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COMPUTATION ACCURACIES OF BOUNDARY ELEMENT METHOD AND FINITE ELEMENT METHOD 
IN TRANSIENT EDDY CURRENT ANALYSIS 

H. Tsuboi, M. Tanaka and T. Misaki 
Department of Electrical and Electronic Engineering, 

Okayama University, Okayama 700, Japan 

Abstract - In this paper, computation accuracies of 
boundary element method and finite element method in 
transient eddy current problems are compared by using a 
slot-embedded conductor model and a diffusion model 
which can be solved theoretically. The computation 
accuracies of vector potential or magnetic flux density 
by BEM and FEM were evaluated and it was clear that 
larger stepwidth o f  time can be chosen in BEM compared 
with FEM for the same accuracy. 

INTRODUCTION 

Transient eddy current analysis is one of urgent 
requirements in the design of electrical equipment. 
The finite element method (FEM) and boundary element 
method (BEM) are mainly used as numerical methods of 
transient eddy current analysis [ 1 ] , [ 2 ] .  Several works 
for transient eddy current analysis have been done[3]- 
[ 4 ] ,  and the authors have received many invaluable 
suggestions from these works. 

In this paper, computation accuracies of the BEM 
and FEM for two-dimensional transient problems are 
compared. In the BEM, triangular elements with constant 
vector potential were used for domain integrals and 
unknown vector potential or flux was assumed to be 
constant only on each boundary element. In the FEM, 
triangular elements with quadratically varying vector 
potential were used. A slot-embedded conductor model 
and a diffusion model which can be solved theoretically 
are chosen as computation model, and computation 
accuracies of vector potential or magnetic flux density 
by BEM and FEM are evaluated. 

FORMULATION 

Boundary Element Method 

Using the magnetic vector potential and the 
scalar potential, the differential equation to be 
solved is given from Maxwell's equations in two- 
dimensional problems as follows: 

(1) 
1 2 aA  a$ 
1-10 at a, -V A=-+- 

where A is the z-component of vector potential, Q is 
the scalar potential, LJ is the permeability and 0 is 
the conductivity. Here, the time differentiation in 
Eq. (1) is approximated by the difference: 

A -A 
aA ttAt t 
at At 
_ -  -- 

From Eq. (2), 64. (1) is rewritten as 

2 1 1 a't+At 
kv At+At -EAt+At = E  At '7 ( 3 )  

where k=l/(Uo). 

Helmholtz typp, is given by 
The fundamental solution of Eq. ( 3 ) ,  which is the 
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1 A =- 
t+At 2nk KO( & I 

where KO is the modified Bessel function of the second 
kind of zero order. From Eq. (3), one can obtained the 
basic equation of BEM for the field point on the 
boundary surface as follows: 

* 

When applying the BEM for transient problems, 
the region to be analyzed is divided into triangular 
elements and the boundary surface is divided into seg- 
ments which are called boundary elements. Here, vector 
potentials on the triangular element and boundary ele- 
ment are assumed both to be constant. The triangular 
elements are used only for domain integral appeared in 
Eq. (5), and unknown vector potential or unknown mag- 
netic flux density is defined on each boundary element. 
By using Eq. (5), the final simultaneous equations are 
set u p  for unknown vector potentials and magnetic flux 
densities on the boundary elements. 

Finite Element Method 

The simultaneous equations of FEM for magnetic 
vector potentials which satisfy Eq. (1) are given by 

where (A) is the unknown vector potential, [GI, [SI and 
( 9 )  are defined by triangular mesh and the physical 
constant of material. 

Approximating the time differentiation in Eq. (6) 
by central differences, the following equation is 
obtained 

1 1 1 a't+At a*t 
=( - [ G 1- -[  S ])A + -(-- - - ) I g )  ( 7 )  At 2 t 2 aZ az 

When applying the FEM, the region to be analyzed 
is divided into triangular elements. Then, the vector 
potential on the triangular element is approximated by 
a quadratic function, The final simultaneous equations 
are set up by using Eq.  (7). 

Initial-Value Problem 

The transient eddy current problem is solved as a 
initial-value problem by using Eq. (5) for the BEM or 
Eq. (7) for the FEM. Therefore, the vector potential 

t' 
which is the initial value, at each time step. At first 
time step, computations of the coefficients of Eq.  (5) 
or (7) are completed, and at each time step, some ma- 
trix calculations are done in order to obtain 

is solved using a known vector potential (A) 
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COMPUTATION RESULTS 

Slot-Embedded Conductor Model 

Figure l(a) shows a slot-embedded conductor 
model which is solved theoretically. Because time 
dependence of this model is sinusoidal, evaluation of 
the computation accuracy was done after ten cycles of 
impressed potential, which is given by 

- =-Vcos(wt 1. ( 8 )  
az 

Eq. (8) is equivalent to current source. 
Figure 2 shows the maximum difference of the 

value of vector potential obtained by the BEM and the 
FEM using triangular meshes A and B shown in Fig. l(a) 
and Fig. l(b). From Fig. 2, it was clear that larger 
stepwidth of time can be chosen in the BEM compared 
with the FEM for the same accuracy. In addition, Fig. 2 
shows that more accurate solution can be expected by 
BEM using smaller triangular mesh. The variations of 
the vector potential in term of time are shown in Fig. 
3, and the distributions of the vector potential in the 
slot are shown in Fig. 4 .  

Diffusion Model 

Figure 5 shows a diffusion model in which im- 
pressed magnetic flux density is a unit step function. 
In this model, the basic equation is obtained by re- 
placing the vector potential A by magnetic flux density 
B in E q s .  (5) and (7). 

Fig. 5(c) and Fig. 5(d), the computation results shown 
in Fig. 6 and Fig. 7 were obtained. In diffusion model, 
the difference between computation results of BEM and 
those of FEM was very small. 

A = O  

Using the triangular meshes C and D shown in 
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Fig. 1 Slot-embedded conductor model, (a) computation 
model, (b) mesh A ,  ( c )  mesh B. 
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Fig. 2 Maximum difference, between computed 
and theoretical values of vector potential. 
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Fig. 3 Variations of the vector potential at y=O.O305, 
(a) At=1/1800, (b) At=1/6000. 
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Fig. 4 Distributions of the vector potential 
in the slot-embedded conductor model. 
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Fig. 5 Diffusion model, (a) computation model, 
(b) impressed magnetic flux density, 
(c) mesh C, (d) mesh D. 

CONCLUSION 

Computation accuracies of the BEM and the FEM in 
the slot-embedded conductor model and the diffusion 
model were evaluated. As the result, it was clear that 
larger stepwidth of  time can be chosen in the BEM 
compared with the FEM for the same accuracy; however 
the BEM and the FEM provide similar results, in the 
case of no current source, as the diffusion model. 
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Fig. 6 Maximum difference, E*, between computation 
and theoretical values of vector potential. 
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Fig. 7 Distributions of the magnetic flux density 
in the diffusion model. 
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