify Factor I-4, we purified it from an embryonic nuclear extract, as outlined in 

Fig. 2A. Mid-embryonic stage nuclear extract was fractionated by S Sepharose column 

chromatography, and then the active fraction was further fractionated through a latex resin 

conjugated with multimeric wild-type Site I-4 DNA. After removing non-specific binding using a 

latex resin conjugated with polymerized mutated Site I-4 DNA, the factor was purified using the 

latex resin carrying wild-type Site I-4 DNA. Table 1 shows a summary of purification of the factor, 

and Fig. 2B shows the results of a gel mobility assay using typical fractions of the purification 

steps and silver staining after SDS-polyacrylamide gel electrophoresis using the same fractions. 

Even after purification by the second wild-type Site I-4 DNA affinity resin, several stained bands 

were observed in the eluted fractions (E3-1 and E3-2). However, the intensity of the 170 kDa band 

in the SDS-polyacrylamide gel correlated well with its binding to the Site I-4 probe in the gel 

mobility shift assay, suggesting that the 170 kDa protein is indeed Factor I-4.   

 

Factor I-4 is a homologue of mammalian transcriptional repressor Blimp-1/PRDI-BF1 

To identify the 170 kDa factor, protein in the final fraction was separated through a 

SDS-polyacrylamide gel and transferred to a PVDF membrane. The 170 kDa band was excised 

and subjected to Time of Flight Mass Spectroscopy (TOF-MS) analysis after Lysyl Endopeptidase 
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treatment. These data show that Factor I-4 is encoded by CG5249/Blimp-1 (data not shown). The 

deduced amino acid sequence contains zinc fingers sharing strong homology with those of 

mammalian transcriptional repressor Blimp-1/PRDI-BF1 (22, 37, 49) (75% identity). 

Furthermore, it has been shown that Blimp-1/PRDI-BF1 binds to a similar sequence (22) as the 

identified binding site of Factor I-4. To confirm this, the zinc finger region of Drosophila Blimp-1 

was expressed in E. coli and examined by gel mobility shift assay, using Site I-4 DNA as a probe. 

A complex produced by the recombinant protein was indeed observed. This complex disappeared 

by addition of cold Site I-4 DNA but not mutated Site I DNA (Fig. 3A, left panel). Similar results 

were obtained when nuclear extract containing Factor I-4 was used (Fig. 3A, right panel). In 

addition, anti-serum against the N-terminal region of Drosophila Blimp-1 produced a 

supershifted complex in nuclear extracts, while pre-immune serum did not (Fig. 3B). The 

supershift was not due to non-specific binding of the antibody as the anti-serum did not react to a 

complex by βFTZ-F1 (Fig.3C). From these results, we conclude that Factor I-4 is encoded by 

CG5249/Blimp-1, and hereafter refer to it as Drosophila Blimp-1 (dBlimp-1) to distinguish it 

from homologs in other species. 

 Besides the zinc finger motif, dBlimp-1 has another conserved motif at its N-terminal 

region, the PR domain (34, 48). The PR domain has strong sequence similarity to the SET domain, 

which is found in methyltransferase proteins. However, the PR domain in Blimp-1 is thought to 

lack methyltransferase activity, because it does not contain the NHSC(I) sequence which is 

conserved in other SET domain proteins with methyltransferase activity (24, 32). In addition to 

these two conserved motifs, dBlimp-1 and mammalian Blimp-1 share a central, proline-rich 
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region and a short, conserved N-terminal region that is not present in other SET domain proteins.   

