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Abstract
We give a formal definition of geometric fitting in a way
that suits computer vision applications. We point out that
the performance of geometric fitting should be evaluated in
the limit of small noise rather than in the limit of a large
number of data as recommended in the statistical literature.
Taking the KCR lower bound as an optimality requirement
and focusing on the linearized constraint case, we compare
the accuracy of Kanatani’s renormalization with maximum
likelihood (ML) approaches including the FNS of Chojnacki
et al. and the HEIV of Leedan and Meer. Our analysis re-
veals the existence of a method superior to all these.

1. Introduction
By geometric fitting, we mean fitting geometric con-

straints to observed data and discerning the underlying geo-
metric structure from the coefficients of the fitted equations
[10]. A large class of computer vision problems fall into
this framework. The simplest one is to fit a parametric curve
(e.g., a line, a circle, an ellipse, or a polynomial curve) in
the form

F (x; u) = 0 (1)

to N points {(xα, yα)} in the image, where x = (x, y)� is
the position vector, and u = (u1, ..., up)� is the parameter
vector.

For noisy data {(xα, yα)}, no parameter u satisfies
F (xα; u) = 0 for all α = 1, ..., N , so one often computes a
u such that

JLS =
N∑

α=1

F (xα; u)2 → min . (2)

This is called the least-squares (LS) method or algebraic
distance minimization. However, it is widely known that
the resulting solution has strong statistical bias.

A better method known to yield higher accuracy is to re-
gard the data {xα} as perturbed from their true positions
{x̄α} which exactly satisfy F (x; u) = 0 and to simultane-
ously estimate the true positions {x̄α} and the parameter u
that maximize the statistical likelihood. If noise is subject to
isotropic, independent, and identical Gaussian distribution,
this reduces to the minimization

JML =
N∑

α=1

‖xα − x̄α‖2 → min, (3)

subject to the constraint

F (x̄α; u) = 0, α = 1, ..., N. (4)

This is called maximum likelihood (ML) estimation or geo-
metric distance minimization.

Eqs. (3) and (4) can be converted to unconstrained min-
imization by using Lagrange multipliers. Introducing lin-
ear approximation by assuming that noise is small, we can
rewrite eq. (3) as follows (see Appendix A for the deriva-
tion):

JML =
N∑

α=1

F (xα; u)2

‖∇xFα‖2
→ min . (5)

Here, ∇xFα denotes the gradient of the function F (x; u)
in eq. (1) with respect to x evaluated at x = xα. This min-
imization is known to be effective in many problems and
is one of the most widely used methods in computer vision
applications [10].

This approach is not limited to curve fitting but can be
extended to many other problems. For example, given cor-
respondences of feature points over multiple images, the
trajectory of a particular point can be identified with a sin-
gle point in the product space of the images, known as the
joint image. Fitting a geometric constraint derived from the
camera imaging geometry, such as the epipolar constraint,
the trifocal constraint, the quadrifocal constraint, or the
affine constraint, we can compute the camera motion and
the 3-D shape of the scene from the coefficients of the fitted
equations [8].

However, a still unanswered question is if eq. (5) is really
optimal and if better methods exist at all.

2. How Can We Compare Methods?

The reason this question is difficult to answer is that it is
not clear how to measure the “goodness” of a method. For
example, we may measure the accuracy of an estimate û by
the norm ‖û − u‖ of the difference from its true value u.
However, there are many objections to this. Some may say
that we should take expectation with respect to our belief or
experience as to what value the parameter u is likely to take
(the Bayesian approach). Others may argue that we should
rather focus on the error in the application domain, e.g., if
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the value û is to be used for 3-D reconstruction, we should
evaluate the reconstruction error that û incurs.

Even if we adopt the simplest measure ‖û − u‖, the
problem is not solved, because noise is random and hence
an estimate û can happen to coincide with the true value
u, whatever method we use. So, we need to compute the
mean square E[‖û − u‖2], where E[ · ] is the expectation
with respect to the noise distribution. Many prefer the mean
square because this generally makes the subsequent anal-
ysis easy, but other choices are conceivable: some prefer
max ‖û − u‖; others endorse E[‖û − u‖]. However, the
analysis is still intractably complicated even if the simplest
mean square is used.

For comparing the performance of statistical estimation
methods, statisticians usually simplify the analysis by in-
troducing asymptotic approximations as the number n of
observations increases. Following them, many computer vi-
sion researchers analyze asymptotic behavior as the number
N of data increases for evaluating the performance of geo-
metric fitting. However, is the number N of data really the
number of “observations”?

3. How Can We Increase Data?
The tenet of statistics is to observe a random phe-

nomenon and discern the underlying mechanism, assuming
that the observed data are deterministically generated but
corrupted by random noise. We cannot infer the mechanism
from only one observation, but because noise is random, the
effect of noise is expected to be canceled if observations
are repeated; the hidden mechanism will reveal itself as the
number of observations increases. Hence, statisticians mea-
sure the performance of statistical estimation by the rate of
the increase of accuracy as the number n of observation in-
creases. However, if we identify the number N of data with
the “number of observations”, many inconsistencies arise
[12, 14].

Firstly, it is assumed in statistics that observations can be
repeated as many times as desired in principle, i.e., except
for the fact that observations entail costs and are subject to
many constraints in the real world. In contrast, the input for
computer vision is images. We may observe many different
images, but except in simulations we cannot repeatedly ob-
serve the same image corrupted by different noise. Hence,
the number of observation is always n = 1.

Secondly, the unknowns for the standard statistical es-
timation are the parameters of the underlying mechanism,
while for geometric fitting the true values of the data are
also unknowns. Hence, if we increase the number of
data, the number of unknowns also increases accordingly,
and their estimation accuracy cannot be improved however
many data we observe. Such increasing parameters are
called nuisance parameters to distinguish them from the re-
maining structural parameters. For curve fitting, for exam-

ple, we may correctly estimate the true curve by increasing
the number of points, but we cannot estimate their true po-
sitions on that curve.

Thirdly, we cannot simply increase the data but also need
to consider how we increase them. For line fitting, for exam-
ple, the fitting accuracy does not improve if we repeatedly
add new points in the neighborhood of a particular point.
In contrast, the accuracy will dramatically improve if we
distribute new points uniformly along the line to be fitted.
Recently, various theories have been proposed for introduc-
ing the distribution of the true positions along the curve and
marginalizing them over the distribution. Such formulations
are called semiparametric models [2, 20, 21].

