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PHYSICAL MEANING OF grad6 IN EDDY CURRENT ANALYSIS 
USING MAGNETIC VECTOR POTENTIALS 

T. Nakata, N. Takahashi and K. Fujiwara 

ABSTRACT 

In the A-@ method, a grad6 term ( 6  : electric 
scalar potential) can be neglected in some cases. In 
order to reduce the computing time, a physical meaning 
of the grad$ term in eddy current analysis should be 
investigated. 

The relationship between eddy current distribution 
and grade, and the effects of boundary conditions on 
grade are examined through several 2-D and 3-D 
examples. It is shown that grade in 2-D analysis is a 
constant to modify the interlinkage flux of the 
conductor which is denoted by the magnetic vector 
potential A. 

1. INTRODUCTION 

In eddy current analysis using the magnetic 
vector potential, an electric field, namely a grad6 
term plays an important role[l,21. This grade is 
unnecessary under some conditions in 2-D analysis. If 
properties of grade are clarified, a standard to judge 
the necessity of grade can be established. Then, the 
computing time can be reduced in some cases. The grad6 
in 2-D analysis has been understood as a so-called mean 
vector potential (see Section 4 )  121. This explanation, 
however, is difficult to expand to 3-D analysis. 

In this paper, the properties of grade are 
examined, and the physical meaning of the grade is 
clarified through some examples. A standard to judge 
the necessity of grade is established from the study of 
grade. It is shown that grade does not correspond to 
the mean vector potential. 

2. grad6 

2.1 Introduction of grad6 

From Faraday's law and the definition of the 
magnetic vector potential R, the following equation can 
be obtained. 

where E is the electric field strength. Equation (1) 
implies the existence of a scalar potential 6 ,  in terms 
of which 

E = ---- (2) zt E r a d d  

From Eq.(2), the eddy current density Je can be denoted 
as follows: 

aA 
J e  = -a--- agradq5 ( 3 )  a t  

where 0 is the conductivity. 

2.2 Calculation method of grad6 

The basic equation for the 3-D eddy current 
analysis is written as follows: 

aA 
r o t (  v r o t A )  = J o -  a--- agradq5 

a t  
(4) 

where Jo and V are the magnetizing current density and 
the reluctivity respectively. From the equation of 
continuity of current and Eq.(3), the following 
equation is obtained. 

The authors are with the Department of Electrical 
Engineering, Okayama University, Okayama 100, Japan. 

d i d  J o -  a --- aA a g r a d  q5 >= 0 
a t  

If the vector potential A\ and the grade are treated as 
independent unknown variables, they can be directly 
calculated by solving Eqs.(4) and (5) simulta- 
neously[31. 

3. PROPERTIES OF grad6 

In this Section, the various characteristics of 
grade are examined in order to clarify the physical 
meaning of grad@. 

3.1 Analyzed model 

Eddy currents in two parallel conductors placed in 
a transient magnetic field shown in Fig.1 are 
calculated. The magnetic field is uniform and 
perpendicular to the conductors. The applied transient 
field is a step function of which the flux density is 
1.5(T). The cohductivity a of the conductor is 
3.54x107(S/m). Only one-eighth of the region is 
analyzed because of symmetry. 

Fig.1 Analyzed model. 

(-4.5,0,-) 1400 

i 
Fig.2 Boundary conditions. 

Figure 2 shows the boundary conditions[41 of the 
analyzed region. The number in the parenthesis in the 
Figure denotes each component (Ax, Ay, Az). ( - )  
means that this component is unknown. Vector 
potentials at the boundaries x=l400(mm) and z=6000(mm) 
are obtained from the following equationl41, under the 
assumption that the uniform magnetic field is produced 
by a solenoid as shown in Fig.3. 

A.d s = 9 ( 6 )  f 
where @ is the prescribed flux passing through the 
boundary plane a-b-c-d-a, and s is the unit tangential 
vector along the circumference of the boundary surface. 
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Fig.3 Relationship between excitation 

and boundary condition. 

3.2 Relationship between the eddy current distribution 
and grad6 

Figure 4 shows the distributions of d'e,-oaq/at, 
-0grad6 and 6 at the instant t=l(msec.). Je in Fig.4(a) 
is magnified 100 times as large as -0aA\/atand -0gardb 
in Figs.4(b) and (c). 

and -ogradc$ are nearly uniform in the z-  
direction, and the equi-potential line of c$ is parallel 
to the x-y plane as shown in Fig.4. This means that, in 
2-D analysis, grade is constant in one conductor on the 
analyzed x-y plane. Such a property of grad6 in 2-D 
analysis can be easily proved[51. 

