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Abstract

In the fields of psychiatry and neurology, the dopaminergic system is one of the most im-
portant neurotransmitter systems in the brain. Whereas pharmacological and biochemical studies
had initially indicated two subclasses of dopamine receptors (DA-R), recent progress in molecular
biology techniques has led to the identification of five distinct genes of DA-Rs (D1-R-D5-R) and
splice variants. The gene products are classified into the D1-R family (D1-R and D5-R) and D2-R
family (D2-R, D3-R and D4-R) based on their structure and pharmacological features. This re-
view summarizes the structure, localization, function and pharmacology of DA-R subtypes on the
basis of knowledge obtained during the past few years. The genes encoding the D1-R family have
no intron and the D2-R family genes have introns. The distributions of mRNAs encoding these
five DA-R subtypes in the brain were different from their respective receptors. The localization of
DA-R subtypes to particular brain regions and specific pharmacological profiles of DA-R subtypes
allow new insights to be made into the mechanism of action of DA in the control of psychiatric
and motor functions. The availability of detailed information about DA-R subtypes will not only
clarify their roles in the brain, but will probably also lead to the development of new therapeutic
drugs with more specific actions.
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In the fields of psychiatry and neurology, the
dopaminergic system is one of the most impor-
tant neurotransmitter systems in the brain.
Whereas pharmacological and biochemical
studies had initially indicated two subclasses of
dopamine receptors (DA-R), recent progress in
molecular biology techniques has led to the
identification of five distinct genes of DA-Rs (D 1-
R-D5-R) and splice variants. The gene products
are classified into the D1-R family (D1-R and
D5-R) and D2-R family (D2-R, D3-R and D4-R)
based on their structure and pharmacological
features. This review summarizes the structure,
localization, function and pharmacology of DA-R
subtypes on the basis of knowledge obtained
during the past few years. The genes encoding
the D1-R family have no intron and the D2-R
family genes have introns. The distributions of
mRNAs encoding these five DA-R subtypes in the
brain were different from their respective recep-
tors. The localization of DA-R subtypes to partic-
ular brain regions and specific pharmacological
profiles of DA-R subtypes allow new insights to be
made into the mechanism of action of DA in the
control of psychiatric and motor functions. The
availability of detailed information about DA-R
subtypes will not only clarify their roles in the
brain, but will probably also lead to the develop-
ment of new therapeutic drugs with more specific
actions.

Key words: dopamine receptor subtype, gene, molecu-
lar structure, localization, pharmacology
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Dopamine (DA), a biologically active monoamine, is
present in a relatively limited region of the brain,
unlike other monoamines, and plays important roles in
psychiatric diseases such as schizophrenia and in extrapyr-
amidal neurodegenerative diseases such as Parkinson’s
disease. Of the neurotransmitter systems in the brain, the
DAergic system has been most extensively studied.
Traditionally, studies on the DAergic system have been
classified as pertaining to the neurotransmitter phase
(1957 to present) or the receptor phase (1972 to present)
(1), but we now seem to be in the third phase, the
molecular phase. Since abnormal neurotransmission in
the brain could result from a defect in the receptor (R) as
well as in the neurotransmitter (2), a great deal of effort
has gone into the study of DA receptors during past 20
years. Due to the remarkable progress in molecular
biology techniques in recent years, the gene encoding
D2-R was cloned in 1988 (3). By 1991, the genes for all
of the five DA-Rs we know today, D1-R to D5-R, had
been successfully cloned (4-9), and the nature of the
DA-R molecule, which could not be elucidated in previ-
ous pharmacological experiments, has been revealed.

This review summarizes the structure, localization,
function and pharmacology of DA-R subtypes, which are
classified on the basis of the information obtained during
the past several years. The analysis of the structure and
function of the DA-R subtypes will not only contribute to
the elucidation of their roles in various psychiatric and
neurologic diseases, but it will almost’ certainly lead to the
development of drugs which act only on specific receptors
subtypes, and thereby reducing the risk of adverse
effects.
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Structure of DA-R Subtypes and Their Genes

DA-R belongs to the G-protein-coupled receptor
family which includes many receptors such as adren-
ergic, serotonin and neuropeptide receptors. The
common structural features of the G-protein-coupled
receptors (Fig. 1) are: [a] the seven hydrophobic
transmembrane domains, [b] the extracellular N-
terminus domain with glycosylation sites, [c] the cyto-
plasmic C-terminus domain and [d] the G-protein-
coupling sites in the third cytoplasmic loop. All the
known DA-R subtypes consist of a polypeptide chain
containing about 400 amino acids (~ 50kDa) and carbo-
hydrate chains. The size of most receptor molecules
detected with anti-D2-R antibodies (anti-D2-R) varies
within the range of 90-120kDa depending on the tissues
(10, 11), which is far larger than the molecular weight
expected from the amino acid sequence. Therefore, D2-R
is likely to contain carbohydrate chains of various sizes.
Although these carbohydrate chains are believed to have
no effect on ligand affinity, it is important to clarify their
roles in the receptor function.

