Engineering

Industrial & Management Engineering fields

Okayama University Year 2005

Attitude control system design of a
helicopter experimental system

Akira Inoue Mingcong Deng Takanori Harima
Okayama University Okayama University Okayama University

Seiji Nakano Nobuyuki Ueki
Okayama University Okayama University

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information
Repository.

http://escholarship.lib.okayama-u.ac.jp/industrial_engineering/68



Attitude Control System Design of a
Helicopter Experimental System

Akira Inoue, Mingcong Deng, Takanori Harima, Seiji Nakao and Nobuyuki Ueki
Dept. Systems Eng., Okayama University
3-1-1 Tsushima-Naka, Okayama 7008530, JAPAN

Abstract-In this paper, we consider the problem of attitude
control of a helicopter experimental system. We design a
nonlinear controller which combines nonlinear adaptive robust
control and nonlinear feedback controls. Simulation and
experimental results show the effectiveness of the proposed
method.

I. INTRODUCTION

Attitude control for helicopters is an important control
topic in nonlinear feedback design, due to the nonlinearity
of the dynamics and strong interactions between variables.
Concerning with this topic, many works have been devel-
oped (for example, [1],etc.). Recently, we gave a combined
adaptive and non-adaptive attitude control method [2] based
on adaptive sliding mode control method [4], [5] and
some conventional control methods [3] for our helicopter
experimental system. In [2], it is assumed that the structure
of the uncertainty was known but the parameters were
unknown. In this paper, we extend the result in [2] to more
general case. The detailed explanation is shown as follows.
In this paper, we give an MIMO nonlinear controller design
method, where one part of uncertainty is in known structure
with unknown parameter and another part is assumed that
the structure is unknown with known upper-bound. Further,
a nonlinear controller is added for controlling the known
nonlinear dynamics obtained by estimation from experiment
by using the result in [6]. As a result, the proposed con-
troller is a combined controller, namely, combined nonlinear
adaptive and nonlinear attitude controller for two kind of
uncertainties based system parameters estimation. Further,
the robust stability of the proposed control is also ensured.
Finally, some numerical simulations and some experimental
results are given to show the effectiveness of the proposed
scheme by our 2 degrees of freedom nonlinear helicopter
experimental system.

II. EXPERIMENTAL SYSTEM MODELLING
AND PARAMETERS ESTIMATION

In research of the attitude control of a helicopter, 2
degree-of-freedom helicopter is used in many studies. Also
in this research, proposed control scheme is verified by
using 2 degree-of-freedom helicopter.

The experimental system is 2 input 2 output which
attaches the motor for turning a main rotor and a tail rotor,
and detects a pitch angle and a yaw angle with a rotary
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Fig. 1.

2 degree-of-freedom helicopter

encoder. The equation of motion of 2 degree-of-freedom
helicopter is shown as follows.
(The direction of the pitch angle)

Ipp+ Dpp 4+ mgLgsinp + htAtLtth = Amme,%l )
(The direction of the yaw angle)
Iy + Dyy + hmAmmezl sinp = AtLtwf sinp (2)

where,
m : Weight of the system
g : Gravity acceleration
p : Pitch angle
y : Yaw angle
I, : Moment of inertia(The direction of the pitch angle)
1, : Moment of inertia(The direction of the yaw angle)
Dy : Coefficient of friction(The direction of the pitch angle)
D, : Coefficient of friction(The direction of the yaw angle)
Ay, : The multiplier by the configuration of the main rotor
A : The multiplier by the configuration of the tail rotor
hy, : The multiplier about the lateral force of the main rotor
h¢ : The multiplier about the lateral force of the tail rotor
Ly, : Distance from an axis to the main rotor
Lg : Distance from an axis to the center of gravity
L; : Distance from an axis to the tail rotor
wm : The angular speed of the main rotor
wt : The angular speed of the tail rotor

m,g,I,D, A h are constants and p,y,w are variables.
The direction of p and y are the directions of the arrows
shown in Fig. 1.
Since the equation of motion is differential equation of
second order for parameters estimation. Measurement of
displacement, velocity and acceleration are required. In this
research, the identification approach without an angular
acceleration signal [6] is used. First, it is assumed that
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where, k,, and k; are constants.
Then equations are

a1p + asp + agsinp + agus = uj 4)
b1y + boy + bguysinp = wgsinp 5)
d
R S
at vy 1D, dt 1Y) = 01y