If we have a lot of data, ML is known to be not optimal.
In fact, Endoh et al. [7] pointed out that 3-D interpretation
from a dense optical flow field by ML is not optimal, and
Ohta [20] showed that the semiparametric model yields a
better result. Okatani and Deguchi [21] demonstrated that
for estimating 3-D shape and motion from multiple images,
the semiparametric model can result in higher accuracy. In
all cases, however, the procedure is very complicated, and
the performance can surpass ML only when the number of
data is extremely large and the problem has a special form.

On the other hand, ML in the form of eq. (5) is always
effective in all practical applications. At present, no method
that surpasses ML in usual situations is known. This implies
that ML may be optimal in some sense in “usual” situations.
If so, in what sense? What are the “usual” situations?

An answer to this question was given by Kanatani [10,
11]. In the following, we summarize his formulation.

4. KCR Lower Bound
The fundamental difference of Kanatani’s approach from

the standard statistical estimation is that it focuses on small
noise rather than asymptotic analysis for a large number n
of observations. This is motivated by the fact that computer
vision deals with pixel-level small errors, while the tradi-
tional statistical estimation is mainly concerned with large
errors, e.g., in fieldwork in real environments.

Estimating the parameter u from the data {xα} means
finding an estimate û expressed as a function of the data
{xα}:

û = û(x1, ...,xN ). (6)

Such a function û is called an estimator of u. Let us mea-
sure the accuracy of estimator û by its covariance matrix

V [û] = E[(û − u)(û − u)�]. (7)

Its trace trV [û] = E[‖û − u‖2] is the mean-square error.
Suppose each datum xα is displaced from its true value

x̄α by component-wise independent Gaussian noise of
mean 0 and standard deviation ε:

xα = x̄α + ∆xα, ∆xα ∼ N(0, ε2I). (8)
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We call ε the noise level. Let ∆u be the error in the estima-
tor û:

û = u + ∆u. (9)

Substituting eqs. (8) and (9) into eq. (5), doing Taylor ex-
pansion in ∆xα and ∆u by assuming that noise is small,
and computing the value ∆u that minimizes eq. (5), we
find that the covariance matrix V [ûML] of the ML estimator
ûML can be expanded in ε as follows [10] (see Appendix B
for the derivation):

V [ûML] =ε2

(
N∑

α=1

(∇uF̄α)(∇uF̄α)�

‖∇xF̄α‖2

)−1

+ O(ε4). (10)

Here, ∇uF̄α denotes the gradient of the function F (x; u)
in eq. (1) with respect to u evaluated at x = x̄α.

We can also show that the first term on the right-hand
side of eq. (10) is a lower bound on an arbitrary unbiased
estimator û in the following sense [10] (see Appendix C for
the derivation):

V [û] �ε2

(
N∑

α=1

(∇uF̄α)(∇uF̄α)�

‖∇xF̄α‖2

)−1

. (11)

Here, � denotes that the difference of the left-hand side
from the right is positive semidefinite.

Thus, the covariance matrix of the ML estimator ûML

attains the lower bound except for O(ε4). In this sense, ML
is optimal. Chernov and Lesort [3] called eq. (11) the KCR
(Kanatani-Cramer-Rao) lower bound and derived it under
a weaker condition.

The above result can be extended further. First, we need
not assume isotropic and identical Gaussian noise. The
same argument applies to a wide class of probability dis-
tributions called the exponential family. If the noise distri-
bution is different from datum to datum, all we need is to
introduce covariance matrices V [xα] in eq. (5). The datum
x and the parameter u can be subject to some constraints,
such as being unit vectors. Multiple constraints, each in the
form of eq. (1), can exist, and some of them can be overlap-
ping or redundant. However, the analysis goes similarly if
we introduce pseudoinverse and projection operators [10].

5. CR Lower Bound
The KCR lower bound is different from the well known

CR (Cramer-Rao) lower bound: the difference is less in the
bound than in the problem. As mentioned earlier, statistical
estimation is to discern the hidden mechanism by repeating
observations. This is formalized as estimation of the pa-
rameter θ by observing n independent instances x1, ..., xn

of a random variable X occurring according to an assumed
probability density p(x; θ). Maximum likelihood (ML) es-
timation is to compute the value θ̂ML of θ that maximizes

the likelihood

L =
n∏

i=1

p(xi; θ). (12)

Considering the asymptotic limit n → ∞ and invoking the
law of large numbers, which states that the sample mean of
independent instances of a random variable converges to its
expectation as n → ∞, together with the central limit the-
orem, which states that the distribution of the sample mean
can be asymptotically approximated by a Gaussian distri-
bution, we can show under a fairly general condition that
the covariance matrix V [θ̂ML] of the ML estimator θ̂ML is
expanded in 1/n in the form

V [θ̂ML] =
1
n

J−1 + O(
1
n2

), (13)

where J is the Fisher information matrix defined by

J = E[
(
∇θ log p(x; θ)

)(
∇θ log p(x; θ)

)�
]. (14)

The expectation E[ · ] is taken with respect to the probability
density p(x; θ). The first term on the right-hand side of
eq. (13) is called the CR (Cramer-Rao) lower bound, and
the following Cramer-Rao inequality holds for an arbitrary
unbiased estimator θ̂ (see, e.g., [10] for the proof):

V [θ̂] � 1
n

J−1. (15)

It follows that the covariance matrix of the ML estimator
θ̂ML attains the CR lower bound except for O(1/n2). In
this sense, ML is optimal.

6. Duality of Interpretation
Thus, the KCR lower bound and the CR lower bound are

different concepts. Yet, there is something common in their
formalisms.

The reason why the performance of the standard statisti-
cal estimation is evaluated in the asymptotic limit n → ∞
of the number n of observations is that a method whose ac-
curacy increases rapidly as n → ∞ can attain admissible
accuracy with a fewer number of observations (Fig. 1(a)).
Such a method is desirable if we consider the cost of obser-
vations in real situations.

In contrast, the performance of geometric fitting should
be evaluated in the limit ε→ 0 of the noise level ε, because a
method whose accuracy increases rapidly as ε → 0 can tol-
erate larger uncertainty for admissible accuracy (Fig. 1(b)).
Such a method is preferable if we consider the uncertainty
inherent of image processing operations.

