Pteridines Vol. 19, 2008, pp. 72 - 78

An Efficient Synthesis of 2'-*O*-(β-D-Ribofuranosyl)biopterin

Tadashi Hanaya¹, Kiyoshi Torigoe¹, Kazuyuki Soranaka¹, Hiroshi Fujita¹, Hiroshi Yamamoto² and Wolfgang Pfleiderer³

¹Department of Chemistry, Faculty of Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan ²School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan

³Fachbereich Chemie, Universität Konstanz, Postfach 5560, D-78457 Konstanz, Germany

Abstract

 N^2 -(N,N-Dimethylaminomethylene)-3-[2-(4-nitrophenyl)ethyl]-1',2'-di-O-(trimethylsilyl)biopterin (**4**) was prepared from biopterin (**1a**, 86% overall yield) in 5 steps. Glycosylation of **4** with 1,2,3,5-tetra-O-acetyl- β -D-ribofuranose (**5a**) and its 2,3,5-tri-O-benzoyl analog (**5b**) respectively afforded the corresponding 2'-O-(2,3,5-tri-O-acetyl- and 2,3,5-tri-O-benzoyl- β -D-ribofuranosyl)biopterin derivatives (**6a**, 42% and **6b**, 60%) as major products. Removal of the protecting groups of **6b** provided 2'-O-(β -D-ribofuranosyl)biopterin (**1c**, 87% overall yield) in 3 steps.

Key words: biopterin D-riboside, pterin glycoside, glycosylation, protecting groups

Introduction

Certain pterin glycosides carrying various kinds of sugars attached to the side-chain at C-6 of the pteridine ring were found to be produced by some prokaryotes as exemplified by glycosides of biopterin (1a): 2'-*O*-(β-D-glucopyranosyl)biopterin (1b) isolated from cyanobacteria (1-6) and 2'-*O*-(2-acetamido-2-deoxy-β-D-glucopyranosyl)biopterin from anaerobic photosynthetic bacteria (7). Glycosides of L-*threo*-biopterin and 6-hydroxymethylpterin were also isolated from green sulfur bacteria and cyanobacteria (8-10). Some of these structures have been confirmed also by chemical syntheses (11-16).

Formulae 1a-c

As for biopterin D-riboside, 2'-O-(β -D-ribofuranosyl)biopterin ($\mathbf{1c}$) found in *Spirulina platensis* (17) appears to be the only clear account to our knowledge. The structure was confirmed by comparison with the synthesized specimen $\mathbf{1c}$ obtained by the sequence illustrated in Scheme 1 (18). The overall yield of $\mathbf{1c}$ from $\mathbf{1a}$, however, remained rather low (11%) and often fluctuated apparently due to the liability of the tetrakis- N^2 , O^4 , O^{11} , O^{21} -trimethylsilylated $\mathbf{1a}$ under the glycosylation conditions employed, thus mostly regenerating $\mathbf{1a}$.

Since various types of glycosides of biopterin and

Correspondence to: Tadashi Hanaya, Department of Chemistry, Faculty of Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan, Phone: (81) 86 251 7838; e-mail: hanaya@cc.okayama-u.ac.jp

related pterins were considered to be of interest in view of their biological activities and functions, we have undertaken to explore more efficient glycosylations of biopterin leading to 2'-O-(β -D-ribofuranosyl)biopterin (1c).

Results and Discussion

Due to the effectively stabilized intramolecular hydrogen bondings in the solid state (19), pterin derivatives including biopterin are little soluble in nonpolar aprotic solvents in which glycosylation reactions normally proceed smoothly. Thus, biopterin (1a) was converted in a four step procedure via the intermediate 1',2'-di-O-acetyl- N^2 -(N,N-dimethylaminomethylene) biopterin (2) (12,20) into the sufficiently solubilized and versatile N^2 -(N_*N -dimethylaminomethylene)-3-[2-(4-nitrophenyl)ethyl]biopterin (3) in 87% overall yield (Scheme 2). For the purpose of further raising the solubility of compound 3 in dichloromethane, 3 was silylated with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) in the presence of ammonium sulfate in dichloromethane under reflux for 24 h, yielding the 1',2'-di-Otrimethylsilyl derivative (4) quantitatively.