are used in order to erase the angular acceleration(p) of
equation (4), and the angular acceleration(yj) of equation
(5) (See Appendix A). Using a constant x> 0 equation (4)
is rewritten as

d
(a + M) (@1p) — parp + azp + azsinp + aguz —u; =0

)
Using variables
ZO = U1
2= p
2?2 = sinp ®)
22 =
and filter variable ¢/ defined by
d
J— 9
(440 0

then equation (7) becomes

d )
(a + M) [a1p + (ag — par)¥' + az® + agp® —°] =0
(10)
If this differential equation is solved, it will be set to
ar1p + (az — pa)Y* + az? + agp® = 0 + Ce ™M (11)

C is a constant and for large ¢ (u > 0), it can be assumed
as Ce " =~ (. Equation (11) is rewritten as

ar(p — p') + azpt + azp? +ap® =40 (12)
Also in the similar way, equation (5) becomes
by (9 — pap) + batp® + bgyp® = ° (13)
where
2 =y
25 = wsinp (14)
25 = wugsinp
Using
o, _ (Poml Wt W2t 000
* 0 0 0 0 g—ppt ¢t ¢P
T
az(al a2 a3 Qa4 bl b2 b3> (15)
equations (12) and (13) are given as
0
®y(t)a — ( b ) (16)

This model is linear, does not contain acceleration and is
used to identify unknown parameters in a.

III. PROBLEM FORMULIZATION

If ¢, d are considered to be identified value and Ac, Ad
are considered to be identification error, the values ¢ and d
can be decomposed with

c = ¢+ Ac
d = d+Ad 17

where, it is referred to as f(x(t),t), g(x(t),t) when the
parameter of f( (t), t), g(a:(t), t) are ¢, d. And, it referred

to as Af(z(t),t), Ag(z(t),t) when the parameters of
fE:B( ), % g(x ( ),t) are Ac, Ad (See Appendix B). Then,
f(z(t),t), g(=(t),t) are
F(2(),t) = F(e@®),0) +Af(@()0) g
glz(t).t) = g(z(t).t) + Ag(x(t),1)

Substituting these variables into equation (63), then

x(t) = f(z(t),t)+ Af(o(t),t)

+Ag(x(t), t)u(t) + g(z(t), t)u(t) (19)

In order for Af(x(t),t) + Ag(x(t),t)u(t) to fulfill
matching conditions for sliding mode control, it is necessary
to calculate h(x(t), u(t),t) defined by

g(z(t), t)h(x(t), u(t),t) = Af(x(t), t)+Ag(x(t), t)u(t)

(20)
then

x(t) = f(m(t),t)+g(:c(t),t)h(:c(t),u(t),t)+g(m(t),t2)u(t)
21

from equation (19). h(x(t),u(t),t) is called the uncer-
tainty of a definite part, and consists of known model
configuration and unknown parameters [2]. In this paper,
control law is designed by using

&(t) = f(x),t)+g(z),t)h(zt),u(t),t
+ g(2(t),t) Ah(x(t).t) + g (x(t), t)u(
(22)

Moreover, Ah(x(t),t) is called uncertainty of an indefinite
part and is a unknown model. However, it is referred to as

t),1)[| < n(=(t).t)

and upper-bound value function n(x(t),t) is considers as
bounded and known.

| AR (2( (23)

IV. ATTITUDE CONTROLLER DESIGN

In this section, the proposed controller is shown. The
controller has six parts. Further, the robust stability of the
control system with the proposed controller is ensured.
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A. The structure of the proposed controller

Set point vector
(24)

where, ry is the set point of x1, and ry is the set point of
9. A switching surface is designed as

o= (7)) =5(et) - w.0)
S

where y,.(t) is taken as first order filter output of a step
response.