Now, consider the following thought experiment. For
geometric fitting, the image data may not be exact due to the
uncertainty of image processing operations, but they always
have the same value however many times we observe them.
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Figure 1. (a) For the standard statistical estimation, it is desired that the accuracy increases rapidly as n →
∞ for the number n of observations, because admissible accuracy can be reached with a smaller number of
observations. (b) For geometric fitting, it is desired that the accuracy increases rapidly as ε → 0 for the noise
level ε, because larger data uncertainty can be tolerated for admissible accuracy.

Suppose, hypothetically, they change their values each time
we observe them (as if in quantum mechanics). Then, we
would obtain n different values for n observations. Under
independent Gaussian noise, an optimal estimate of the true
value is their sample mean. As is well known, the standard
deviation of a sample mean of n observations is 1/

√
n times

that of individual observations.
Thus, repeating such hypothetical observations is equiv-

alent to reducing the noise level ε to ε/
√

n. It follows that
the perturbation analysis for ε → 0 is mathematically equiv-
alent to the asymptotic analysis for n → ∞ of the number
n of hypothetical observations. This is the reason why the
asymptotic approximation · · ·+O(1/

√
nk) for the standard

statistical estimation corresponds to · · ·+ O(εk) for the ge-
ometric fitting [13].

This type of duality of interpretation also arises for
model selection: we obtain the geometric AIC and the
geometric MDL for geometric fitting as counterparts of
Akaike’s AIC (Akaike information criterion) [1] and Rissa-
nen’s MDL (minimum description length) [22] for statistical
estimation, respectively [13].

7. Linearized Constraints

In many computer vision applications, the constraint (1)
can be linearized in the form

(ξ(xα), u) = 0, (16)

where ξ( · ) is a (generally nonlinear) mapping from an m-
dimensional vector to a p-dimensional vector. In the follow-
ing, we write (a, b) for the inner product of vectors a and
b. In order to remove scale indeterminacy, we normalize u
to ‖u‖ = 1.

Example 1 Suppose we want to fit a quadratic curve (cir-
cle, ellipse, parabola, hyperbola, or their degeneracy) to N
points {(xα, yα)}, α = 1, ..., N , in the plane. The constraint
has the form

Ax2
α + 2Bxαyα + Cy2

α + 2(Dxα + Eyα) + F = 0. (17)

If we define

ξ(x, y) = (x2 2xy y2 2x 2y 1)�,

u = (A B C D E F )�, (18)

eq. (17) is linearized in the form of eq. (16). �

Example 2 Suppose we have N corresponding points in
two images of the same scene viewed from different po-
sitions. If point (xα, yα) in the first image correspond to
(xα, yα) in the second, there exists a singular matrix F ,
called the fundamental matrix, such that in the absence of
noise

(


 xα

yα

1


 , F


 x′

α

y′
α

1


) = 0. (19)

This is called the epipolar equation [8]. If we define

ξ(x, y, x′, y′)=(xx′ xy′ x yx′ yy′ y x′ y′ 1)�,

u=(F11 F12 F13 F21 F22 F23 F31 F32 F33)�, (20)

eq. (19) is linearized in the form of eq. (16). �

The KCR lower bound for the linearized constraint (16)
has the form

VKCR[û] = ε2
( N∑

α=1

ξ̄αξ̄
�
α

(u, V0[ξα]u)

)−
, (21)

where ( · · · )− denotes pseudoinverse. The symbol ξ̄α is
an abbreviation for ξα(x̄α), and V0[ξα] is the normalized
covariance matrix (scaled so that ε = 1) of ξ(xα): it can be
expressed as

V0[ξα] = ∇xξ�
α∇xξα (22)

except for O(ε4), where ∇xξα denotes the m× p Jacobian
matrix

∇xξ =




∂ξ1/∂x1 · · · ∂ξp/∂x1

...
. . .

...
∂ξ1/∂xm · · · ∂ξp/∂xm


 . (23)

evaluated at x = xα.

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05) 

1550-6185/05 $20.00 © 2005 IEEE 



8. In Search of an Optimal Estimator

Now, we try to find an optimal estimator û that satisfies
the KCR lower bound (21). This is diametrically opposite to
the conventional approach of finding some method heuristi-
cally and doing analysis or simulation a posteriori to see if
the bound is indeed attained.

The starting point is the observation that the pseudoin-
verse on the right-hand of eq. (21) reflects the fact that the
vector u in eq. (16) is normalized to ‖u‖ = 1. Hence, its
domain is the unit sphere Sp−1 in Rp, its uncertainty being
restricted only in the direction orthogonal to û. The pseu-
doinverse ( · · · )− on the right-hand side of eq. (21) projects
· · · onto the tangent space to Sp−1 at û.

It follows that the null space of VKCR[û] is in the direc-
tion of û, meaning that û is the unit eigenvector of VKCR[û]
for eigenvalue 0. Thus, if we know the KCR lower bound
VKCR[û], we can obtain an optimal estimator û as its unit
eigenvector for eigenvalue 0.

This appears impossible because VKCR[û] involves the
true values {x̄α} and u, which we do not know. However,
this can be overcome by approximating {x̄α} by the data
{x̄α} and iteratively estimating u. All we need to do is ana-
lytically evaluate the error incurred by such approximations.
If the error in the resulting covariance matrix is O(ε4), we
are done.

9. Perturbation Theorem

If we define

M =
N∑

α=1

ξαξ�
α

(u, V0[ξα]u)
. (24)

the KCR lower bound (21) is written as

VKCR[û] = ε2M̄−, (25)

where M̄ is the value of M obtained by replacing {ξα} by
their true values {ξ̄α}.

Since pseudoinverse preserves the null space, the null
space of M̄ is the same as that of M̄

−
, hence of VKCR[û].

It follows that the unit eigenvector of VKCR[û] for eigen-
value 0 is the unit eigenvector of M̄ for eigenvalue 0. In
fact, we can directly confirm this: the constraint (ξ̄α, u) =
0 implies

M̄u =
N∑

α=1

ξ̄αξ̄
�
α u

(u, V0[ξα]u)
=

N∑
α=1

(ξ̄α, u)ξ̄α

(u, V0[ξα]u)
= 0. (26)

However, we do not know the true matrix M̄ . So, we
approximate it by the matrix M in eq. (24) and evaluate the
incurred error. Since M is generally nonsingular, it does
not have eigenvalue 0. So, we compute the unit eigenvector

of M for the smallest1 eigenvalue λ and let the solution of

Mu = λu, (27)

be û. However, the matrix M also involves the unknown u,
so we do iterations: we compute M using the ith estimate
ui and let the solution of eq. (27) be ui+1, i = 0, 1, 2, ...,
starting from an initial guess. If the iterations converge, the
resulting û satisfies eq. (27) (up to the convergence thresh-
old).