The DA-R was initially classified into various
subtypes on the basis of pharmacological properties, but
later they have been grouped into two; the D1-R group
which activates adenylate cyclase and the D2-R group
which inhibits (or has no effect on) the activity (12, 13).
Cloning of the receptor genes in recent years led to the

Polysaccharides

N\

Acta Mep Okavava  Vol. 48 No. 1

identification of new subtypes which had not been
identified by the conventional pharmacological and bio-
chemical methods. At present, there are five DA-R
subtypes, and they are classified into the D1-R family
(D1-R and D5-R) and D2-R family (D2-R, D3-R and
D4-R) based on their structures and pharmacological
features {Table 1).

The third cytoplasmic loop is short in the D1-R family
and long in the D2-R family (Fig. 2). It is generally
believed that receptors with a short third cytoplasmic loop
couple to stimulatory G-proteis (Gs) and activate
adenylate cyclase. On the other hand, receptors with a
long third cytoplasmic loop react to Gi and Go, which
inhibit adenylate cyclase, and Gq, which couples with
phospholipase C (14). D2-R also activates K* channels
(14).

While the structures of the extra- and intra-cellular
loops of the DA-R vary with each receptor, the trans-
membrane domains are highly homologous among most
receptors. The subtypes belonging to the D1-R and D2-R
families show overall sequence homology of about 50 %
within the families and 30 % between the families
(Table 1) (14). It is believed that an aspartate in the third
transmembrane domain forms an ion pair with the
protonated amine group of DA and that two serines in the
fifth transmembrane domain form a hydrogen bonding
interaction with two phenol groups of DA (7, 14). The
latter interaction is specific for DA and its agonist. On the
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The common structure of the G-protein-coupled receptors.
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Table | Synopsis dopamine receptor subtypes
DI-R family D2-R family
DI D5 D2 D3 D4
Amino acids (human) 446 477 443/414 400 387
(rat) 446 475 444/415 446 368
Homology
DI-R 100% 50% 30% 30%
D2-R 30% 30% 100% 50%
Locus (human) 5q34-35 4plb6 11g22-23 3gl3.3 4pib
intron - - + (6) + (5) + (4)
Polymorphism Asu 1 Bal 1 Repeated sequences
T—C(Pro®®)*  C— G(Ser®'! — Cys) A— G(Ser— Gly) of 48 bases
(third cytoplasmic loop)
mRNA
Size (kb) 3.8 3 2.5 8.3 5.3
L.ocalization Striatum Hippocampus Striatum Islands of Calleja Frontal cortex
Nucleus accumbens Thalamus Nucleus accumbens  Nucleus accumbens Amygdala
Olfactory tubercle Olfactory tubercle Olfactory tubercle Hippocampus
Hypothalamus
Medulla oblongata
Substantia nigra - — + + +
G-protein coupling Gs Gs Gi ? ?
Adenylate cyclase i 1 ; — _
K* channel )
Pharmacological profile
Affinity for DA uM < uM uM nM < uM
Agonist SKF-38393 SKF-38393 Bromocriptine 7-OH-DPAT (Quinpirole)
Quinpirole
(Pergolide)
Antagonist SCH-23390 SCH-23390 Haloperidol UH-232 Clozapine

= Silent mutation (ref. 79)

other hand, an aspartate in the second transmembrane
domain of D2-R has been shown to interact with antago-
nists (15).

In humans, the genes of the five DA-R subtypes are
located on different chromosomes (Table 1). In general,
the genes for G-protein-coupled receptors have no introns.
The genes of the D1-R family (D1-R and D5-R) also lack
introns. On the other hand, a specific feature of the genes
of the D2-R family is the presence of introns in their
coding regions; the D2-R, D3-R and D4-R genes have 6,
5 and 4 introns, respectively (Table 1) (16, 17). The
presence of these introns strongly suggests that the gene
products of each subtype of the D2-R family undergo
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post-translational splicing, resulting in a greater number
of receptor isoforms.