(25)

(26)

Yr1
Yr2
t) = 27
Y, (t) s (27)
Yra
L 0 0 0
T )
0 — 0 0
9,(t) = oy (r - v ()28
0 0 — 0
T3 )
0 0 0 =
T4

The proposed controller includes the equivalent controller,
linear feedback controller, relay controller, nonlinear con-
troller for the uncertainty of a definite part, nonlinear
controller for the uncertainty of an indefinite part and a
controller for a set point variation. That is,

w(t) = Ueqg(t) + i (t) + wni(t) + waa(t) + uy(t) + ur(t)
(29)
The detailed structure of these controllers are shown as
follows.
The equivalent controller
The equivalent controller is expressed by the following
equation.

u) = (1)
— —(sa(e.1)  SF@.0

= C4T4
1 v Sin T 30)
Cads — C1dy i C11y4
gin T
L1X3 — C2X3 — C3 81N T
< Lo — da

Linear feedback controller
Linear feedback controller is expressed by the following

equation.

uy
wi) = (W)

= —(Sg(w(t),t)) Ko
- N
d
1 b sinag (31)
C ads—ady | 1
3 sin 1

ki ko o1
kg k4 g2

Here, constant matrix K is taken as a positive definite.
Relay controller
Relay controller is expressed by the following equation.

wi®) = ()
—(Sg(w(t),t))_ln A(o) (32)

_ [ sen(01)
1, forxz >0
sgn (z) = 0, forz =0 (34)
-1, forz <0

It is referred to as k > 0.

Controller for the uncertainty of a definite part
The control input for compensating the right hand side 2nd
term of the equation (22) which is the term of a presumed
error is considered. It is referred to as

h(z(t),u(t),t) = ®(x(t), u(t),t)0

equivalent controller. Where ® (x(t), u(t),t) is 2 x 7 ma-
trix, and

(35)

0 — (91 0 65 6, 05 65 67)T

- ()

Because 6 is unknown, it is calculated by on-line identifi-
cation. If the estimate of @ is set to

R . . . . . . . T
0(t)=<91 by 6y 6y 65 bg 97)

(36)

(37
6(t) will be performed by

. T
T (2(t), u(t), 1) (SQ(m(t),t)) o (38)

T
I‘(Sg(a:(t),t)i)(w(t),u(t),t)) o

where, I' is a positive definite symmetrical matrix, and it
is introduced in order to adjust the rate of identification.
And the control input to the term of a presumed error is
calculated by

Uga(t) = ( Hadl ) = —h(z(t),u(t),t) (39

Uad2
— & (x(t), ult), £)0(t)

o) =
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Controller for the uncertainty of an indefinite part
The control input to a unknown model design with

Un1
Un?2 (40)
—n(x(t), t)x(x(t),t)

),t) is known, and

> (41)

uy(t) =

where upper-bound value function 77 x(t

()i

(s9((t1))

x(x(t), t)

(%) -

- T
= (0' Sg(z(t), t)) (42)
Controller for a set-point variation
u,-(t) is needed when a set point varies.
ur(t) = ( it >
Ur2 43)

—1
= (sa(=(,1))  Su,
where, ¥,.(t) shall be bounded.

B. Stability of the control system

For ensuring control system stability, a brief explanation
is shown as follows.
Lyapunov function

V= %a’ ot (é() e)Tr—l(é(t) —0) (44)
From equation (25), we obtain
o = S(at) - i) (45)
The derivative of V' from equation (44) is
Vo= ol (00)- e)Tr—lé(t) (46)
where, it is the Schwarz inequality
Vv < -6"Ko -0 /-@A
T e
+| (" sae.0)" |1 ana. |
< —0"Ko -0 IiA( ) 47)

Since o is negative definite, the stability of the system is
ensured.

V. SIMULATION AND EXPERIMENT
A. Simulation

Simulation for the case with the uncertainty Ah(x(t), t)
and the upper-bound value function n(a:(t), t) is performed.

The control parameters in (4) and (5) are obtained by the
estimation method in Section 2.

a; = 21.880226, ao = 1.0211740
a3 = 18.484688, a4 = 0.0709710

by = 12.691833, by = 1.8394160 (48)
b3 = 0.1147300

where, the identification errors are
61 = 0.000249, 0> = 0.001217
A3 = 0.117540, 0, = —0.001302 (49)
05 = —0.012118, 6¢ = —0.018707
07 = —0.009142

And parameters are set with

vy = g for 50 < ¢ < 150
0 for t <50, t > 150

L1 = 0.2

Ly = 0.1

n =5 -

Ah(:c(t),t) _ ( 0.5COS($2+2t+§) )
0.5z2
10 0

K = ( 0 5

k = 0.03

ks = 0.001
T, = 2
T = 3

(50)

The sampling time is set to Ims. A simulation result is

shown in Fig. 2. Even if the uncertainty of an indefinite part

existed, when the upper-bound value function was known,

the control objective was attained and the effectiveness of
this proposal approach has been verified.