Now, we evaluate to what extent the resulting û approx-
imates the true u. Let

ξα = ξ̄α + ∆ξα. (28)

The error in M is

∆M = M − M̄

=
N∑

α=1

(ξ̄α+∆ξα)(ξ̄α+∆ξα)�

(u, V0[ξα]u)
−

N∑
α=1

ξ̄αξ̄
�
α

(u, V0[ξα]u)

=
N∑

α=1

∆ξαξ̄
�
α+ξ̄α∆ξ�

α

(u, V0[ξα]u)
+

N∑
α=1

∆ξα∆ξ�
α

(u, V0[ξα]u)

=
N∑

α=1

∆ξαξ̄
�
α + ξ̄α∆ξ�

α

(u, V0[ξα]u)
+ O(ε2). (29)

According to the perturbation theorem, the perturbation of
M̄ into M̄ −∆M induces the perturbation of u as follows
[10]:

û = u + M̄
−∆Mu + O(ε2). (30)

Its covariance matrix is evaluated as follows:

V [û] = E[(û − u)(û − u)�]

= E[M̄−∆Muu�∆MM̄
−]+O(ε4)

= E[M̄−
N∑

α=1

∆ξαξ̄
�
α+ξ̄α∆ξ�

α

(u, V0[ξα]u)
uu�

N∑
β=1

∆ξβ ξ̄
�
β+ξ̄β∆ξ�

β

(u, V0[ξβ ]u)
M̄

−]+O(ε4)

=E[M̄−
N∑

α=1

(∆ξα, u)(∆ξβ , u)ξ̄αξ̄
�
β

(u, V0[ξα]u)(u, V0[ξβ ]u)
M̄

−]+O(ε4)

= M̄
−

N∑
α,β=1

(u, E[∆ξα∆ξ�
β ]u)ξ̄αξ̄

�
β

(u, V0[ξα]u)(u, V0[ξβ]u)
M̄

−+O(ε4)

= M̄
−

N∑
α,β=1

(u, ε2δαβV0[ξα]u)ξ̄αξ̄
�
β

(u, V0[ξα]u)(u, V0[ξβ]u)
M̄

−+O(ε4)

= M̄
−

N∑
α=1

ε2ξ̄αξ̄
�
α

(u, V0[ξα]u)
M̄

−+O(ε4)

1The matrix M is positive semidefinite by construction, so its eigen-
values are all nonnegative.
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= ε2M̄
−

M̄M̄
−+O(ε4) = ε2M̄

−+O(ε4)
= VKCR[û]+O(ε4). (31)

Here, δαβ is the Kronecker delta, taking 1 for α = β and
0 otherwise. In the above derivation, we use the equality
E[∆ξα∆ξ�

β ] = δαβV0[ξα], which follows from the assump-
tion that noise in each xα is independent. The remainder
term is O(ε4). This is a consequence of the fact that the
noise distribution is symmetric with respect to the origin,
hence terms of all odd degrees in ε vanish in expectation.

Thus, we find that the unit eigenvector û of M in
eq. (24) for the smallest eigenvalue is optimal in the sense
that its covariance matrix attains the KCR lower bound
VKCR[û] except for O(ε4).

10. Bias Removal
Not being satisfied with this, let us go further. Can this be

what we could do? Can’t we further improve the accuracy?
The annoying fact is that the second term M̄

−∆Mu on
the right-hand side of eq. (30) is not zero in expectation, i.e.,
it has statistical bias. Eq. (29) implies that ∆M is unbiased
except for O(ε2), but if we do not ignore O(ε2), we see that

E[∆M ]=
N∑

α=1

E[∆ξα]ξ̄�
α+ξ̄αE[∆ξ�

α ]
(u, V0[ξα]u)

+
N∑

α=1

E[∆ξα∆ξ�
α ]

(u, V0[ξα]u)

=
N∑

α=1

ε2V0[ξα]
(u, V0[ξα]u)

= ε2N , (32)

where we define

N =
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (33)

Hence, the expectation of eq. (30) is

E[û] = u + ε2M̄
−

Nu + O(ε2). (34)

Can we remove the term ε2M̄
−

Nu?
After careful examinations, we find that this can be done

if eq. (24) is replaced by

M̂ = M − ε2N . (35)

If we let û be the unit eigenvector of M̂ for the smallest
eigenvalue, eq. (30) is replaced by

û = u + M̄
−∆M̂u + O(ε2), (36)

doing the same perturbation analysis, and

E[∆M̂ ] = E[M̂−M̄ ] = E[M−M̄−ε2N ] = O. (37)

This does not affect the fact that the covariance matrix at-
tains the KCR lower bound except for O(ε4), because in
eq. (31) the difference between ∆M and ∆M̂ is absorbed
in the remainder term O(ε4).

11. Renormalization
Since the noise level ε on the right-hand side of eq. (35)

is unknown, we need to estimate it. This is easily done by
choosing the value of ε2 in eq. (35) so that M̂ has eigen-
value 0. Suppose we use a tentative value ε2, and let λ be
the smallest (in absolute value) eigenvalue of M̂ with the
unit eigenvector û. If λ �= 0, we increment the current ε2

by c so that (M̂ − cN)û = 0, or

(û, (M̂ − cN )û) = (û, M̂û) − c(û, Nû)
= λ − c(û, Nû) = 0. (38)

Hence, c = λ/(û, Nû). We iterate this process until λ ≈ 0.
If we incorporate this iteration into the computation of the
eigenvector u of M̂ , we obtain the following scheme:

1. Guess an initial value u0, and let c0 = 0.

2. Letting M i−1 and N i−1 be, respectively, the matrices
M and N in eqs. (24) and (33) computed using the
(i − 1)th estimate ui−1, solve the eigenvalue problem

(M i−1 − ci−1N i−1)u = λu, (39)

and let ui be the unit eigenvector for the smallest (in
absolute value) eigenvalue.

3. If λ is sufficiently close to 0, stop and return ui as û.
Else, let

ci ← ci−1 +
λ

(ui−1, N (ui−1)ui−1)
, (40)

and go pack to Step 2 after letting ui−1 ← ui.
This is nothing but the renormalization of Kanatani [9, 10,
14], though he introduced this by an intuition different from
the above reasoning.