Glycosylations of **4** with glycosyl donors, such as 1,2,3,5-tetra-*O*-acetyl- (**5a**) and 1-*O*-acetyl-2,3,5-tri-

O-benzoyl-β-D-ribofuranose (**5b**), was investigated under various conditions in the presence of an activator. Thus, treatment of **4** with 1.5-3.0 mol equiv. of **5a** or **5b** in the presence of tin(IV) chloride (2.0-4.0 mol equiv.) in dichloromethane at room temperature for 18-24 h afforded a mixture of fully protected 2'-O-(β-D-ribofuranosyl) biopterin (**6a,b**), 1'-O-(β-D-ribofuranosyl) isomer (**7a,b**), and 1',2'-di-O-(β-D-ribofuranosyl) derivatives (**8a,b**). The yields of these products depended upon the molar ratio of **4** to glycosyl donors as summarized in Table 1.

Although the mono- and di-glycosyl compounds were chromatographically separable on a silica gel column, separation of the monoglycosides 6a and 7a has not been achieved. Among entries 1-4, use of 1.5 mol equiv. of 5a (Entry 2) gave monoglycosides (6a, 7a) in the highest yields with a moderate preference of 2'-O-glycosylation; 2'-O-glycoside:1'-O-glycoside = 78:22. Similar treatment of 4 with 2.0 mol equiv. of 5b (Entries 5-8), however, afforded the best yield (60%) of 2'-O-monoglycoside (6b) along with a minor proportion (18% yield) of the 1',2'-di-O-glycoside (8b) (Entry 7). In the fraction of 6b, a trace amount of a byproduct presumed to be the 1'-O-glycoside (7b) was detectable (by 1H NMR); this byproduct was removable by recrystallization to provide pure 6b. The higher preference of 2'-O-glycoside production from **5b** is

Scheme 2

Entry 1	Glycosyl donor (mol equiv.)	Activator (mol equiv.)	Products (yield) ^b			
	5a (1.5)	SnCl ₄ (2.0)	6a (33%)	7a (9%)	8a (18%)	
2	5a (1.5)	$SnCl_4$ (4.0)	6a (42%)	7a (12%)	8a (25%)	
3	5a (2.0)	$SnCl_4(4.0)$	6a (34%)	7a (7%)	8a (35%)	
4	5a (2.5)	$SnCl_4(4.0)$	6a (18%)	7a (3%)	8a (46%)	
5	5b (1.5)	$SnCl_4(2.0)$	6b (25%)	7b (<1%)	8b (11%)	
6	5b (2.0)	$SnCl_4(2.0)$	6b (48%)	7b (<1%)	8b (15%)	
7	5b (2.0)	$SnCl_4(4.0)$	6b (60%)	7b (<1%)	8b (18%)	
8	5b (3.0)	$SnCl_4(4.0)$	6b (19%)	7b (<1%)	8b (48%)	

Table 1. Glycosylation of biopterin derivative (4)^a

most likely ascribed to the presence of the bulkier protecting groups in the glycosyl donor (5b) compared to 5a.

The assignment of the 1'-O-substituted structure of 7a was derived from the doublet of the H-1' signal, whereas pseudotriplets of the H-1' for 2'-O-substituted compounds 6a,b indicated the presence of a free 1'-OH group (Table 2). All D-ribofuranosyl moieties of these compounds possess a β-configuration at their glycosidic linkage due to their $J_{1,2}$ values (0.9-1.5 Hz). The stereoselective β-glycoside formation of all these products (6-8a,b) was attained mainly by participation of the neighboring groups (2-O-acetyl of 5a and 2-Obenzoyl of **5b**). Although the H-1 signal of the 2'-Oglycoside (6a) appears at lower field compared with that of 1'-O-glycoside (7a), all other sugar protons of 6a appear at upper field than those of 7a. Such tendency is observed in both glycosyl moieties of 1',2'-di-O-glycosides (8a,b).