 

Expression pattern of dBlimp-1 mRNA 

To determine the expression pattern of dBlimp-1, we performed Northern blot analysis 

using total RNA prepared from animals around prepupal stage. As shown in Fig. 4A (upper panel), 

a strong 5.5 kb band was detected between 0 to 2 hours APF.  The bands were detected from 3 

hours before puparium formation and disappeared at 4 hours APF.  A 6.3 kb band was detected at 

10 to 14 hours APF, which corresponds to the increase of ecdysteroid that leads to head eversion 

and the completion of the prepupal stage. This result is consistent with developmental profiles of 

the dBlimp-1/Factor I-4 binding activity detected by gel mobility shift assays (Fig. 1C), indicating 

that temporal regulation of dBlimp-1 occurs at the level of mRNA expression. The coincidence of 

dBlimp-1 mRNA expression with the ecdysone peaks raises the possibility that dBlimp-1 mRNA 

is induced by ecdysone. Interestingly, the expression profile of the transcript did not completely 

coincide with that of the E75A early gene transcript detected by RT-PCR method using the same 

staged RNA preparation; appearance and disappearance of dBlimp-1 mRNA was delayed slightly 

(Fig. 4A, lower panel), suggesting that regulation mechanism is slightly different between these 

two genes.   

 

Properties of dBlimp-1 transcript 

To examine whether dBlimp-1 mRNA is induced by ecdysone like E75A mRNA, 

salivary glands from late third instar larvae (more than 10 hours before puparium formation) were 
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cultured for 1.5 hours in the presence or absence of 20-hydroxyecdysone (20E), and the 

expression level of dBlimp-1 transcript was detected using quantitative RT-PCR (Fig. 4B). While 

no dBlimp-1 expression was detected when salivary glands were cultured in the absence of 20E, 

transcript was observed when 20E was added in the culture medium, even in the presence of 

cycloheximide. These results suggest that dBlimp-1 transcript is directly induced by 20E. 

Interestingly, the level of induction in the presence of both 20E and cycloheximide was four times 

higher than that in the presence of 20E alone. This difference was less prominent for E75A mRNA. 

As cycloheximide is known to stabilize some mRNA species (15, 19, 39), these results suggest 

that the normal turnover rate of dBlimp-1 mRNA is much faster than that of E75A mRNA.  

 

Knock down of dBlimp-1 results in prepupal lethality and altered timing of βFTZ-F1 

expression 

To elucidate the function of dBlimp-1 during Drosophila development, we knocked it 

down by RNAi. We established transgenic UAS-dBlimp-1i fly lines that express ds-dBlimp-1 

RNA under the control of GAL4, and observed the phenotype after mating with an Act5C-GAL4 

strain expressing the GAL4 activator ubiquitously under the control of the Actin5C promoter. As 

shown in Fig. 5A, five out of eight established dBlimp-1i lines showed lethality at pupal stages in 

most of the observed animals. Many of them eclosed but died shortly thereafter (eclosed) or died 

during eclosion (incomplete eclosion). The rest of the lines showed prepupal lethality in more 

than half of the observed animals (Fig. 5A). Level of the dBlimp-1 transcript in 

Act5c-GAL4>UAS-dBlimp-1i7 with the strongest phenotype was reduced about one fourth 

 15



 

compared to that in the control line, as revealed by quantitative RT-PCR (Fig. 5B) at 2h APF. To 

test if these phenotypes were caused by reduction of dBlimp-1 function, we observed the RNAi 

phenotype in the presence of a hypomorphic dBlimp-1P14751 mutation, which carrys a P element 

insertion in the first intron of the gene.  dBlimp-1P14751 homozygous mutants show disintegration 

of the tracheal network, closely resemble to that of the deficiency strain (34), and die before 

hatching.  Introduction of this mutation into ActGAL4>UAS-Blimp-1 flies clearly enhanced the 

RNAi phenotype (Fig. 5A, lower panel), strongly suggesting that observed RNAi phenotype was 

caused by specific effect on the dBlimp-1 gene and that dBlimp-1 is required for metamorphosis 

to be completed, and may be involved in regulating the prepupal to pupal transition. 

 Because dBlimp-1 is thought to bind to the cis-regulatory region of ftz-f1, we analyzed 

the effect of RNAi on βFTZ-F1 expression during the prepupal period by Western blotting (Fig. 