- o a ~ / a t  

0 x 0- 

V 

Fig.4 Je, -oaA/at, -ogradQ and Q at y=400(mm) 
(~x=700(mm),t=l(msec.)). 

3.3 Effects of the distance of the conductor from the 
reference plane on grad6 

The effects of the distance Lx from the center 
line of the conductor to the reference plane (y-z plane 
in Fig.2 : on this plane, Ay=Az=O) on grade are 
investigated. 

5 shows that-OaAVat and -Ugrad6 vary with 
the distance Lx. Je, -0aAVat and -0grad6 in this Figure 
are all z-components of them. The dashed lines denote 
the mean values of ograd6 along the line e-f on the 
surface of the conductor. Although - 08 A n t  and -0gradb 
vary with Lx, the sum of them, which is equal to le in 
Eq.(3), is constant. Figure 6 denotes the mean value 
of agradb along the line e-f. Figures 5 and 6 suggest 
that o,grad@ is increased with Lx, because $e cannot be 
represented by only' OaAvat. The same results are 
obtained in 2-D analysis. grad6 is a constant to adjust 

Figure 

OaNat. 

0 
X 

,X 

oqradQ 
(Lx=700) I 

Fig.5 Effect of distance Lx on agradQ 
at y=400(mm).z=O(mm) (t=l(msec.)). 

Lx(mm) 

Fig.6 Relationship between ogradQ and 
distance Lx at y=400(mm),z=O(mm) 
(t=l(msec.)). 

3 . 4  Effects of boundary conditions - - -. _I- 
Distributions of Ugradb is examined under two 

kinds of boundary conditions shown in Figs.3 and 7. The 
magnetic field in Fiq.7 is produced bv two infinitely 
long parallel conductors. Obtained eddy 
distributions are the same for these two 
conditions. Figure 8 shows the effects of 
conditions on the mean values of Ogradb along 
e-f in Fig.5. The ugradb is increased when 
component of A\ on the boundary is increased as 
in Fig.7. 

current 
boundary 
boundary 
the line 
the z- 
denoted 

conductor 

infinitely long 

analyzed region 

z 
Fig.7 Excitation by infinitely long 

parallel two conductors. 
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41- 

boundary conditions 

Fig.8 Effects of boundary conditions on 
average Ograd6 along the line e-f 
(Lx=700(mm),t=l(msec.)). 

3.5 Effects of a@/azon the eddy current distribution 
in 2-D analysis 

The eddy current distributions in two infinitely 
long conductors placed in a uniform magnetic field, 
which is the same as that in Fig.], are analyzed using 
2-D finite element method. There are two kinds of 
arrangements of conductors as shown in Fig.9. The 
model in Fig.9(b) corresponds to that in Fig.1. The 2- 
D constructions for Figs.9(a) and (b) are the same as 
shown in Fig.10. 

(a) two parallel conductors which 
are connected each other 

(b) two parallel conductors which 
are not connected each other 

Fig.9 Configurations of conductors 
and routes of eddy currents. 

center line Y $9  j 
conductor 1 conductor 2 

I \  / I  

i 1400 4 
g-h: Dirichlet boundary (A=O) 
i-j: Dirichlet boundary (A=2.1) 
g-j,h-i: Neumann boundaries 

Fig.10 Sectional view of analyzed model. 

The flux and eddy current distributions in 
Fig.9(a) are different from those of Fig.9(b) as shown 
in Figs.11 and 12. 
zero. This means thata@/azin the ring conductor, 
which is symmetric with respect to the center line (y- 
axis), can be neglected by setting the vector potential 
along the center line to zero. In the case of Fig.9(b), 
however, (a@/az)1 and (a6/32)2 in conductors .CI and C2 
are not equal to zero. 

The flux distribution and eddy current 
distribution are very much changed bya@/az, even if 
the cross-sectional views are the same. 

In the case of Fig.9(a),a$/azis 

(a) flux distribution 
4 3 c -o. o; pY) 
0 ;; -0.04 

-0.06 
- 

(b) eddy current distribution 

Fig.11 Flux and eddy current distributions 
when the same two conductors placed 
symmetrically are connected each other 
( a@/az can be neglected,t=l(msec.)). 