B. Experiment

2 degree-of-freedom helicopter produced by this research
is shown in Fig. 3. We experimented using this 2 degree
of freedom helicopter. The set point was changed and the
disturbance was given at near 40 seconds.

™

- for t <20
T2 = 27 —

0, for ¢ > 20 5D
ks = 0.001

The other parameters are the same as (48) and (50).
An experimental result is shown in Fig. 4. Even if the set
point varied, it has verified that it is robust to disturbance.

VI. CONCLUSION

In this paper, attitude control scheme for a helicopter
experimental system is given. Simulation and experimental
results confirm that the proposed method is effective.
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Fig. 2. The simulation result using the proposed control method

Fig. 4. The experiment result using the proposed control method
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2 degree-of-freedom helicopter
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Appendix A

From the equation (1), (2) and the relational expression
of the angular speed of a motor and an input pressure (3),
we have (4) and (5) experimental setup, where,

1, b I,
“T ATk VT A LR
2T ALkl 2T ALK
B mgLg b = hmAmLmk’g1 (52)
T ALk, ST T ALK
B heAiLik?
“OT A Tk
Uy = U’72n Ug = u?
The parameter vector a to identify is set to
a=(a1 as a3 a4 b1 bQ b3> (53)
T is taken as a transposed matrix.
For equations (4) and (5), an equation is set to
P4 (t)a = u(t) B4
where,
p p sinp wue 0 O 0
o) = (0 0 0 0 § 9§ wupsinp )55)
2
_ U1 _ U,
o (2)-(5) e

When the values of u,, and u; are negative in experiment,
we select that

o (1)-(3)

Appendix B

If ¢, d are considered to be identification values and Ac,
Ad are considered to be the presumed errors, the real values
¢, d can be decomposed with

= ¢+ Ac

d+ Ad 7)

c
d
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where,

. (58)
ACQ

Acs Acy )

T
Ad = (Ad Ady Ady )
In this research, Ac;(t = 1,2,3,4), Ad;(j = 1,2,3) are
constant
at (59)
= (Ad) ~ 0

are filled and it shall vary too slowly.
It is referred to as f ((t),t). g(2(t), t) when the parameter
of f(x(t),t), g(x(t),t) are ¢, d. That is, it becomes to

T3
— . Ty
f(:l)(t), t) - —Cox3 - C3sin
—d2$4
(60)
0 0
_ 0 0
g(z(t),t) = K =
—dsgsinxz; disinzy

And, it referred to as Af(x(t),t), Ag(x(t),t) when the
parameter of f(x(t),t), g(x(t),t) are Ac, Ad. That is, it
becomes to

0
0
Af(:c(t),t) - —Acoxs — Acssinxy
—Ad2$4
(61)
0 0
0 0
s = | 4,
—Adssinz; Adpsinz
Then, f(z(t),t), g(x(t),t) are
f(w(t)vt) = f(w(t)at) + Af(w(t)at) (62)
g(z(t),t) = g(z(t),t) + Ag(x(t),1)
If it substitutes for
&(t) = f(z(t),t) +g(2(t),t)u(t) (63)
, an equation of state will be set to
x(t) = f(z), )+Af( );t) (64)

x(t
+Ag(x(t), t)u(t) + g(x(t), t)u(

A right side 2 and 3

Af(x(t),t) + Ag(x(t), t)u(t) =
0
0
Aciuy — Acgzs — Acssinzy — Acqusg
Adjussinzy — Adoxy — Adsuy sinxy
In order for Af(z(t),t) + Ag(x(t),t)u(t) to ful-
fill matching conditions, it is necessary to calculate

h(z(t),u(t),t) used as
g(z(t),t)h(x(t), u(t), t) = Af(w(t),t)+Ag(a:(t),t)'zé(6t)
(66)

Although equation (66) is the matrix of four lines, all of
the component of 1st and 2nd lines are 0. Therefore, only
3rd and 4th lines are considered and it is set to

B _ —1
— ! —
@000 = (_giur, g ) ©

Aciuy — Acoxs — Acssinzy — Acqus
Adjug sinxy

term are an uncertain term, and is

(65)

— Adsxs — Adsuq sinxq
So, an equation of state is set to
@(t) = f(z(t), 1) +g(x(t), t) h(2(t), u(t), t)+g(z(t), t)u(t)

(68)
from equation (66).
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