5C). Two independent Act5c-GAL4>UAS-dBlimp-1i8 lines that showed prepupal lethality were 

collected every 2 hours and subjected to Western blot analysis to obtain reliable results. In the 

animals from the control line, high-level expression of βFTZ-F1 was detected from 8 to 10 hours 

APF, as previously reported (33), and very low-level expression was occasionally detected at 6 

hours APF. However, in dBlimp-1 knock down animals, high-level expression was detected even 

6 hours APF (lanes 3 and 4). Although the penetrance of this phenotype was not 100%, the 

higher-level expression at 6 hours APF was observed in 60% of animals in duplicated experiments 

using two independently established RNAi lines. Furthermore, the high-level expression in RNAi 

animals persisted only until 8 hours APF; by 10 hours APF, the expression level was greatly 

reduced. These results suggest that dBlimp-1 prevents premature expression of the ftz-f1 gene by 
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acting as a transcriptional repressor during the high ecdysone periods. 

 

Prolonged expression of dBlimp-1 results in reduced βFTZ-F1 expression and delayed 

pupation 

To test the possibility that dBlimp-1 functions as a transcriptional repressor of ftz-f1, we 

established transgenic hs-dBlimp-1 lines that express dBlimp-1 under the control of the heat shock 

promoter, and analyzed the effect of forced dBlimp-1 expression on the expression of βFTZ-F1 

during the prepupal period by Western blotting. When prepupae of the hs-dBlimp-1 line were 

treated at 34oC for 1 hour at 5 hours APF, the expression level of βFTZ-F1 was significantly 

reduced in prepupae at 8 hours APF, although the same treatment did not cause any effect on 

βFTZ-F1 expression in the control animals (Fig. 5D). This result supports the idea that dBlimp-1 

acts as a repressor for the ftz-f1 gene. To further explore the effect of prolonged dBlimp-1 

expression, heat-treated animals were observed at later developmental stages. The hs-dBlimp-1 

animals exhibited a delay in pupation (Fig. 5E), suggesting that dBlimp-1 has an important role 

not only in controlling the timing of βFTZ-F1 expression, but also in pupation. 

 

dBlimp-1 protein is unstable 

As the timing of dBlimp-1 expression is important for temporal regulation of the 

ecdysone-induced pathway, and our results suggested that dBlimp-1 mRNA might be unstable, we 

examined the stability of dBlimp-1 directly. Transgenic fly lines expressing flag-tagged dBlimp-1 

under the control of the heat shock promoter were established, and prepupae were heat shocked at 
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0 hour APF for 1 hour at 37oC and examined by Western blot using anti-Flag antibody (Fig. 6). 

Strong expression of dBlimp-1 was detectable soon after the heat shock, and the protein level 

rapidly decreased and became undetectable 3 hours after heat induction. A similar turnover profile 

was observed using heat shock induced dBlimp-1 without Flag tag (data not shown). In contrast, 

such rapid turnover was not observed for heat shock induced βFTZ-F1, which was detectable at 

least 6 hours after heat shock. This prolonged βFTZ-F1 protein expression is not caused by the 

stability of its mRNA, because induced βFTZ-F1 mRNA disappeared within 3 hours after heat 

shock (data not shown). These results indicate that dBlimp-1 protein is less stable than βFTZ-F1. 

 

Discussion 

Over thirty years ago, the existence of a factor that is directly induced by ecdysone and 

that represses early genes at the onset of metamorphosis was proposed based on observations of 

chromosomal puff patterns in cultured salivary glands (3). Here, we show that the expression 

profile of dBlimp-1 mRNA mirrors that of a typical early gene, and that dBlimp-1 transcript is 

directly induced by 20E in cultured salivary glands. Similar findings from cultured organs in a 

recent independent report corroborate our results (7). Moreover, we demonstrate that dBlimp-1 

acts as a repressor, making it a good candidate for the factor predicted by Ashburner and 

colleagues. Intriguingly, although there is no direct evidence showing that dBlimp-1 can repress 

early genes, the 5’ upstream region of the early gene br contains putative dBlimp-1 binding sites. 

