Acta Medica Okayama

Volume 34, Issue 2

1980 April 1980 Article 7

Chromosome analysis in a human hepato-blastoma cell line producing alpha-fetoprotein.

Kanji Miyamoto*Kazuhisa Taketa†Tamae Yabe‡Keiko Miyano**Jiro Sato††

*Okayama University, [†]Okayama University, [‡]Okayama University, **Okayama University,

^{††}Okayama University,

Copyright ©1999 OKAYAMA UNIVERSITY MEDICAL SCHOOL. All rights reserved.

Chromosome analysis in a human hepato-blastoma cell line producing alpha-fetoprotein.*

Kanji Miyamoto, Kazuhisa Taketa, Tamae Yabe, Keiko Miyano, and Jiro Sato

Abstract

Analysis of the chromosomes of a cloned human hepato-blastoma cell line, HUH-6-clone 5 by Q-, G- and C-banding revealed numerical and structural chromosome aberrations. The modal number of chromosomes was 49. Trisomies #12 and 20 were present in most of the cells, and 8q isochromosome was detected in all of the cells analyzed. High levels of alpha-fetoprotein production by this cell strain were also demonstrated.

KEYWORDS: Q-, G-and G-banding, ?-fetoprotein, trisomy, 8q isochromosome, human hepatoblastoma.

*PMID: 6161524 [PubMed - indexed for MEDLINE] Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL Miyamoto et al.: Chromosome analysis in a human hepato-blastoma cell line

Acta Med. Okayama 34, (2), 127-130 (1980)

----- BRIEF NOTE ------

CHROMOSOME ANALYSIS IN A HUMAN HEPATO-BLASTOMA CELL LINE PRODUCING α -FETOPROTEIN

Kanji MIYAMOTO, Kazuhisa TAKETA*, Tamae YABE, Keiko MIYANO and Jiro SATO

Department of Pathology, Cancer Institute and *First Department of Internal Medicine, Okayama University Medical School, Okayama 700, Japan (Director: Prof. J. Sato) * (Director: Prof. H. Nagashima) Received January 7, 1980

Abstract. Analysis of the chromosomes of a cloned human hepatoblastoma cell line, HUH-6-clone 5 by Q-, G- and C-banding revealed numerical and structural chromosome aberrations. The modal number of chromosomes was 49. Trisomies $\sharp 12$ and 20 were present in most of the cells, and 8q isochromosome was detected in all of the cells analyzed. High levels of α -fetoprotein production by this cell strain were also demonstrated.

Key words: Q-, G- and C-banding, α -fetoprotein, trisomy, 8q isochromosome, human hepatoblastoma.

A human hepatoblastoma cell line established by Doi (1) produced large amounts of α -fetoprotein and albumin *in vitro* for more than a year. In his study, chromosome analysis by conventional Giemsa strain was made on a cloned cell line in 9 passage on culture day 362. The modal chromosome number was 48 with trisomies #3 and 20. In the present study employing banding methods, however, 8q isochromosome was indentified instead of trisomy #3. We present the results of karyotype analysis and α -fetoprotein production of a longterm cultured cell line of HUH-6-clone 5.

The total number of culture days of the cloned cell line used for chromosome analysis was 1048 and for α -fetoprotein measurment, 993. Chromosome preparations were made by the air-dry method. The Q-, G- and C-banding methods (2-4) were used for chromosome analysis. Chromosomes were indentified and grouped according to the criteria set by Paris Conference (5, 6). The number of chromosomes was counted in a total of 50 metaphases and analysis of the complete karyotype was performed in another 15 cells.

The numerical results are presented in Table 1. The modal number of

К. Мічамото *et al*.

128

chromosomes was 49. The modal karyotype was 49, XY, +12, +20, +i (8q) (Fig. 1). The karyotype summaries are shown in Table 2. In all cells analyzed

Table 1. Distribution of chromosome numbers in the 50 cells analyzed

47

48

49

98

Number of chromosomes/cell

 Num	nber of ce	lls		1	5 41		3	
).		
	1 2 2		12		18		ΥX	
	4	743	11		17		i(89)	
			10		16		22	
			6				21	
	3		8		15			
	3		7		14		20	
			9		13		19	

Fig. 1. Karyotype : 49, XY, +12, +20, +i (8q)

Chromosome Analysis in a Human Hepatoblastoma

129

TABLE 2.	Karyotype	ANALYSIS	of H	IUH-6-clone	5	IN	57	PASSAGES
		ON CULTU	RE D.	A Y 1048				

Cell line	Karyotype	Number of cells		
HUH-6-clone 5	49, XY, +12, +20, +i [8q]	10	1	
	49, XY, +12, +20, +i [8q], t [3q+, 6q-]	1		
	38, XY, +20, +i[8q]	1		
	48, XY, −8+12, +20, +i [8q]	2		
	48, XY, +12, +i [8q]	1		

by the banding methods, 8q isochromosome was present (Fig. 2). The α -fetoprotein content in the culture medium was determined by radioimmunoassay (7). The relationship between cell growth and α -fetoprotein is given in Fig. 3.

Extraordinarily large and constant amounts of α -fetoprotein were produced during the entire phase of cell growth (cf. Rf. 1).

Recently, Wolman et al. (8) described an association between a single, un-

130 К. Мічамото *et al*.

usual chromosome abnormality and enormous production of α -fetoprotein in Morris hepatocellular carcinoma 7777. The results suggest the future usefulness of this cloned cell line in determining the type of chromosome abnormality associated with production of α -fetoprotein.

Fig. 3. Relationship between cell growth and α -fetoprotein production by HUH-6-clone 5 cells derived from human hepatoblastoma. Isolated hepatoblastoma cells on total culture day 993 were inoculated at a concentration of 24.4×10^4 cells per ml. Values in parentheses indicate α -fetoprotein concentrations [fg/m] determined in the medium at the time of medium change on the fourth, seventh and tenth culture day. The rate of α -fetoprotein synthesis was calculated from the mean cell number and the α -fetoprotein content accumulated during the culture period between each medium change; 0.22, 0.22 and 0.19 ng/cell/day for the fourth, seventh and tenth culture day, respectively.

REFERENCES

- 1. Doi, I.: Establishment of a cell line and its clonal subline from a patient with hepatoblastoma. Gann 67, 1-10, 1976.
- 2. Caspersson, T., Zech, L. and Johansson, C.: Differential binding of alkylating fluorochromes in human chromosome. *Exp. Cell Res.* **60**, 315-319, 1970.
- Seabright, M.: A rapid banding technique for human chromosomes. Lancet i², 30, 971-972, 1971.
- 4. Sumner, A. T.: A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304-306, 1972.
- 5. Paris Conference (1971): Standardization in Hunan Cytogenetics. Birth Defects: Original Article Series, The National Foundation, New York, Vol. VIII, No. 7, 1972.
- Paris Conference (1971), Supplement (1975): Stadardization in Human Cytogenetics. Birth D^efects: Original Article Series, XI: New York: The National Foundation 9, 1975.
- 7. Nishi, S. and Hirai, H.: Metdods for Imnunological Experiments. The Japan Society for Immunology, Kyoto pp. 215-221, 1971 (in Japanese).
- 8. Wolman, S. R., Cohen, T. I. and Becker, F. F.: Chromosome analysis of hepatocellular carcinoma 7777 and correlation with α -fetoprotein production. *Cancer Res.* 37, 2624-2627, 1977.