If the renormalization iterations converge, we have
(M − cN )û = 0. Computing the inner product with û
on both sides, we have

(û, (M − cN)û) = (û, Mû) − c(û, Nû) = 0. (41)

Hence,

c =
(û, Mû)
(û, Nû)

. (42)

It is difficult to evaluate the expectation of c exactly, because
û depends on not only M but also c itself. However, if we
let û ≈ u to a first approximation, we obtain

E[c] =
(u, E[M ]u)

(u, Nu)
=

(u, ε2Nu)
(u, Nu)

= ε2. (43)

If û is a good approximation of u, which is usually the
case, the error in the above approximation is expected to be
a higher order term O(ε4). Thus,

E[M̂ − M̄ ] = ε2N − E[c]N = O(ε4). (44)
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The initial guess u0 is given, for example, by the unit
eigenvector of

MLS =
N∑

α=1

ξαξ�
α (45)

for the smallest eigenvalue. This is simply the least-square
method (2), for it minimizes the sum of squares

JLS =
N∑

α=1

(ξα, u)2. (46)

12. Controversies about Renormalization

Kanatani’s renormalization turned out to produce highly
accurate values in many computer vision applications, and
it is now an indispensable tools for computing the funda-
mental matrix and homographies for 3-D reconstruction and
image mosaicing applications [16, 17]. It is used across the
world and incorporated in some commercial products, too.

However, questions and doubts have constantly been
raised about its interpretation. This is because Kanatani
introduced renormalization as a bias removal procedure
[9, 10, 14]. But, if bias removal is the sole purpose, why
don’t we start with the matrix MLS?

Kanatani endorsed the use of the matrix M in eq. (24)
in an analogy with ML. Extending this view, Chojnacki
et al. [4] asserted that renormalization is an approximate
method for ML and proposed a new method called FNS
(fundamental numerical scheme) for directly computing
ML [5]. They also pointed out that in this respect the HEIV
(heteroscedastic errors-in-variables) of Leedan and Meer
[18] falls in the same category [6], too. From these obser-
vations, Chojnacki et al. [4] asserted superiority of the FNS
and the HEIV over renormalization.

From the description in the preceding section, however,
it is now evident that renormalization has nothing to do with
ML. The use of the matrix M is justified only by realizing
that what we really want is the eigenvector of the KCR lower
bound. The only link of renormalization with ML is the fact
that the ML estimator also satisfies the KCR bound in the
leading term [15].

Thus, Kanatani’s renormalization is justified in this new
light. However, a new question arises. Why is removing
the second term on the right-hand side of eq. (34) effective?
The right-hand side has the remainder term O(ε2) after all.
Since the removed term is also O(ε2), the order of approxi-
mation does not change.

Yet, it has been proven by simulations and real data ex-
periments that the removal of that term results in significant
improvement of accuracy (see, e.g., [16, 17]). It has also
been confirmed that the accuracy of renormalization is prac-
tically comparable to the FNS the HEIV. Is this a miraculous

coincidence2?
Evidently, we couldn’t answer this question as long as

we are restricted to first order analysis: we are forced to do
second order analysis.

13. Second Order Perturbation
We now write

M = M̄ + ∆1M + ∆2M , (47)

where ∆1 and ∆2 designate perturbations of orders O(ε)
and O(ε2), respectively. From the derivation of eq. (29),
we find that

∆1M =
N∑

α=1

∆ξαξ̄
�
α + ξ̄α∆ξ�

α

(u, V0[ξα]u)
, (48)

∆2M =
N∑

α=1

∆ξα∆ξ�
α

(u, V0[ξα]u)
. (49)

Eq. (27) can be written in the form

(M̄ + ∆1M + ∆2M)(u + ∆1u + ∆2u + · · ·)
= (∆1λ + ∆2λ + · · ·)(u + ∆1u + ∆2u + · · ·). (50)

Comparing terms of O(1), O(ε), and O(ε2) on both sides,
we obtain the following expressions (see Appendix D for
the derivation):

∆1u = −M̄
−∆1Mu, (51)

∆2u = −M̄
−∆2Mu + M̄

−∆1MM̄
−∆1Mu

−‖M̄−∆1Mu‖2u. (52)

Since E[∆1M ] = O, we have E[∆1u] = 0. Since E[∆2M ]
= ε2N , the expectation of ∆2u is

E[∆2u] = −ε2M̄
−

Nu + M̄
−

E[∆1MM̄
−∆1M ]u

−E[‖M̄−∆1Mu‖2]u. (53)

We can show E[‖M̄−∆1Mu‖2] = ε2tr(M̄−) (see Ap-
pendix E for the proof). Since renormalization removes the
bias term −ε2M̄

−
Nu, the renormalization solution ûRN

has the following expectation:

E[ûRN] = u + M̄
−

E[∆1MM̄
−∆1M ]u

−ε2tr(M̄−)u + O(ε4). (54)

14. Errors in Maximum Likelihood
We now compare eq. (54) with ML. For the linearized

constraint (16), the ML minimization (5) reduces to

JML =
N∑

α=1

(ξα, u)2

(u, V0[ξα]u)
→ min . (55)

2Nikolai Chernov, the author of [3], described so in a personal commu-
nication with the author.
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This is an approximation to the true ML of eq. (3) for
small noise, but since we are concerned with perturbation
for small ε (recall the arguments in Sec. 6), we call this
simply ML. The FNS of Chojnacki et al. [5] the HEIV of
Leedan and Meer [18], and the recent method of Mühlich
and Mester [19], which is a variant of the method known as
equilibration or whitening, all aim to minimize eq. (55).

Differentiating JML with respect to u, we obtain

∇uJML =
N∑

α=1

2(ξα, u)ξα

(u, V0[ξα]u)
−

N∑
α=1

2(ξα, u)2V0[ξα]u
(u, V0[ξα]u)2

. (56)

Hence, the ML estimator ûML is the solution of

Mû = Lû, (57)

where we define

M =
N∑

α=1

ξαξ�
α

(u, V0[ξα]u)
, L =

N∑
α=1

(ξα, u)2V0[ξα]
(u, V0[ξα]u)2

. (58)

The FNS and the HEIV both solve eq. (57) by iterations.
One may wonder if eq. (56) vanishes only in the direction

orthogonal to u because the minimization (55) should be
subject to the normalization ‖u‖ = 1. However, eq. (55) is
a homogeneous form of degree 0 in u and hence is invariant
to scale change of u. It follows that ∇uJML is identically 0
in the direction of u, hence 0 in all directions [5].