On the other hand, the map position of dBlimp-1 was not identified as an early puff locus. This 

might be due to the low level of dBlimp-1 expression compared to that of other early genes. 
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Further study is necessary to examine the effect of dBlimp-1 on early genes.   

Although the dBlimp-1 transcript is directly induced by 20E, its expression profile is 

slightly delayed compared to that of the E75A transcript. The delay in its disappearance after 

puparium formation and rough coincidence between the time of its disappearance and decline of 

ecdysone level suggest that the gene may not be repressed by early gene product as are known 

early genes.  Rather its transcription may require the continual presence of 20E so that it is 

reduced when the ecdysteroid titer falls.  Since the ecdysteroid titer is already quite high 3 hr 

before puparium formation, the reason for the delay in the appearance of dblimp-1 mRNA is not 

clear.  These questions require further study. 

 The discovery of an ecdysone-inducible repressor provides new insights into the 

regulatory mechanisms of ftz-f1, which is induced by pulses of ecdysone. Although the 

ecdysone-inducible transcription factors DHR3 and E75B were previously identified (8, 20, 27, 

52), they cannot entirely account for the regulatory mechanism for βFTZ-F1 expression. Our 

results show that the timing of βFTZ-F1 expression is altered in prepupae in which dBlimp-1 is 

knocked down or expressed for a longer period of time, indicating that the timing of dBlimp-1 

expression is crucial for temporal control of the ftz-f1 gene. In our RNAi experiment, however, we 

observed only 2 hours earlier expression. This might be due to the incomplete knock down of 

dBlimp-1 (see below), or other redundant repression mechanisms, such as DHR3 and E75B. In 

spite of these unresolved questions, our results provide clear evidence that dBlimp-1 plays a key 

role in determining the timing of ftz-f1 expression by acting as a repressor during the high 

ecdysone period at the onset of metamorphosis.  
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 We also obtained unexpected evidence suggesting that the turnover rate of dBlimp-1 

mRNA is quite rapid. Whereas dBlimp-1 mRNA levels increased upon addition of cycloheximide 

in cultured organs, other ecdysone-induced early genes, including br (6), E74A (7, 47), E75A, and 

E75B (43) did not show significant increases in mRNA levels during the two hours of culture. The 

instability of dBlimp-1 mRNA may have affected our RNAi experiment, in which we were able to 

reduce the level of dBlimp-1 mRNA only to one fourth of the normal level at 2 h APF.  

 Furthermore, we found that transgenic dBlimp-1 protein expressed under the control of 

the heat shock promoter disappeared rapidly. In contrast, BR-C proteins, which are early gene 

products, have been shown to persist as long as βFTZ-F1 when expressed under the control of the 

heat shock promoter (13, 26). Furthermore, the dBlimp-1 mRNA peak detected by Northern blot 

and protein activity peak detected by gel mobility shift assay coincided well. In contrast, the 

protein peaks for other ecdysone-induced transcription factors, such as E74A (10) and E75B (8, 

52) were roughly 2 hours later than their mRNA peaks. These observations support the idea that 

the degradation rate of endogenous dBlimp-1 is also more rapid than that of many other 

ecdysone-inducible transcription factors. The degradation rate of each protein is controlled by 

signals within its own sequence. For example, PEST sequences are proline, glutamic acid, serine 

and threonine-rich sequences that target proteins for degradation (36, 41). Indeed, dBlimp-1 

contains a proline-rich PEST sequence that may be responsible for its instability, since removal of 

this region stabilizes protein expressed under the control of the heat shock promoter (M. S. and 

H.U., unpublished data). Whatever the mechanism of the instability, our results indicate that 

instability of dBlimp-1 mRNA and protein plays a crucial role in determining the timing of 
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βFTZ-F1 expression and pupation. 