DI-R Family

D1 receptor

Using the homology to the D2-R gene which had
already been cloned, the D1-R gene was cloned, and
reported concurrently by three different groups in 1990
(6-8). The human and the rat D1-Rs consist of 446
amino acids with 91 % overall homology and 96 %
homology in the transmembrane domains. The D1-R
activates adenylate cyclase and shows high affinity for
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Fig. 2  Schematic diagrams depicting dopamine receptor subtypes.

SKF-38393 and SCH-23390, features common to the
conventional D1-R as defined pharmacologically (18).

D1-R mRNAs are distributed abundantly in the
striatum, nucleus accumbens and olfactory tubercle
(Table 1), where D1-R itself is also abundant (6, 7, 18-
23). In the substantia nigra, however, D1-R mRNAs
have not been detected even though the D1-R itself is
present which suggests that the D1-Rs in the substantia
nigra are located at the terminal regions of neurons as
inputs (19, 23-25).

D5 receptor

The D5-R gene was cloned from a human genomic
library using homology to the D1-R gene (9, 26, 27).
The sequence homology between the D5-R and DI1-R is
50 % throughout the protein and 80 % in the transmem-
brane domains. The D5-R has properties common to the
DI1-R, ie, it activates adenylate cyclase and shows high
affinity for the DA agonist SKF-38393 and antagonist
SCH-23390. However, the affinity of D5-R for DA is
over tenfold higher than that of D1-R, which is the
greatest difference between the D1-R and D5-R.

The distribution of D5-R mRNAs in the brain was
initially reported to be similar to that of D1-R mRNAs,
but later D5-R mRNAs were shown to be present mainly
in the hippocampus and thalamus uning a highly specific
probe (28). D5-R mRNAs are sparsely present in the
striatum, nucleus accumbens and olfactory tubercle
regions (Table 1) where D1-R mRNAs are highly expres-
sed.

http://escholarship.lib.okayama-u.ac.jp/amo/vol49/issl/1

D1B-R, which Tiberi et al (29) found in rats, is
considered to be the equivalent of D5-R in humans. It is
proposed that D1-R and D5-R should be called DIA-R
and D1B-R, respectively, and D2-R, D3-R and D4-R
should be called D2A-R, D2B-R and D2C-R, respective-
ly (30), although this nomenclature has not been generally
used yet.

D2-R Family

D2 receptor

D2-R was the first subtype of the DA-R to be cloned.
In 1988, taking advantage of the high homology among
the G-protein-coupled receptors, Bunzow ef al. cloned
the D2-R gene from a rat genomic library using a part of
the base sequence of the gene encoding the 3, adrenergic
receptor as a probe (3). The D2-R thus cloned showed
the pharmacological characteristics of D2-R, ie., it had a
high affinity for haloperidol, spiperone and bromocriptine.

In the brain, the D2-R mRNA was abundant in the
striatum, nucleus accumbens, olfactory tubercle and sub-
stantia nigra (Table 1) (31-35). In the striatum, the
D2-R mRNA is reportedly expressed in most of the
GABA/enkephalin neurons and acetylcholine neurons
(20, 36-38), and also in DA nerve cell bodies in the
substantia nigra. The D2-R mRNA is decreased
significantly in the substantia nigra and on the ventral side
of the tegmental field by the destruction of DA nerves by
treatment with 6-hydroxydopamine (6-OHDA), which
suggests that D2-R in these domains is an autoreceptor.
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A new species of D2-R (D2-long: D21.; 443 amino acids)
has been discovered, which has an insert of 29 amino
acids in the third cytoplasmic loop (39); thus, there are
now two kinds of D2-Rs, the old one (D2-short: D2S;
414 amino acids) and the new one. Although the ratio of
these two kinds of D2-R varies with tissues, they coexist
in all the tissues in which D2-Rs are present (40).
Usually, there are more D2L.-Rs than D2S-Rs, and in
the striatum, D2L-Rs are particularly abundant. There
are no differences between the D2L-R and D2S-R in
terms of their effects on the second messenger systems
such as inhibition of the adenylate cyclase (41), activation
of K* channels, enhancement of phosphatidyl ositol
metabolism, or induction of arachidonic acid release
(Table 1) (42, 43). No difference has been noted in the
affinity for ligands between the D2L-R and D2S-R, until
the recent report showing a higher affinity of D2S-R for
the atypical anti-psychotic, clozapine (44). It has also
been shown that the D2S-R mRNA level markedly
changed after prolonged administration of neuroleptic
drugs such as haloperidol (45, 46).