The perturbation of M̄ is written in the form of
eqs. (47)∼(49). For L, we observe

L =
N∑

α=1

(ξ̄α + ∆ξα, u)2V0[ξα]
(u, V0[ξα]u)2

=
(∆ξα, u)2V0[ξα]
(u, V0[ξα]u)2

= ∆2L. (59)

In other words, L is O(ε2) from the beginning, so eq. (57)
is written in the form

(M̄ + ∆1M + ∆2M)(u + ∆1u + ∆2u + · · ·)
= ∆2L(u + ∆1u + ∆2u + · · ·). (60)

Comparing terms of O(1), O(ε), and O(ε2) on both sides,
we obtain the following expressions (see Appendix F for the
derivation):

∆1u = −M̄
−∆1Mu, (61)

∆2u = −M̄
−∆2Mu + M̄

−∆1MM̄
−∆1Mu

+M̄
−∆2Lu − ‖M̄−∆1Mu‖2u. (62)

We have already seen that E[∆1u] = 0 and E[∆2M ] = εN .
From eq. (59), the expectation of ∆2L is

E[∆2L] = E[
N∑

α=1

(∆ξα, u)2V0[ξα]
(u, V0[ξα]u)2

]

=
N∑

α=1

(u, E[∆ξα∆ξ�
α ]u)V0[ξα]

(u, V0[ξα]u)2

=
N∑

α=1

(u, ε2V0[ξα]u)V0[ξα]
(u, V0[ξα]u)2

= ε2
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

= ε2N . (63)

Thus, the expectation of the ML estimator ûML is

E[ûML] = u + M̄
−

E[∆1MM̄
−∆1M ]u

−ε2tr(M̄−)u + O(ε4). (64)

This coincides with eq. (54).

15. Toward Further Improvement
Our conclusions are summarized as follows:

1. Renormalization is not an approximate solution tech-
nique for ML. It is to compute the solution that satisfies
the KCR lower bound followed by removal of one of
the O(ε2) bias terms.

2. The difference of the renormalization solution ûRN

from the ML estimator ûML is in expectation

E[ûRN − ûML] = O(ε4). (65)

3. The covariance matrices V [ûRN] and V [ûLM] of the
renormalization solution uRN and the ML estimator
uML both attain the KCR lower bound VKCR[û] except
for O(ε4).

V [ûRN] = VKCR[û] + O(ε4),
V [ûML] = VKCR[û] + O(ε4). (66)

4. The covariance matrices V [ûRN] and V [ûML] coin-
cide except for O(ε6).

V [ûRN] = V [ûML] + O(ε6). (67)

5. The renormalization solution ûRN and the ML
estimator ûML share a common error term
M̄

−
E[∆1MM̄

−∆1M ]u.

The last fact implies that we can obtain a method superior to
both renormalization and ML by estimating and subtracting
that error term. This is currently under investigation.

It seems that one of the reasons this type of analysis has
not been attempted in the past is that computer vision re-
searchers are likely to take textbooks of statistics for granted
and blindly follow the asymptotic analysis as N → ∞ for
the number N of data. Rather, computer vision researchers
should bring forth theories and analyses specific to their ap-
plications. This paper demonstrates how promising such an
attempt can be.
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Appendix
A: Linear Approximation of ML

Substituting x̄α = xα − ∆xα into eq. (4) and assum-
ing that the noise term ∆xα is small, we obtain the linear
approximation

Fα − (∇xFα, ∆xα) = 0. (68)

Introducing Lagrange multipliers λα, let

L =
1
2

N∑
α=1

‖∆xα‖2+
N∑

α=1

λα(Fα−(∇xFα, ∆xα)). (69)

The solution ∆xα that minimizes L subject to the constraint
(68) satisfies ∇∆xαL = 0, α = 1, ..., N , or

∆xα − λα∇xFα = 0. (70)

Hence, ∆xα = λα∇xFα. Substitution of this into eq. (68)
yields

Fα − (∇xFα, λα∇xFα) = 0, (71)

from which we obtain λα in the form

λα =
Fα

‖∇xFα‖2
. (72)

Thus, eq. (3) is rewritten in the form

JML =
N∑

α=1

‖λα∇xFα‖2 =
N∑

α=1

F 2
α

‖∇xFα‖4
‖∇xFα‖2

=
N∑

α=1

F 2
α

‖∇xFα‖2
. (73)

B: Covariance Matrix of ML

After substitution of eqs. (8) and (9) into eq. (5) and do-
ing Taylor expansion, JML is written as

JML =
N∑

α=1

((∇xF̄α, ∆xα) + (∇uF̄α, ∆u))2

‖∇xF̄α‖2
+ O(ε3),

(74)
where ‖∇xFα‖2 in the denominator is replaced by
‖∇xF̄α‖2, which does not affect the leading term because
the numerator is O(ε2); the difference is absorbed into the
remainder term O(ε3).
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If we find ∆u that minimizes eq. (74), the ML estimator
ûML is given by u + ∆u. The solution ∆u is obtained by
solving ∇∆uJML = 0. Since the first term on the right-hand
side of eq. (74) is a quadratic form in ∆uα, we have

∇∆uJML =2
N∑

α=1

((∇xF̄α, ∆xα)+(∇uF̄α, ∆u))∇uF̄α

‖∇xF̄α‖2

+O(ε2). (75)

Letting this be 0, we have

N∑
α=1

(∇uF̄α)(∇uF̄α)�

‖∇xF̄α‖2
∆u

= −
N∑

α=1

(∇uF̄α)(∇xF̄α)�

‖∇xF̄α‖2
∆xα + O(ε2), (76)

from which we obtain
N∑

α=1

(∇uF̄α)(∇uF̄α)�

‖∇xF̄α‖2
∆u∆u�

N∑
β=1

(∇uF̄β)(∇uF̄β)�

‖∇xF̄β‖2

=
N∑

α,β=1

(∇uF̄α)(∇xF̄α)�

‖∇xF̄α‖2
∆xα∆x�

β

(∇xF̄β)(∇uF̄β)�

‖∇xF̄α‖2

+O(ε3). (77)

Taking expectation on both sides, we obtain

N∑
α=1

(∇uF̄α)(∇uF̄α)�

‖∇xF̄α‖2
V [ûML]

N∑
β=1

(∇uF̄β)(∇uF̄β)�

‖∇xF̄β‖2

=
N∑

α=1

(∇uF̄α)(∇xF̄α)�

‖∇xF̄α‖2

(∇xF̄α)(∇uF̄α)�

‖∇xF̄α‖2
+ O(ε4)

=
N∑

α=1

(∇uF̄α)(∇xF̄α)�

‖∇xF̄α‖2
+ O(ε4), (78)

where we have used the relations

E[∆xα∆x�
β ] = δαβε2I, (79)

and E[O(ε3)] = O(ε4). From eq. (78) follows eq. (10).

