Acta Medica Okayama

Chromosome 8-14 translocation in a non-African Burkitt's lymphoma with leukemic conversion.

Kanji Miyamoto* Jiro Sato ${ }^{\dagger} \quad$ Koichi Kitajima ${ }^{\ddagger}$
Shunkichi Hiraki**
Kohsuke Mori ${ }^{\dagger \dagger} \quad$ Toshio Tanaka ${ }^{\ddagger \ddagger}$

[^0]
Chromosome 8-14 translocation in a non-African Burkitt's lymphoma with leukemic conversion.*

Kanji Miyamoto, Jiro Sato, Koichi Kitajima, Shunkichi Hiraki, Kohsuke Mori, and Toshio Tanaka

Abstract

A specific chromosome translocation, $\mathrm{t}(8 \mathrm{q}-; 14 \mathrm{q}+)$, was observed in a 43-year-old female with non-African Burkitt's lymphoma in which leukemic conversion had occurred. The chromosome studies used cells from ascites. The ascites was apparently the result of a primary tumor involving the ovaries and contained 68% of lymphoma cells. The frequent occurrence of abnormalities related to chromosomes 1, 8 and 14 in African and non-African Burkitt's lymphomas was emphasized.

KEYWORDS: chromosome translocation, non-African Burkitt's lymphoma, mic conversion

CHROMOSOME 8-14 TRANSLOCATION IN A NON-AFRICAN

 BURKITT'S LYMPHOMA WITH LEUKEMIC CONVERSIONKanji Miyamoto, Jiro Sato, Koichi Kitajima*, Shunkichi Hiraki* Kohsuke Mori* and Toshio Tanaka**
Division of Pathology, Cancer Institute; * Department of Medicine (2nd Clinic); and
** Pathology Section, Central Laboratories, Okayama University Medical School, Okayama 700, Japan
Recived August 77, 1981

Abstract

A specific chromosome translocation, $\mathrm{t}(8 \mathrm{q}-; 14 \mathrm{q}+)$, was observed in a 43 -year-old female with non-African Burkitt's lymphoma in which leukemic conversion had occurred. The chromosome studies used cells from ascites. The ascites was apparently the result of a primary tumor involving the ovaries and contained 68% of lymphoma cells. The frequent occurrence of abnormalities related to chromosomes 1, 8 and 14 in African and non-African Burkitt's lymphomas was emphasized.

Key words : chromosome translocation, non-African Burkitt's lymphoma, leukemic conversion.

A specific translocation, $t(8 q-\cdots ; 14 q+)$, has been observed in African and non-African Burkitt lymphomas (1-3). The significance of this marker chromosome is of comparable importance to the original observation of the Philadelphia chromosome (Ph^{1}) rearrangement in chronic myelogenous leukemia (4). Recently, we reported on the Burkitt lymphoma of two Japanese, in whom a $14 q+$ marker chromosome was found $(5,6)$. This paper briefly reports another case of $t(8 q-$; $14 q+$) translocation in a Japanese Burkitt lymphoma with negative Epstein-Barr virus (EBV).

The patient was a 43-year-old female of single status. Towards the end of March, 1981, she developed abnormal genital bleeding and abdominal fullness; enlarged bilateral ovaries and ascites were detected at a gynecological examination. Peripheral blood (WBC: $10,400 / \mu \mathrm{l}$) on admission in the middle of April, contained 23% of immature cells, and the bone marrow biopsy demonstrated the typical "starry sky" effect (Fig. 1), indicating the leukemic coversion of Burkitt lymphoma. Ascites was apparently due to a primary tumor involving the ovaries, and contained approximately 68% of lymphoma cells (Fig. 2). These cells proved to be negative for EBV-determined nuclear antigen. Marker analysis showed that 90% of cells were positive for surface IgM.