D3 receptor

Sokoloff et al. cloned D3-R, a new type of DA-R
similar to the D2-R, from a rat brain library using part of
the base sequence of the D2-R gene as a probe (47). Of
all the DA-R subtypes, D3-R shows the greatest
difference in the number of amino acids between humans
and rats (400 and 446, respectively). Unlike D2-R,
D3-R is not coupled to Gi and does not inhibit cAMP
synthesis induced by forskolin (48). It is not known to
which second messenger systems D3-R is linked.

Pharmacologically, the affinity of apomorphine and
bromocriptine for D3-R is similar to their affinity for
D2-R whereas both of these drugs had previously been
thought to be specific for D2-R. R-(+)-7-Hydroxy-2-(N,
N-di-n-propylamino)tetralin  (7-OH-DPAT) (49),
quinpirole and pergolide bind to D3-R with high affinity
(Table 1). The affinity of D3-R for UH-232, which is
regarded as a selective ligand of autoreceptors, is higher
than that of D2-R (14, 47). The afmity of the typical
anti-psychotic, haloperidol, for the D2-R is higher than
that for the D3-R, and the affinity of sulpiride for the
D3-R is similar to that for the D2-R (14). The most
outstanding pharmacological feature of the D3-R is that
the affinity for DA is at a nM level, which is far higher
than the affinity at a M level of the other DA-R subtypes
to DA (50).
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Although the amount of D3-R mRNA is much smaller
than that of D2-R mRNA, it is typically concentrated in
the limbic system (28), ie., in the islands of Calleja,
nucleus accumbens and olfactory tubercle. This suggests
that the D3-R may be involved in the cognitional and
emotional functions (28).

D4 receptor

The D4-R was cloned using the rat D2-R ¢cDNA as a
probe (5). Although the structure of the D4-R is similar
to that of the D2-R, it has no effect on adenylate cyclase,
and the second messenger system coupled to the D4-R
has not yet been found. Pharmacologically, D4-R resem-
bles D2-R and D3-R, and its affinity for the atypical
anti-psychotic, clozapine, which scarcely causes side
effects in the extrapyramidal system, is about tenfold
higher than that of D2-R and D3-R (Table 1) (5, 14).

The D4-R mRNA level as well as the D3-R mRNA
level is significantly lower than the D2-R mRNA level.
D4-R mRNAs are distributed in the frontal cortex,
amygdala, hippocampus, hypothalamus and medulla ob-
longata, but are weakly expressed in the basal ganglia (28,
51). Since the D4-R is distributed in more limbic than
motor structures, it is suggested that the D4-R may be
important in schizophrenia in adition to D2-R. They are
present in the substantia nigra, which is a common fea-
ture of the D2-R family.

The D4-R has repeated sequences of 48 bases in the
third cytoplasmic loop, and the number of repeats varies
among individuals from 2 to 8 comprising 7 kinds in all
(Table 1) (52). This is unique in that it is caused not by
the differential splicing but by polymorphism of the
genome itself. The pharmacological profie of the D4-R is
reported to vary depending on the number of the 48
base-repeats in the third loop, which suggests that genetic
polymorphism causes differences among individuals in the
onset of neuropsychiatric diseases and in the sensitivity to
anti-psychotics.

Pharmacology of DA-R Subtypes and Develop-
ment of New Therapies

The pharmocology of each DA-R subtype has been
described in the previous chapters. The DA-R subtypes
will now be examined with respect to ligands (Fig. 3).
Considering the extremely high affinity of the endogenous
ligand DA for the D3-R (50) and the possibility that the
D3-R is the main factor of the manifestation of psychic
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Fig. 3
based on data from Ref. 14 and 52, and our original data.

symptoms, excessive DA is likely to cause psychic symp-
toms.

Among the agonists of the DA-R, quinpirole which
has been thought to be specific for D2-R, was found to
have high affinity for D3-R (14, 47). Among the DA
agonists belonging to the ergot alkaloid family, bromo-
criptine shows a high affinity for D2-R, but its affinity for
D3-R is sligthly low, and it negligibly reacts with D1-R
(14). In contrast, pergolide shows very high affinity for
D3-R and its affinities for D2-R and D1-R are also high
(53). Among the antagonists of DA-R, haloperidol
shows a high affinity for the D2-R family and a rather high
affinity for the D1-R family as well (14). Since the
atypical anti-psychotic, clozapine, specifically reacts with
D4-R, drugs such as clozapine that would antagonize DA
on D4-R are being developed, and are expected to have
less side effects (5, 14). A drug that selectively blocks
the D3-R would also be a novel anti-psychotic.