 In strongly affected dBlimp-1 RNAi lines, most animals arrested development at the 

prepupal stage and expressed βFTZ-F1 prematurely. We have previously shown that premature 

expression of βFTZ-F1 during the prepupal period causes developmental arrest at the prepupal 

stage (55). Thus, developmental arrest in the dBlimp-1 RNAi animals might be mediated through 

the premature expression of βFTZ-F1. On the other hand, we found that forced expression of 

dBlimp-1 caused delays in both the timing of βFTZ-F1 expression and pupation. Thus, the timing 

of pupation might be controlled by the timing of βFTZ-F1 expression.  

 Recently, it has been reported that dBlimp-1 expression in the tracheal system in 

Drosophila embryos is important for development of this tissue (34). In addition, dBlimp-1 is 

expressed in a spatially-restricted manner in other regions during early embryogenesis, although 

the functions of these early expression domains remain unknown. Blimp-1 is similarly expressed 

in many different tissues in vertebrates, where it is known to play important roles in 

embryogenesis, germ cell determination, specification in nerve and muscle cells, linage 

determination in epidermis, and B cell maturation (5, 11, 12, 14, 18, 35, 42, 49, 53). Thus, 

dBlimp-1 may be involved in many other developmental events in the fly. 
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Figure legends 

Fig. 1.  Determination of the binding site and developmental expression pattern of Factor I-4. (A) 

Methylation interference using a 400 bp Eco52I-HincII fragment. Positions of nucleotides 

showing methylation interference are represented by asterisks with distance from the transcription 

start site. G+A Maxam & Gilbert-sequencing reaction was used as a marker. (B) Confirmation of 

sequence-specific binding to the identified site by a gel mobility shift competition assay. 

32P-labeled Site I-4 DNA was used as a probe, and the indicated amounts of Site I-4 or Site I-4m 

competitor DNA compared with the probed Site I-4 DNA were added to the binding reactions. 

Nucleotide sequences of site I-4 and site I-4m DNA are indicated at the bottom.  Positions of 

introduced mutations are indicated by dots.  (C) Confirmation of Factor I-4 binding by gel 

mobility shift assays using developmentally staged nuclear extracts at embryonic stages (left) and 

at the onset of metamorphosis (right).  32P-labeled site I-4 DNA was used as a probe.   

 

Fig. 2.  Identification of Factor I-4 as a Blimp-1/CG5249 encoded protein. (A) Purification 

scheme of Factor I-4. Nuclear extract (NE) derived from AEL 8-16 hour embryos was loaded onto 

an S Sepharose column. Fractions eluted between 0.15 and 0.25 M NaCl concentration (SE) were 

subjected to affinity purification. The first affinity purification was performed using Site I-4 

DNA-conjugated latex beads. Eluate of the first affinity chromatography (E1) was then incubated 

with mutated Site I-4 DNA-conjugated beads to perform subtraction. Supernatant of subtraction 

was subjected to a second affinity purification. Eluate of the second affinity chromatography 

(E3-1 and E3-2) was obtained. (B) Detection of the binding activity and proteins in typical 
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fractions during purification by a gel mobility shift assay (upper panel) and SDS-PAGE (lower 

panel). 1 μl of the fractions in the purification step was used for the gel mobility shift assay and 10 

μl of the same fraction was reserved for SDS-PAGE except for NE and SE, which were loaded 

only 0.5 μl. Proteins were detected by silver staining.   

 

Fig. 3.  Confirmation of Factor I-4 as dBlimp-1.  (A) Gel mobility shift competition assay using in 

vitro expressed dBlimp-1 (left panel) and Factor I-4 in the nuclear extract (right panel). The 

indicated amounts of Site I-4 or Site I-4m2 DNA compared with the probed Site I-4 DNA were 

added to the reaction mixtures of the gel mobility shift assay. Six point nine ng of purified 

recombinant proteins or 1 μl of nuclear extract was used in each binding reaction. (B) Supershift 

of Factor I-4 by anti-dBlimp-1. Anti-dBlimp-1 or preimmune serum was added to the reaction 

mixture for the gel mobility shift assay to detect dBlimp-1 in the complex. (C) Specificity of 

anti-dBlimp-1. βFTZ-F1 was detected by gel mobility shift assay. Anti-dBlimp-1 or 

anti-βFTZ-F1 serum was added to the reaction mixture for the gel mobility shift assay to examine 

specificity. 