C: Derivation of the KCR Lower Bound

We assume that estimator û is unbiased, i.e.,

E[û − u] = 0, (80)

which should be an identity in {x̄α} and u that satisfies
eq. (4). From the definition of the expectation E[ · ], the
infinitesimal variation of E[û − u] is3

δ

∫
(û − u)p1 · · · pNdx = −

∫
(δu)p1 · · · pNdx

3Recall that we consider variations in {x̄α} (not {xα}) and u. Since
the estimator û is a function of the data {xα}, it does not change for these
variations. The variation δu is independent of {xα}, so it can be moved
outside the integral

∫
dx. Also note that

∫
p1 · · · δpα · · · pNdx = 1.

+
N∑

α=1

∫
(û − u)p1 · · · δpα · · · pNdx

= −δu +
∫

(û − u)
N∑

α=1

(p1 · · · δpα · · · pN )dx, (81)

where
∫

dx is a shorthand of
∫ · · · ∫ dx1 · · ·xN . By as-

sumption, the probability density of xα is

p(xα) =
1

(
√

2π)nεn
e−‖xα−x̄α‖2/2ε2

, (82)

which we abbreviate to pα. The infinitesimal variation of
eq. (82) with respect to x̄α is

δpα = (lα, δx̄α)pα, (83)

where we define the score lα by

lα ≡ ∇x̄α
log pα =

xα − x̄α

ε2
. (84)

Since {x̄α} and u are constrained by eq. (4), their varia-
tions are constrained to be

(∇xF̄α, δx̄α) + (∇uF̄α, δu) = 0. (85)

Because eq. (80) is an identity in {x̄α} and u that satis-
fies eq. (4), the variation (81) should vanish for arbitrary
variations {δx̄α} and δu that satisfy eq. (85). Substituting
eq. (83) into eq. (81), we conclude that

E[(û − u)
N∑

α=1

l�α δx̄α] = δu, (86)

for arbitrary variations {δx̄α} and δu that satisfy eq. (85).
Consider the following particular variations {δx̄α}:

δx̄α = − (∇xF̄α)(∇uF̄α)�

‖∇xF̄α‖2
δu. (87)

It is easy to confirm that eq. (85) is identically satisfied.
Substituting eq. (87) into eq. (86), we obtain

E[(û − u)
N∑

α=1

m�
α ]δu = −δu, (88)

where we define the vectors {mα} by

mα =
(∇uF̄α)(∇xF̄α)�

‖∇xF̄α‖2
lα. (89)

Because eq. (86) should hold for arbitrary variations {δx̄α}
and δu that satisfy eq. (85), eq. (88) should hold for arbi-
trary unconstrained variations δu, which means

E[(û − u)
N∑

α=1

m�
α ] = −I. (90)
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Using this and recalling the definition (7) of the covariance
matrix V [û], we obtain

E[
(

û − u∑N
α=1mα

)(
û − u∑N
α=1mα

)�
]=

(
V [û] −I
−I M

)
, (91)

where we define the matrix M by

M = E[
( N∑

α=1

mα

)( N∑
β=1

mβ

)�
]

=
N∑

α,β=1

(∇uF̄α)(∇xF̄α)�

‖∇xF̄α‖2
E[lαlβ ]

(∇xF̄α)(∇uF̄α)�

‖∇xF̄α‖2

=
1
ε2

(∇uF̄α)(∇uF̄α)�

‖∇xF̄α‖2
. (92)

In the above equation, we use the identity E[lαl�β ] =
δαβI/ε4, which is easily confirmed from eqs. (79) and (84).
The matrix Jα ≡ E[lαl�α ] is the Fisher information matrix
of the distribution pα and that E[lαl�β ] = δαβJα if the dis-
tributions {pα} are mutually independent.

Since the inside of the expectation E[ · ] on the left-hand
side of eq. (91) is evidently positive semidefinite , so is
the right-hand side. Hence, the following is also positive
semidefinite:(

I M−1

M−1

) (
V [û] −I
−I M

) (
I

M−1 M−1

)

=
(

V [û] − M−1

M−1

)
. (93)

From this, we conclude that V [û]−M−1 should be positive
semidefinite, implying eq. (11).

The above proof is for the simplest case, but the same re-
sult holds for more general cases. If we have multiple con-
straints, which may not be independent of each other, or if
the domains of the data and the parameters are constrained,
we can introduce pseudoinverse and projection operators.
If the error distribution is not Gaussian or different from
datum to datum, the score lα and the Fisher information
matrix Jα take very complicated forms, but the logic is the
same [10].

D: Higher Order Terms of Renormalization

1. The vector u should be perturbed subject to the normal-
ization constraint, so

‖u + ∆1u + ∆2u + · · · ‖2

=(u+∆1u+∆2u+· · · , u+∆1u+∆2u+· · ·)=1. (94)

Comparing terms of O(1), O(ε), and O(ε2) on both sides,
we obtain

(u, u) = ‖u‖2 = 1, (u, ∆1u) = 0, (95)

(u, ∆2u) = −(∆1u, ∆1u) = −‖∆1u‖2. (96)

2. Comparing terms of O(1) on both sides of eq. (50), we
obtain M̄u = 0.

3. Comparing terms of O(ε) on both sides of eq. (50), we
obtain

M̄∆1u + ∆1Mu = ∆1λu. (97)

Computing inner product with u on both sides, we obtain

(u, M̄∆1u) + (u, ∆1Mu) = ∆1λ(u, u). (98)

Noting that (u, M̄∆1u) = (M̄u, ∆1u) = 0, (u, u) = ‖u‖
= 1, and eq. (48), we obtain

∆1λ = (u, ∆1Mu)

=
N∑

α=1

(u, ∆ξα)(ξ̄α, u) + (u, ξ̄α)(∆ξα, u)
(u, V0[ξα]u)

= 0. (99)