As we have seen, detailed studies on the DA-R
subtypes lead to the development of completely new
therapies highly specific for each subtype. They are also

http://escholarship.lib.okayama-u.ac.jp/amo/vol49/issl/1

Dissociation constants (Ki) for endogenous ligand, agonists and antagonists at dopamine receptor subtypes. This figure was depicted

expected to facilitate the development of new treatments
of disease by controlling receptor expression and by
specific inhibition with antisense mRNAs.

Localization of DI-R and D2-R and Its
Significance

In the brain, D1-R and D2-R mRNAs are much more
abundant than mRNAs of the other three subtypes. To
clarify the pathology and drug therapy of various neuro-
psychiatric diseases, particularly diseases in the kinetic
systems such as Parkinson’s disease, studies on DI1-R
and D2-R are important.

D2-R agonists induce hyperactivity and stereotyped
movement in test animals, whereas D2-R antagonists
induce catalepsy. D1-R antagonists also induce catalepsy
and antagonize the hyperactivity and stereotyped move-
ments assoclated with D2-R agonists. There are a num-
ber of reports on the pharmacological interference be-
tween D1-R and D2-R (54), and it is well-known that the
stimulative effect on D2-R by an agonist is significantly
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enhanced if D1-R has been previously stimulated (55). In
such a case, excessive stimulation of D1-R may cause
side effects because the stimulatory effect on D2-R also
becomes too large. A significant additive effect is observ-
ed on the release of arachidonic acid when D1-R and
D2-R are expressed in a single cell (43). Thus, the close
interaction between D1-R and D2-R is well-known.

Around 50-60% of the middle-sized cells in the
striatum are considered to express D1-R and D2-R
mRNAs (25, 56, 57). Although it is interesting that
D1-R and D2-R, which affect adenylate cyclase in oppo-
site ways, coexist in a single neurocyte, it has been
proposed that one or the other of the two subtypes plays
the principal role at the nerve ending in each cell (57). The
coexistence of D1-R and D2-R in the striatum and
substantia nigra neurons agree with the results of electro-
physiological studies (58-61).

With regards to the functions of the basal ganglia,
Albin et al. have proposed the following hypothesis (62).
Namely, there is a direct pathway consisting of GABA
and substance P (SP) containing neurons as outputs from
the striatum and directly projecting onto the inner pallidus
and reticular formation of the substantia nigra, and an
indirect pathway which links the GABA/enkephalin
(ENK)/ dynorphin (Dyn) neurons and the reticular forma-
tion of substantia nigra via the outer pallidus and subtha-
lamic nucleus. D1-R is present on the SP neuron and
D2-R on the ENK neuron (23, 63). At present, it is
generally thought that different DA-R subtypes mediate
the direct and indirect pathways. Most acetylcholine
neurons in the striatum express D2 mRNAs (20, 36-38).
Although, direct synapse formation between the DA
neurons and the acetylcholine neurons in the striatum has
not been confirmed, interaction without synapse between
the nerve ending of the DA neuron and acetylcholine
neuron in the vicinity has been suggested (64).

DA-R and Psychiatric Diseases

An increase of D2-Rs has been observed at autopsy
even in untreated patients with schizophrenia (65), and
there are reports on the families with frequent occurrence
of schizophrenia (66), which suggest that the D2-R gene
is an etiological factor in the disease. Recently, it has
been reported that the variation frequency of the D2-R
gene at codon 311 (Ser®'! — Cys) was significantly higher
in the schizophrenic patients than in the controls (Table 1)
(67). Furthermore, some reports demonstrated a rela-
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tionship between shizophrenia and polymorphism of the
D3-R which is regarded as the action point of anti-
psychotics (4, 47). In this case, there is a point mutation
from A to G in the 5 terminal region of the D3-R gene
causing an amino acid substitution from Ser to Gly (48).
Since polymorphism has been shown to occur in this
region using the restriction enzyme Bal I (Table 1),
changes in the properties of the D3-R caused by mutation
in this region are being investigated (68). The distribution
of D4-R suggests that it may be more closely associated
with limbic rather than motor systems. Quite recently,
Seeman ef al. reported that receptor bindings for the
D4-R subtype were especially high in the postmortem
brain of patients with schizophrenia (69).