 

Fig. 4.  Characterization of dBlimp-1 transcripts.  (A) Detection of dBlimp-1 mRNA by Northern 

blotting using staged total RNA at the onset of metamorphosis. High ecdysone periods are 

indicated at the top by trapezoids. Positions of dBlimp-1 mRNA are indicated by arrows.  Middle 

panel detected rp49 mRNA using the same membrane. Bottom panel shows level of E75A 

transcript detected by RT-PCR using the same staged RNA. (B) Induction of dBlimp-1 (left) and 
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E75A (right) mRNA by 20-hydroxyecdysone (20E) in cultured salivary glands.  Expression levels 

were measured by quantitative real-time RT-PCR using total RNA from salivary glands cultured 

for 90 minutes in the presence of 20E and/or cycloheximide (CHX). The value of each transcript 

was normalized by that of rp49 transcripts, with the level obtained with 20E and cycloheximide 

set as 1 for each transcript. The same template was used to measure the amounts of dBlimp-1 and 

E75A mRNA. 

 

Fig. 5.  dBlimp-1 has a repressor activity and controls the timing of βFTZ-F1 expression and 

pupation. (A) Phenotype of dBlimp-1 RNAi lines.  Eight independent UAS-dBlimp-1i lines were 

mated with the Act-Gal4 line, and prepupae of their progeny were collected and their lethal phases 

were scored from the prepupal stage to adult. Effect of mutation in the dBlimp-1 gene by P 

element insertion, dBlimp-1P14751, was examined for UAS-dBlimp-1i1 and 5 lines. Numbers in 

parentheses represent the number of scored animals. Typical examples of arrested animals are 

shown on the right. (B) Reduction of dBlimp-1 transcript level in RNAi animals. Expression 

levels were measured by quantitative real-time RT-PCR using total RNA from prepupae at 2 hours 

APF in the indicated lines. The same template was used to measure the amounts of dBlimp-1 and 

E75A mRNAs. (C) Premature expression of βFTZ-F1 by RNAi of dBlimp-1.  The expression of 

βFTZ-F1 in dBlimp-1 RNAi (Act5c-Gal4>UAS-dBlimp-1i8) and its control animals 

(+/UAS-dBlimp-1i8) from 4 to 10 h APF was estimated by Western blotting. Anti-α-tubulin 

antibody was used to confirm amount of loaded protein in each lane.  (D) Delay of βFTZ-F1 

expression by induction of dBlimp-1.  Prepupae at 5 hours APF of hs-dBlimp-1 or host strain were 
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heat shocked at 34oC for 1 hour and then reared at 25oC.  The expression level of βFTZ-F1 in two 

individual prepupae at the indicated times was estimated by Western blotting. Anti-α-tubulin 

antibody was used to confirm the amount of loaded protein in each lane. (E) Delay of pupation 

timing by forced induction of dBlimp-1. Prepupae at 5 hours APF of hs-dBlimp-1 or host strain 

were heat shocked at 34°C for 1 hour and then reared at 25°C. Numbers of newly pupated animals 

were counted every hour and the percentage of pupated animals in each period was plotted. 

Numbers in parentheses represent the number of scored animals.  Four out of 26 animals in 

hs-dBlimp-1 failed to pupate. 

 

Fig. 6.  dBlimp-1 is a labile protein 

dBlimp-1 or βFTZ-F1 was expressed under the control of the heat shock promoter at 0 hour APF, 

and the level of induced protein was detected by Western blot using either an anti-Flag antibody or 

anti- βFTZ-F1 serum. Samples from two independent animals of hs-Blimp-1 or hs-βFTZ-F1 line 

were examined every hour. Non-heat shock control animals were examined at 0 hour APF.   
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