Removal of the protecting groups of the purified 2'-O-(tri-O-benzoyl-β-D-ribofuranosyl)biopterin derivative (6b) was performed according to the following three-step-procedures (Scheme 3): benzoyl groups of 6b were cleaved by the treatment with sodium methoxide in methanol to afford 9, which was then treated with aqueous ammonia-methanol to remove the N,Ndimethylaminomethylene group, followed by the action of DBU in DMF to cleave the NPE group, thus affording 2'-O-(β-D-ribofuranosyl)biopterin (1c) in 87% overall yield from 6b. Structure of 1c was unambiguously established as the corresponding pentaacetyl derivative (11) obtained by usual acetylation (Table 2). Treatment of 11 with aqueous ammonia regenerated 1c quantitatively. The spectral data of 1c (see Experimental part) were identical in all respects with those of the natural product (17,18).

An attempt to remove the NPE group of **6b** first by treatment with DBU for 24 h resulted in partial deprotection to give **10** in 46% yield and 31% recovery of

6b. Compound **10** was then converted into **1c** by methanolysis of the benzoyl groups and the subsequent cleavage of N,N-dimethylaminomethylene group with aqueous ammonia. From these results, removal of the N^2 -(N,N-dimethylaminomethylene) group prior to deprotection of N(3)-NPE was shown to be more effective.

An inseparable mixture of 2'-O- and 1'-O-(2,3,5-tri-O-acetyl- β -D-ribofuranosyl) derivatives (**6a,7a**) was also subjected to similar deprotection steps described above to give the 2'-O- (**1c**) and 1'-O-(β -D-ribofuranosyl) isomers (**1d**) (Scheme 3). Although these compounds were converted into the pentaacetyl derivatives (**11, 12**), their separation could not be achieved.

The present work thus demonstrates an effective way for the preparation of 2'-O- $(\beta$ -D-ribofuranosyl) biopterin (1c). Improvements of selectivity for 2'-O-monoglycosylation as well as preparation of biopterin glycosides having various types of other sugar moieties are in progress.

Experimental

General procedures

All reactions were monitored by TLC (Merck silica gel 60F, 0.25 mm) with an appropriate solvent system $[(A) \ 1:9 \ \text{MeOH-CHCl}_3 \ \text{and} \ (B) \ 5:3:1 \ 2-\text{PrOH-AcOEt-H}_2\text{O}]$. Column chromatography was performed with Daiso Silica Gel IR-60/210w. Components were detected by exposing the plates to UV light and/or spraying them with 20% sulfuric acid-ethanol (with subsequent heating). The NMR spectra were measured in CDCl₃ or DMSO- d_6 with Varian Unity Inova AS600 (600 MHz) spectrometers at 23°C. Chemical shifts are reported as values relative to a solvent peak (7.26 ppm for CDCl₃, 2.50 ppm for DMSO- d_6) as an internal standard.

^a All reactions were carried out in CH₂Cl₂ at rt for 18-24 h. ^b Yields of inseparable monoglycosides (**6a**) and (**7a**) were estimated by ¹H NMR spectra.

Scheme 3

 N^2 -(N,N-Dimethylaminomethylene)-3-[2-(4-nitro-phenyl)ethyl]-1',2'-di-O-(trimethylsilyl)biopterin (4) (12)

According to the reported procedures (12,20), compound **3** was prepared from biopterin in 4 steps. A suspension of **3** (550 mg, 1.25 mmol), ammonium sulfate (400 mg, 3.03 mmol), and HMDS (3.00 mL, 14.5 mmol) in dry CH_2Cl_2 (30 mL) was refluxed for 24 h. The precipitate was filtered off and the filtrate was evaporated in vacuo. The residue was purified by short-path column chromatography with 2% MeOH-CHCl₃ to give **4** (722 mg, 99%) as a pale yellow foam: R_f 0.65 (A).