' (a) flux distribution 

-0.041 

(b) eddy current distribution 

Fig.12 Flux and eddy current distributions 
when the same two conductors placed 
symmetrically are not connected each 
other ( 36/32 should be considered, 
t=l(msec.)). 

4. PHYSICAL MEANING OF grad6 

From the properties of grad6 examined in Section 
3 ,  the physical meaning of grad@ is investigated. 

As the eddy current distributions are very much 
changed by grad@(a@/az) as shown in Figs.11 and 12, the 
36/32 may have a role to adjust the distribution of 
oaA\/at. Let us examine how thea@/az contributes to 
eddy current distribution in detail. 
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In the case of Fig.9(a), the eddy currents at the 
points P1 and P2, which are symmetric with respect to a 
center line of symmetry for the flux distribution (y- 
axis), are due to the flux aI2 between PI and P2 as 
shown in Fig.l3(a). Where the center line of symmetry 
for the flux distribution is defined as the line to 
which the amplitudes and the directions of flux 
densities are the same at the two points Pi and P2 
which are symmetric as shown in Fig.14. As the vector 
potential along the center line is zero as shown in 
Fig.l3(a), the z-component of the vector potential A1 
at the point Pi corresponds to @12/2.Electric fields 
E1 and E2 at Pi and P2, which produce the eddy 
currents, are given by 

E I =  -- (-) = -- a A l  

a t  2 a t  

a + 1 2  a A 2  

a t  2 a t  
E 2 = -  (- ) =- 

(7) 

where A2 is the z-component of the vector potential at 
the point P2. Equations (7) and ( 8 )  denote that the 
eddy currents at Pi and P2 can be represented by A~ and 
A2 respectively. Therefore, the correction term &$/az 
is not necessary in the case of Fig.9(a). 

(a) two parallel conductors which 
are connected each other 

(b) two parallel conductors which 
are not connected each other 

Fig.13 Relationships among fluxes, vector 
potentials and electric fields. 

eddy yurrent 

Fi,g.14 Explanation of a center line of 
symmetry for the flux distribution. 

In the case of Fig.9(b), the eddy currents are due 
to the flux between Pi and P3 as shown in 
Fig.l3(b), and the electric fields E1 and are given 
by the following equations: 

a A ~ - - A ~  
) E I = -- (-)= -- (- a 

a t  2 a t  2 

a + 1 3  a A ! - - A ~  
E 3 = -  (- )=- (- 1 

i a ~ ~  a 
, a t  a t  2 

a t  2 a t  2 

=--4-+- 

In this case, the eddy current at the point Pi cannot 
be represented by only the vector potential A1 
(corresponding to the flux b 1  between the line of A=O 
and the point Pi), because the center line of symmetry 
for the flux distribution does not coincide with the 
line of A=O. Therefore, the correction term 
a{-(A1+A3)/2}/at is introduced in Eqs.(9) and (10). 
This term is equal to grads@. Though grad@ corresponds 
to the mean vector potential in the ac field, it cannot 
be explained by the concept of the mean vector 
potential in the ac-dc superimposed field. 

As (A1+A3)/2 in Eqs.(9) and (10) vary with the 
distance Lx from the the center line (A=O), the grad@ 
is changed by Lx as shown in Figs.5 and 6. 

From the above-mentioned study, it can be 
concluded that if there is the center line of symmetry 
for the flux distribution, a@/az can be neglected by 
setting the vector potential along the center line to 
zero. 

5. CONCLUSIONS 

The obtained results can be summarized as follows: 
(1) The eddy current density at a point cannot be 
calculated by only the vector potential at the point, 
because the vector potential at the point does not 
directly correspond to the interlinkage flux. There- 
fore, grad@ is a correction term to modify the 
interlinkage flux of the conductor which is denoted by 
the vector potential. 
(2) If a center line of symmetry for the flux 
distribution exists, grad6 can be neglected by setting 
the vector potential along the center line to zero. 
Otherwise grad'@ should be considered. 

By using skillfully the detailed knowledge of 
grad@, the computing time can be reduced. 

Though, the physical meaning of grad@ is discussed 
here mainly in 2-D analysis, further investigations of 
grad@ in 3-D analysis will be reported in the other 
paper. 
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