Let λ1, ..., λn−1 be the nonzero eigenvalues of M̄ , and u1,
..., un−1 the corresponding orthonormal system of eigen-
vectors (recall that the unit eigenvector for eigenvalue 0 is
u itself). Computing inner product with ui on both sides of
eq. (97), we obtain

(ui, M̄∆1u) + (ui, ∆1Mu) = ∆1λ(ui, u). (100)

Since (ui, M̄∆1u) = (M̄ui, ∆1u) = (λiui, ∆1u) and
(ui, u) = 0, the above equation is rewritten as

λi(ui, ∆1u) + (ui, ∆1Mu) = 0. (101)

Since ∆1u is orthogonal to u by the second of eqs. (95), it
can be expressed as a linear combination of the orthonormal
system u1, ..., un−1 in the form

∆1u =
n−1∑
i=1

(ui, ∆1u)ui = −
n−1∑
i=1

ui(ui, ∆1Mu)
λi

= −
(n−1∑

i=1

uiu
�
i

λi

)
∆1Mu = −M̄

−∆1Mu. (102)

4. Comparing terms of O(ε2) on both sides of eq. (50), we
obtain

M̄∆2u+∆2Mu+∆1M∆1u = ∆1λ∆1u+∆2λu. (103)

Computing inner product with u on both sides, we have

(u, M̄∆2u) + (u, ∆2Mu) + (u, ∆1M∆1u)

= ∆1λ(u, ∆1u) + ∆2λ(u, u). (104)
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Noting that (u, M̄∆2u) = (M̄u, ∆2u) = 0, (u, ∆1u) = 0,
(u, u) = ‖u‖ = 1, and eq. (102), we obtain

∆2λ = (u, ∆2Mu) + (u, ∆1M∆1u)

= (u, ∆2Mu) − (u, ∆1MM̄
−∆1Mu). (105)

Computing inner product with ui on both sides of eq. (103),
we obtain

(ui, M̄∆2u) + (ui, ∆2Mu) + (ui, ∆1M∆1u)

= ∆1λ(ui, ∆1u) + ∆2λ(ui, u). (106)

Noting that (ui, M̄∆2u) = (M̄ui, ∆2u) = (λiui, ∆2u),
(ui, u) = 0, and eqs. (99), (102), we obtain

λi(ui, ∆2u)+(ui, ∆2Mu)−(ui, ∆1MM̄
−∆1Mu) = 0.

(107)
From this and eq. (96), we obtain

∆2u =
n−1∑
i=1

(ui, ∆2u)ui + (u, ∆2u)u

= −
n−1∑
i=1

ui(ui, ∆2Mu)
λi

+
n−1∑
i=1

ui(ui, ∆1MM̄
−∆1Mu)

λi
− ‖∆1u‖2u

= −
(n−1∑

i=1

uiu
�
i

λi

)
∆2Mu − ‖M̄−∆1Mu‖2u

+
(n−1∑

i=1

uiu
�
i

λi

)
∆1MM̄

−∆1Mu

= −M̄
−∆2Mu + M̄

−∆1MM̄
−∆1Mu

−‖M̄−∆1Mu‖2u. (108)

E: Evaluation of E[‖M̄−∆1Mu‖2]

Since (ξα, u) = 0, eq. (48) implies

∆1Mu =
N∑

α=1

(∆ξα, u)ξ̄α

(u, V0[ξα]u)
. (109)

Hence,

E[‖M̄−∆1Mu‖2] = E[(M̄−∆1Mu, M̄
−∆1Mu)]

= E[(∆1Mu, (M̄−)2∆1Mu)]

= E[(
N∑

α=1

ξ̄α(∆ξα, u)
(u, V0[ξα]u)

, (M̄−)2
N∑

β=1

ξ̄β(∆ξβ , u)
(u, V0[ξβ ]u)

)]

=
N∑

α,β=1

E[(∆ξα, u)(∆ξβ , u)](ξ̄α, (M̄−)2ξ̄β)
(u, V0[ξα]u)(u, V0[ξβ]u)

=
N∑

α,β=1

(u, E[∆ξα∆ξ�
β ]u)(ξ̄α, (M̄−)2ξ̄β)

(u, V0[ξα]u)(u, V0[ξβ ]u)

=
N∑

α,β=1

(u, ε2δαβV0[ξα]u)(ξ̄α, (M̄−)2ξ̄β)
(u, V0[ξα]u)(u, V0[ξβ ]u)

= ε2
N∑

α=1

(u, V0[ξα]u)(ξ̄α, (M̄−)2ξ̄α)
(u, V0[ξα]u)2

= ε2
N∑

α=1

(ξ̄α, (M̄−)2ξ̄α)
(u, V0[ξα]u)

= ε2tr(
N∑

α=1

ξ̄αξ̄
�
α

(u, V0[ξα]u)
(M̄−)2) = ε2tr(M̄(M̄−)2)

= ε2tr(M̄−
M̄M̄

−) = ε2tr(M̄−). (110)

F: Higher Order Terms of ML

1. From the constraint that u be a unit vector, eq. (94) holds
for the perturbations ∆1u and ∆2u.

2. Comparing terms of O(1) on both sides of eq. (60), we
obtain M̄u = 0.

3. Comparing terms of O(ε) on both sides of eq. (60), we
obtain

M̄∆1u + ∆1Mu = 0. (111)

Multiplying both sides by M̄
−

from left, we obtain

P u∆1u + M̄
−∆1Mu = 0, (112)

where P u = I − uu� is the projection operator along u

(note that M̄
−

M̄ = P u [10]). Since ∆1u is orthogonal
to u by the second of eqs. (95), we have P u∆1u = ∆1u.
Hence, we obtain eq. (61).

4. Comparing terms of O(ε2) on both sides of eq. (60), we
obtain

M̄∆2u + ∆1M∆1u + ∆2Mu = ∆2Lu. (113)

Multiplying both sides by M̄
−

from left, we obtain after
some rearrangements

P u∆2u = −M̄
−∆2Mu + M̄

−∆1MM̄
−∆1Mu

+M̄
−∆2Lu. (114)

This is the component of ∆2u orthogonal to u. The com-
ponent along u is −‖∆1u‖2u from eq. (96). Hence,

∆2u = P u∆2u − ‖∆1u‖2u. (115)

The first order perturbation ∆1u is the same as in the case
of renormalization (see eqs. (51) and (61)). Hence, ‖∆1u‖2

= −‖M̄−∆1Mu‖2u, as we have already shown. Thus, we
obtain eq. (62).
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