 N^2 -(N,N-Dimethylaminomethylene)-3-[2-(4-nitrophenyl)ethyl]-2'-O-(2,3,5-tri-O-acetyl- β -D-ribofuranosyl)biopterin (**6a**), its 1'-O-(2,3,5-tri-O-acetyl- β -D-ribofuranosyl) isomer (**7a**), and N^2 -(N,N-dimethylaminomethylene)-3-[2-(4-nitrophenyl)ethyl]-1',2'-bis-O-(2,3,5-tri-O-acetyl- β -D-ribofuranosyl)biopterin (**8a**)

To a solution of 5a (200 mg, 0.628 mmol) in CH₂Cl₂ (4.0 mL) was added SnCl₄ (0.19 mL, 1.67 mmol) at 0°C. After stirring at 0°C for 0.5 h, a solution of 4 (240 mg, 0.410 mmol) in CH₂Cl₂ (3.0 mL) was added and then the mixture was stirred at rt for 20 h. After addition of saturated aqueous NaHCO₃, the mixture was extracted with CHCl₃. The organic layer was dried (Na₂SO₄) and evaporated in vacuo. The residue was separated by column chromatography with 1:2 AcOEt-hexane and then 2% MeOH-CHCl₃ into two fractions.

The faster-eluting fraction [$R_{\rm f}$ 0.55 (A)] gave **8**a (98.0 mg, 25%) as a pale yellow powder: mp 82-84°C (from AcOEt-hexane); ¹H NMR, see Table 2. Anal. calc. for $C_{42}H_{51}N_7O_{19}$ (957.89): C52.66, H5.37; found: C52.42, H5.44.

The slower-eluting fraction [R_f 0.48 (A)] gave a pale yellow powder (155 mg), which consisted of **6a** (120 mg, 42%) and **7a** (35 mg, 12%), the ratio being estimated by 'H NMR spectrum: 'H NMR for **6a** and **7a**, see Table 2. Anal. calc. for $C_{31}H_{37}N_7O_{12}$ (699.67): C53.22, H5.33; found: C53.36, H5.18.

Table 2. 600 MHz ¹H-NMR Spectral parameters for 1'- and 2'-*O*-(β-D-ribofuranosyl)biopterin derivatives (**6-8a,b, 11, 12**) in CDCl₃