DA-R and Dependence

It is reported that there is a significantly high correla-
tion between the restriction fragment length polymor-
phism (RFLP) in the D2-R gene induced by the restric-
tion enzyme Tag I and alcoholism (70), and that this
correlation is higher in more severe cases (71). However,
there are also many reports which failed to confirm this
correlation (72, 73).

Since substances causing addictions are related to the
DA system, the relationship with DA-R has long been
implicated. Although there are a few reports suggesting a
correlation between drug addictions and the polymorphism
in the D2-R gene, others failed to confirmed such a
correlation.

DA-R and Neural Diseases

Parkinson’s disease is mainly caused by a lesion in the
presynaptic DA neurons, and therefore is unlikely to be
related to the DA-R subtypes, however its relationship
with the receptors is very important in connection with
drug therapy and its side effects.

Among the DA-R subtypes, the D1-R and D2-R are
much more abundant than the others, in terms of mRNA
as well as protein (28), and clinical and experimental
studies have shown that they play a central role in
producing the defects in the motor systems and the effects
of drug therapy. As the D2-R is the principal transmitter
in the motor neuron systems, and as there is interaction
between D1-R and D2-R as described above, the effects
of D1-R should be considered secondary.

It has been reported that the D2-R level is increased
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of bromocriptine and
levodopa (low dose)

bromocriptine
(monotherapy)

Theoretical combination therapy of levodopa and dopamine agonist bromocriptine. A: low-dose therapy of levodopa. B: high-dose

therapy of levodopa, C: monotherapy of bromocriptine, D: combination therapy of bromocriptine and low-dose levodopa. Most desirable

therapeutic efficacy will be achieved by D (see text). [ : levodopa effects; BREN:

in untreated patients with Parkinson’s disease whereas
levodopa therapy normalizes the level (74). However,
examination by positron emission tomography (PET) of
patients with Parkinson’s disease has shown that the
D2-R level is increased only in the early phase of the
disease but is otherwise normal or slightly decreased (75).
It therefore seems that the D2-R level in Parkinson’s
disease varies with the phase of the disease. On the other
hand, the D1-R level is known to remain unchanged (74,
75). The D2-R level in the patients showing fluctuations
or a wearing-off is generally low (76). Murata et al.
found that the transient increase in the D1-R and D1-R
mRNA levels seen in the early phase of levodopa therapy
diminishes after the prolonged administration of levodopa
(77), and that this may be the cause of the wearing-off
phenomenon, one of the problems with the long-term
levodopa therapy. It has also been reported that, in a
dyskinesia model, D1-R and D2-R mRNA levels are both
decreased in the striatum but can be up-regulated by
lowering the secretion of DA (78). As these reports
indicate, the D1-R and D2-R mRNA levels are readily
affected by the condition of the disease and by drug
therapy, and therefore care must be taken when drug
therapy is performed.

Considering the properties of the new DA-R subtypes
hitherto described, one can envisage desirable drug ther-
apies which elevate the DA system in patients with

http://escholarship.lib.okayama-u.ac.jp/amo/vol 49/iss1/1

bromocriptine effects.

Parkinson’s disease, as discussed in the following.
Although D2-R and D1-R are the predominant DA-Rs,
DA reacts with other DA-Rs as well under physiological
conditions. Therefore levodopa, which reacts with all the
DA-R subtypes, is indispensable as a basic drug. How-
ever, if administered at a low dose in order to prevent
side effects, it will not be sufficiently effective for symp-
toms in Parkinson’s disease (Fig. 4A). If the dosage is
too high, levodopa is likely to cause side effects because
of excessive stimulation of the D1-R, which acts ad-
ditively with the D2-R (Fig. 4B). In addition, excessive
DA reacts with D3-R, which is likely to cause psychic
symptoms. On the other hand, the DA agonist bromo-
criptine, which is selective to the D2-R, does not stimu-
late the D1-R, and therefore is less effective (Fig. 4C).
The best method at the moment will therefore be to use
a low dosis of levodopa to stimulate the D1-R and D2-R
to appropriate levels and bromocriptine to supplement the
insufficient D2-R stimulation (Fig. 4D). Pergolide may
be used instead of bromocriptine, but pergolide has far
stronger stimulative effects on D1-R and D3-R (53),
which may cause psychic symptoms such as hallucination.
An antagonist highly selective for D3-R, if developed,
would suppress the drug-induced psychic symptoms
which often cause problems in the treatment of
Parkinson’s disease.
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