Chromosomes were studied on cells from this ascites. The cells were incubated for 24 h in RPMI 1640 medium with 10% fetal calf serum and at $37^{\circ} \mathrm{C}$ in a humidified $5 \% \mathrm{CO}_{2}$ atmosphere. Mitotic cells were accumulated with Colcemid $(0.5 \mu \mathrm{~g} / \mathrm{ml})$, treated in a hypotonic solution of 75 mM KCl for 13 min , and fixed in a methanol-acetic acid $(3 ; 1)$ mixture. Chromosome preparations were stained with conventional Giemsa solution and analyzed using the Qbanding technique. Lymphoma cells had a modol number of 46 chromosomes; all the banded metaphases showed an identical karyotype, i.e., 46, XX, dir dup (lq) (pter - q32::q12 - q31::q32 - qter), $\mathrm{t}(8 ; 14)(\mathrm{q} 24 ; \mathrm{q} 32)$ (Fig. 3).

In the present study, we demonstrated a $t(8 q-; 14 q+)$ translocation in a Japanese adult with non-African Burkitt lymphoma. In addition, there was partial duplication of the long arm of chromosome No. 1. Douglass et al. (7) described a similar duplication of the long arms of chromosome No. 1. as well as the $14 q+$ marker in non-African Burkitt lymphoma. As shown by Slater et al. (8), $1 \mathrm{q}+$ rearrangement appears to play an important role in the evolution of the malignant cell population in lymphoproliferative disorders. The present case along with the two cases reported previously by us $(5,6)$ strongly suggests that abnormalities related to chromosomes 1,8 and 14 can be a frequent occurrence in Burkitt lymphoma in Japanese patients, in the same way as is seen in that of African, North American and European subjects.

REFERENCES

1. Manolov, G and Manolova, Y. : Marker band in one chromosome 14 from Burkitt lymphomas. Nature (Lond.) 237, 33-34, 1972.
2. McCaw, B.K., Epstein, A.L., Kaplan, H.S. and Hecht, F.: Chromosome 14 translocation in African and North American Burkitt's lymphoma. Int. J. Cancer 19, 482-486, 1977.
3. Berger, R., Bernheim, A., Fellous, M. and Brouet, J.C.: Cytogenetic study of a European Burkitt's lymphoma cell line. J. Natl. Cancer Inst. 62, 1187-1192, 1979.
4. Rowley, J.D.: A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature (Lond.) 243, 290-293, 1973.
5. Miyamoto, K., Miyano, K., Miyoshi, I., Hamasaki, K., Nishihara, R., Terao, S., Kimura, I., Maeda, K., Matsumura, K., Nishijima, K. and Tanaka, T. : Chromosome 14q+ in a Japanese patient with Burkitt's lympnoma. Acta Med. Okayama 34, 61-65, 1980.
6. Miyamoto, K., Sato, J., Miyoshi, I., Nishihara, R., Terao, S., Hara, M. and Kimura, I. : 8-14 translocation in a Japanese Burkitt's lymphoma. Acta Med. Okayama 34, 139-142, 1980.
7. Douglass, E.C., Magrath, I.T., Lee, E.C. and Whang-Peng, J.: Cytogenetic studies in nonAfrican Burkitt lymphoma. Blood 55, 148-155, 1980.

Fig. 1. Bone marrow biopsy showing the typical "starry sky" effect. H.E., $\times 200$.
Fig. 2. Lymphoma cells from ascites showing deeply stained scant cytoplasm with multiple uniform intracytoplasmic vacuoles. May-Grünwald-Giemsa, $\times 400$.

Fig. 3. Karyotype from ascites: $46, \mathrm{XX}$, dir dup ($\mathbf{l q}$) (pter $-\mathrm{q} 32:: \mathrm{q} 12-\mathrm{q} 31:: \mathrm{q} 32-\mathrm{qter}$), $\mathrm{t}(8 ; 14)\left(\mathrm{q} 24 ; \mathrm{q}^{32}\right)$.
8. Slater, R.M., Philip, P., Badsberg, E., Behrendt, H., Hansen, N.E. and Heerde, P.V.: A $14 q+$ chromosome in a B-cell acute lymphocytic leukemia and in a leukemic non-endemic Burkitt lymphoma. Int. J. Cancer 23, 639-647, 1979.

[^0]: *Okayama University,
 ${ }^{\dagger}$ Okayama University,
 ${ }^{\ddagger}$ Okayama University,
 **Okayama University,
 ${ }^{\dagger \dagger}$ Okayama University,
 $\ddagger \ddagger$ Okayama University,