Com-	Biopterin moiety				Chemical shifts / δ Me ₂ NCH=N-2		(coupling constants / Hz) NPE-N(3)					
	d H-7	H-1' (J _{1',2'})	H-2' (J _{2',3'})	H ₃ -3'	Me ₂ N	Cl	H=N	$H(o)$ $(J_{o,m})$	H(m)	CH ₂ CH ₂ N (³ J _{H,H})	CH ₂ N (² J _{H,H})	Other signals
6a	8.92	4.99	4.20	1.20	3.24, 3.1	19 8.	88	7.42	8.14	3.17	4.60	3.25 (HO-1')
7a	8.89	(4.6) 5.04	(6.6) 4.33 (6.4)	1.08	3.24, 3.1	19 8.	88	(8.8) 7.42 (8.8)	8.14	(7.7) 3.17 (7.7)	4.60	$(J_{1',OH} = 5.2)$ 2.80 (HO-2')
8a	8.94	(3.4) 5.08 (3.2)	4.31 (6.6)	1.15	3.23, 3.1	18 8.	86	(8.8) (8.8)	8.14	3.16 (7.6)	4.61, 4.59 (12.2)	$(J_{2',OH} = 6.0)$
6b	8.92	5.02 (4.6)	4.30 (6.4)	1.22	3.23, 3.1	18 8.	85	7.40 (8.8)	8.13	3.14 (7.6)	4.58, 4.56 (12.2)	3.57 (HO-1') $(J_{1',OH} = 5.3)$
8b	9.09	5.20 (3.4)	4.41 (6.4)	1.20	3.22, 3.1	17 8.	85	7.40 (8.8)	8.13	3.14 (7.6)	4.57, 4.55 (12.2)	(-T,OH - 0.0)
11	8.96	5.90 (4.9)	4.43 (6.6)	1.26			1	0.93 [H	I-N(3)]	()	()	2.16 (AcO-1') 2.45 (AcN-2) ^a
12	9.02	5.15 (4.2)	5.35 (6.6)	1.22			1	0.82 [H	I-N(3)]			2.14 (AcO-2') 2.45 (AcN-2) ^a
			osyl mo									
	H-1 $(J_{1,2})$		$I-2$ $I_{2,3}$	H-3 $(J_{3,4})$	H-4 $(J_{4,5a})$	$H^{a}-5$ $(J_{5a,5b})$		6-5 (4,5b)	Other si	gnals		
ба	5.18 (1.4		.12 1.9)	5.23 (6.3)	4.28 b	4.30 (11.5)		13 2 .4)	2.09, 2.0	08, 2.05 (Ac	O-2,3,5)	
7a	5.07	5	.33 1.9)	5.39 (6.3)	4.36 b	4.33b b			2.16, 2.0	07, 2.06 (Ac	O-2,3,5)	
8a°	5.38 (1.0	3 5	.12 1.9)	5.19 (6.6)	4.26 (3.9)	4.24 (11.5)	4.	06 2 .9)	2.12, 2.0	035, 2.025 (AcO-2,3,5)	i
	4.90	(4	.29 1.9)	5.33 (6.0)	4.28 b	4.30b b	b			04, 2.03 (Ac		
6b	5.47 (1.2	(4	.57 1.9)	5.78 (6.1)	4.70 (4.4)	4.69 (12.0)) (6	.8)	7.55-7.5	94, 7.89 [Bz 50 [Bz(p)], 7	'.40-7.32 [B	z(m)
8b°	5.61 (0.9 5.22) (5	.46 5.1) .81	5.70 (6.8) 5.86	4.695 (4.6) 4.70	4.61 (11.7) 4.76) (6 4.	.1)	7.53-7.4	91, 7.82 [Bz 6 [Bz(p)], 7 96, 7.88 [Bz	7.37-7.28 [B	z(m)
11	(1.2 5.16 (0.8	5 4	5.1) .93	(6.5) 5.11 (7.1)	(4.4) 4.26 (3.9)	(11.5) 4.22	4.	05 2		6 [Bz(p)], 7 05, 2.02 (Ac	_	z(m)
12	4.90 (1.0	5	1.9) .31 1.9)	(7.1) 5.33 (6.6)	(3.9) 4.34 (3.7)	(11.7) 4.32 (11.5)	4.	.1) 29 2 .1)	2.06, 2.0	02, 2.01 (Ac	O-2,3,5)	

^a δ 12.3-12.8 (br s, NH-2). ^b Uncertain because of overlapping with other signals. ^c Upper two lines for 2'-*O*-ribo-furanosyl moiety, lower two lines for 1'-*O*-ribofuranosyl moiety. Correlations of protons were confirmed by 2D-COSY measurement. ^d The assignments of acetyl groups may have to be interchanged. ^c $J_{o,m}$ = 8.3-8.6, $J_{o,p}$ = 1.2-1.5 Hz. ^f The assignments of Bz(o) signals may have to be interchanged.

 N^2 -(N,N-Dimethylaminomethylene)-3-[2-(4-nitro-phenyl)ethyl]-2'-<math>O-(2,3,5-tri-O-benzoyl- β -D-ribofura-(6b) and N^2 -(N,N-dimethylaminomethylaminomethylene)-3-[2-(4-nitrophenyl)ethyl]-1',2'-bis-<math>O-(2,3,5-tri-O-benzoyl- β -D-ribofura-(2,3,5-(4-nitrophenyl)ethyl]-1',2'-bis-<math>O-(2,3,5-(2,3,5-(4-nitrophenyl)ethyl]-1',2'-bis-<math>O-(2,3,5-(2,3,5-(4-nitrophenyl)ethyl]-1',2'-bis-<math>O-(2,3,5)-(2,3,5-(2,3,5-(2,3,5)-(2,3,5-

tri-O-benzoyl-β-D-ribofuranosyl)biopterin (**8b**)

Analogous to the preceding procedure compound 4 (170 mg, 0.290 mmol) was treated with **5b** (295 mg, 0.585 mmol) and SnCl₄ (0.14 mL, 1.21 mmol) at rt for 20 h. The products were separated by column chromatography with 1:2 AcOEt-hexane and then 2% MeOH-CHCl₃ into two fractions.

The faster-eluting fraction [$R_{\rm f}$ 0.82 (A)] gave **8b** (69.5 mg, 18%) as a pale yellow powder: mp 98-99°C (from AcOEt-hexane); ¹H NMR, see Table 2. Anal. calc. for $\rm C_{72}H_{63}N_7O_{19}$ (1330.31): C65.01, H4.77; found: C65.18, H4.61.

The slower-eluting fraction [$R_{\rm f}$ 0.60 (A)] gave **6b** (155 mg, 60%) as a pale yellow powder: mp 113-114°C (from AcOEt-hexane); ¹H NMR, see Table 2. Anal. calc. for $C_{46}H_{43}N_7O_{12}$ (885.87): C62.37, H4.89; found: C62.50, H4.98.

2'-O- $(\beta$ -D-ribofuranosyl)biopterin (1c)

A. Via **9**. Compound **6b** (100 mg, 0.113 mmol) was dissolved in dry MeOH (5.0 mL) and 28% methanolic NaOMe (0.05 mL, 0.24 mmol) was added at 0°C. The mixture was stirred at rt for 2 h and neutralized with Amberlite IR120(H⁺). The resin was filtered off and the filtrate was evaporated in vacuo. The residue was washed with ether to give N^2 -(N,N-dimethylaminomethylene)-3-[2-(4-nitrophenyl)ethyl]-2'-O-(β -D-ribofuranosyl)biopterin (**9**) (63 mg) as a yellow amorphous solid: R_f 0.07 (A), 0.54 (B).

Compound 9 was dissolved in MeOH (8.0 mL) and 28% aqueous ammonia solution (8.0 mL) was added. The mixture was stirred at rt for 12 h and evaporated in vacuo. The residue was dissolved in DMF (2.0 mL) and then DBU (0.10 mL, 1.28 mmol) was added. The mixture was stirred at rt for 12 h, diluted with water (4.0 mL), and neutralized with Amberlite IRC50(H⁺). The resin was filtered off and the filtrate was evaporated in vacuo. The residue was washed with CHCl₃ and dried under reduced pressure to give 1c (36.4 mg, 87% from **6b**) as a yellow powder: R_f 0.36 (B); ¹H NMR [DMSO- d_6 (D₂O exchange)] δ 1.01 (3H, d, J_{2'-3'} 6.6 Hz, H₃-3'), 3.30 (1H, dd, J_{5a,5b} 11.5, J_{4,5b} 5.9 Hz, H_b-5^*), 3.47 (1H, dd, $J_{4,5a}$ 3.2 Hz, H_a-5^*), 3.56 (1H, dd, J_{2,3} 4.5, J_{1,2} 0.8 Hz, H-2*), 3.70 (1H, ddd, J_{3,4} 6.8 Hz, H-4*), 3.715 (1H, dd, H-3*), 4.00 (1H, qd, J_{1',2'} 4.4 Hz, H-2'), 4.60 (1H, d, H-1*), 4.84 (1H, d, H-1'), 8.71 (1H, s, H-7), *for glycosyl moiety.

B. *Via* **10**. Compound **6b** (89.0 mg, 0.100 mmol) was dissolved in DMF (2.0 mL) and DBU (0.10 mL, 1.28 mmol) was added. The mixture was stirred at rt for 24 h, diluted with MeOH (4.0 mL), and neutralized with Amberlite IRC50(H⁺). The resin was filtered off and the filtrate was evaporated in vacuo. The residue

was separated by column chromatography with 2% MeOH-CHCl₃ to give N^2 -(N,N-dimethylaminomethylene)-2'-O-(2,3,5-tri-O-benzoyl- β -D-ribofuranosyl)biopterin (10) [33.2 mg, 46% yield, $R_{\rm f}$ 0.49 (A)] and 6b (27.6 mg, 31% recovery).

By employing the same procedures described above, compound 10 was treated with NaOMe in MeOH and then aqueous ammonia to give 1c (14.3 mg, 84% from 10).

C. From 11. Compound 11 (26.0 mg, 0.0449 mmol) was dissolved in MeOH (2.0 mL) and 28% aqueous ammonia solution (1.0 mL) was added. The mixture was stirred at rt for 12 h and evaporated in vacuo to give 1c (16.4 mg, 99%).

 $Di-N^2$: I'-O-acetyl-2'-O-(2,3,5-tri-O-acetyl- β -D-ribo-furanosyl)biopterin (11)

Compound **1c** (23.0 mg, 0.0623 mmol) was dissolved in pyridine (1.5 mL) and then acetic anhydride (0.5 mL) was added at 0°C. The mixture was stirred at rt for 12 h and evaporated in vacuo. The residue was purified by column chromatography with 2% MeOH-CHCl₃ as an eluant to give **11** (33.8 mg, 94%) as a pale yellow syrup: $R_{\rm f}$ 0.54 (A); ¹H NMR, see Table 2. Anal. calc. for C₂₄H₂₉N₅O₁₂ (579.51): C49.74, H5.04; found: C49.89, H5.20.

 $Di-N^2$: 2'-O-acetyl-1'-O-(2,3,5-tri-O-acetyl- β -D-ribo-furanosyl)biopterin (12)

By use of same procedures for 1c from 6b, a mixture of 6a and 7a was converted into a mixture consisting of 1c and $1'-O-(\beta-D-ribofuranosyl)$ biopterin (1d), which was then acetylated with acetic anhydride in pyridine to give an inseparable mixture of 11 and 12.

'H NMR for **1d** [DMSO- d_6 (D₂O exchange)] δ 1.02 (3H, d, J_{2', 3'} 6.4 Hz, H₃-3'), 3.45 (1H, dd, J_{5a,5b} 11.7, J_{4,5b} 4.4 Hz, H_b-5*), 3.60 (1H, dd, J_{4,5a} 3.2 Hz, Ha-5*), 3.77 (1H, dd, J_{3,4} 6.6, J_{2,3} 4.6 Hz, H-3*), 3.78 (1H, ddd, H-4*), 3.95 (1H, qd, J_{1',2}' 5.6 Hz, H-2'), 4.02 (1H, dd, J_{1,2} 0.8 Hz, H-2*), 4.52 (1H, d, H-1*), 4.58 (1H, d, H-1'), 8.64 (1H, s, H-7), *for glycosyl moiety. 'H NMR for **12**, see Table 2.

Acknowledgement

We are grateful to the SC-NMR Laboratory of Okayama University for the NMR measurements and to Okayama Foundation for Science and Technology (to T. H.) which partially supported this work.

References

- 1 Forrest HS, van Baalen C, Myers J. Isolation and identification of a new pteridine from a blue-green alga, Arch. Biochem. Biophys. 1958; 78: 95-99.
- 2 Hatfield DL, van Baalen C, Forrest HS. Pteridines in blue green algae, Plant Physiol. 1961; 36: 240-243.
- 3 Matsunaga T, Burgess JG, Yamada N, Komatsu K, Yoshida S, Wachi Y. An ultraviolet (UV-A) absorbing biopterin glucoside from the marine planktonic cyanobacterium *Oscillatoria sp*, Appl. Microbiol. Biotechnol. 1993; 39: 250-3.
- 4 Noguchi Y, Ishii A, Matsushima A, Haishi D, Yasumuro K, Moriguchi T, Wada T, Kodera Y, Hiroto M, Nishimura H, Sekine M, Inada Y. Isolation of biopterin-α-glucoside from *Spirulina (Arthrospira) platensis* and its physiologic function, Mar. Biotechnol. 1999; 1: 207-210.
- 5 Chung HJ, Kim Y-A, Kim YJ, Choi YK, Hwang YK, Park YS. Purification and characterization of UDP-glucose: tetrahydrobiopterin glucosyltransferase from *Synechococcus sp.* PCC 7942. Biochim. Biophys. Acta 2000; 1524: 183-188.
- 6 Choi YK, Hwang YK, Kang YH, Park YS. Chemical structure of 1-O-(L-erythro-biopterin-2'-yl)-α-glucose isolated from a cyanobacterium Synechococcus sp. PCC 7942, Pteridines 2001; 12: 121-125.
- 7 Cha KW, Pfleiderer W, Yim JJ. Isolation and characterization of limipterin (1-O-(L-erythro-biopterin-2'-yl)-β-N-acetylglucosamine) and its 5,6,7,8-tetrahydro derivative from green sulfur bacterium Chlorobium limicola f. thiosulfatophilum NCIB 8327, Helv. Chim. Acta 1995; 78: 600-614.
- 8 Cho SH, Na JU, Youn H, Hwang CS, Lee CH, Kang SO. Tepidopterin, 1-O-(L-threo-biopterin-2'-yl)-β-N-acetylglucosamine from *Chlorobium tepidum*, Biochim. Biophys. Acta 1998; 1379: 53-60.
- 9 Ikawa M, Sasner JJ, Haney JF, Foxall TL. Pterins of the cyanobacterium *Aphanizomenon flos-aquae*, Phytochem. 1995; 38: 1229-1232.
- 10 Lee HW, Oh CH, Geyer A, Pfleiderer W, Park YS. Characterization of a novel unconjugated pteridine glycoside, cyanopterin, in *Synechocystis sp.* PCC 6803, Biochim. Biophys. Acta 1999; 1410: 61-70.

- 11 Yamamoto H, Hanaya T, Harada K, Kawamoto H, Pfleiderer W. An efficient synthesis of limipterin [2'-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-L-biopterin] via N²-(N,N-dimethylamino)methylene-3-[2-(4-nitrophenyl)ethyl]-L-biopterin, Pteridines 1996; 7: 110-112.
- 12 Hanaya T, Soranaka K, Harada K, Yamaguchi H, Suzuki R, Endo Y, Yamamoto H, Pfleiderer W. An efficient synthesis of 2'-*O*-(β-D-glucopyranosyl)-and 2'-*O*-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-L-biopterins, Heterocycles 2006; 67: 299-310.
- 13 Hanaya T, Toyota H, Yamamoto H. Novel preparation of a 2'-*O*-acetyl-1'-*O*-(4-methoxybenzyl)-L-biopterin derivative, a versatile precursor for a selective synthesis of L-biopterin glycosides, Synlett 2006; 2075-2078.
- 14 Hanaya T, Baba H, Yamamoto H. First synthesis of tepidopterin [2'-*O*-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-L-*threo*-biopterin], Carbohydr. Res. 2007; 342: 2159-2162.
- 15 Hanaya T, Baba H, Toyota H, Yamamoto H. Efficient total syntheses of natural pterin glycosides: limipterin and tepidopterin, Tetrahedron 2008; 64: 2090-2100
- 16 Hanaya T, Baba H, Kanemoto M, Yamamoto H. An efficient synthetic route for a versatile ciliapterin derivative and the first ciliapterin D-mannoside synthesis, Heterocycles 2008; 76: in press.
- 17 (a) Pfleiderer W, Beek M. Unpublished results. (b) Beek M. Dissertation, Univ. Konstanz 1981.
- 18 (a) Pfleiderer W, Kappel M. Unpublished results. (b) Kappel M. Dissertation, Univ. Konstanz 1981.
- 19 Pfleiderer W. In: Katritzky AR, ed. Physical methods in heterocyclic chemistry. New York: Academic Press 1963; 1: 177-188.
- 20 Hanaya T, Torigoe K, Soranaka K, Yamamoto H, Yao Q, Pfleiderer W. Selective *N*(3)- and *O*⁴-alkylation of L-biopterin: a convenient synthesis of 3- and *O*⁴-methyl-L-biopterin and the versatile *N*²-(*N*,*N*-dimethylaminomethylene)-*N*(3)-*p*-nitrophenethyl-protected L-biopterin, Pteridines 1995; 6: 1-7.