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Abstract-This paper deals with a design problem of 
a continuous-time anti-windup generalized predictive con- 
trol system using coprime factorization approach for non- 
minimum phase processes with input constraints. Based on 
the proposed design scheme, a condition for stability of the 
closed-loop system with input constraints and a straight- 
forward method t.o improve the output response of the 
system with input constraints are given. Simulation results 
are presented to support the theoretical analysis. 

I. INTRODUCTION 

Generalized predictive control (GPC) is widely used in 
industry. In applying the control scheme to real processes 
in industry, process control systems must deal with some 
constraints such as pressure and temperature limit, and 
the control system must also avoid the unsafe operating 
regimes. Especially constraints on input variables and 
unsafe problem of controller are crucial in the case of 
control of process having unstable zeros, that is, non- 
minimuin phase process. One of the features of GPC is 
that it can control non-minimum phase process. However, 
the control of the above process often needs an unstable 
controller to cancel unstable zeros, and the use of the 
unstable controller in a non-minimum phase process 
causes an excess input over constraints. This paper 
considers a design problem of GPC for non-minimum 
phase processes with input constraints. 

So far, input constraints have been taken into account 
in two ways. In the first case, predictive controls of 
constrained continuous-time systems were considered by 
using quadratic programniing [l], [2]. In the second 
case, two-step design paradigm was discussed [3]. The 
second method is simply stated as follows: design a 
linear controller ignoring control input constraint and 
then add anti-windup bumpless transfer compensation 
t,o minimize the adverse effects of any control constraints 
on the closed-loop performance. The algorithms of GPC 
for processes with input coust,raint to use quadratic pro- 
gramming are rather coniplicated. Many design methods 

have been reported based on the second design paradigm 
(e.g. [4,5,6]). Recently, anti-windup two-degreefreedom 
control of invertible plants was also given [i]. Most of 
the methods are for non-GPC scheme. As for GPC, only 
the following result is obtained, that is, a connection 
between model predictive control with constraints and a 
controller with saturating actuators is given [SI. However, 
the connection is given under a restricted conditlon and 
the controller considered is also restricted. 

This paper, based on the second approach, proposes 
a relatively simple design scheme of an anti-windup 
GPC for continuous-time non-minimum phase process. 
The design procedure has two steps: First, a strongly 
stable feedback controller for predictive control system is 
introduced by using coprime factorization representation 
[lo]. The strongly stable is also called internally stabiliz- 
ing controller in the case of discrete-time systems [Ill. 
Second, the controller is extended to the case of processes 
with input constraints using coprime factorization repre- 
sentation and Youla parametrization for the controller of 
non-minimum phase processes. The controller has the fol- 
lowing two characteristics: 1) By adding the anti-windup 
Compensation, the control performance of the predictive 
control does not deteriorate during nn-saturation period, 
and better tracking performance can be obtained during 
saturation. 2) A stability condition for the closed-loop 
system with input constraints is obtained. 

Notations: When .4 is a function of s, .4[s] means a 
polynomial function of s, whereas, A(s) is a rational 
function of s. 

11. PROBLEM STATEMENT 

Consider a single-input single-output timeinvariant 
linear process described by the following transfer func- 
tion: 
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where A[s];B[s], C[s] are polynomials in khe Laplace 
operators. Yo(s), Uo(s) and lG(s) are the system output,, 
control input and disturbance input respectively. &(s) 
and Uo(s)  are the Laplace transforms of y(t) and ~ ( t ) .  
.4[s], B[s] are comprime polynomials of degree n and 
m respectively, and .4[s], B[s] are stable and unstable 
polynomials respectively. C[s] is a designed Humitz 
polynomial of degree n,- 1, since no assumption is placed 
011 the disturbance 16. C[s] can also be designed by 
choosing deg(C[s]) = n when we would not wish to use 
the process output directly. In this paper, the degree of 
G(s] will he assumed as n - 1. The control input u(t)  is 
subject to the following constraint. 

%"in 5 u ( t )  5 U,,, 

This constraint is equivalently expressed as 

u(t)  = U ( U l ( t ) )  (2) 

v if wn 5 5 umor (3) U(.) = 
umar if v > umar 2 0 ,  { u,in if ZJ < u,in 5 0 

The objective is to design a continuous-time anti-windup 
generalized predictive control syst,em using coprime fac- 
torization representation and Youla parametrization for 
the above process. 

111. DEVELOPMENT OF THE PR,OPOSED 
AL.GORITHM 

The proposed controller is given by the following Youla 
parametrization(Fig.l), where UJ is reference input. 

R(s) = (I'(s) - Q ( s ) N ( s ) ) - ' K ( s )  (4 
a(s) = qS) + qS)qs) ( 5 )  
V ( s )  = Y(s) - Q ( s ) N ( s )  (6) 

where Q ( s )  E R H ,  is a design parameter for ensuring 
a strongly stable feedback controller [lo]. S(s) E RH,, 
Y(s) E RH, satisfy the following Bezout identity. 

S ( s ) N ( s )  + Y(s)D(s) = 1 (7) 

where, the coprime factorization presentation N ( s )  and 
D ( s )  of the process can be chosen as follows. 

Fig. 1. The proposed control system 

P ( s )  = ~ N ( S ) , N ( ~ )  E RH,,D(s) E R H ,  
D(S) 

Defining the stable closed-loop characteristic polynomial 
of the system without input constraint as TO, we choose 
N ( s )  and D ( s )  as 

where To[s] = ;l[s]+&,[s]+gB[s], g and Lo[s] are defined 
in (28) and (33) [9]. Since C[s] is stable, we obtain as a 
solution of Bezout identity (7), 

C[S] +-Go[s] 
Clsl 

Y(s) = 
. .  

K ( s )  = 9 (12) 

where, Go[s] and Fo[s] are defined in (31) and (32). 
Introduce two design polynomials u,[s], ud[s] for Q(s) ,  
that is, 

Using the earlier work [9,10], Fo(s),Go(s),Lo(s),To and 
g can be obtained as follows. 

The approximation y'(t+T) of the predicted output at 
t + T can be given by writing the appropriate Maclaurin 
expansion of y ( t  + T) about t and truncating this after 
Nv terms, u,here Nu is predictor order. Further, we 
can replace the values of the derivatives of y(t) by 
their emulated values y;l(t). hfultiplying (1) by s' and 
decomposing C[s]/,4[s] and B[s]E~.[sl/C[s] into their 
strict proper part and remainder, we obtain 

where, the orders of Fk[s],Ek[s],G~.[s] and HI. ( s )  are 
n - 1, k - 1,n  - 2 and k - p(p  = n - m). Then, from (1) 
\ye have as a Laplace transformed form of IT 

l?(S) = I i O [ S ]  + HI.[s]Uo(s) 

Inverse Laplace transformation of (16) gives an emulated 
value of the kth derivative of y(t) as 

y;(t) = y:(t)+hkti (18) 
ti = [ u(t)  G , ( t )  " '  B k - J t )  1' (19) 

d'u(t)  
tii(t) = - 

dt' 
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where, h k  is a row vector comprising the coefficient of 
so,...,sN- in H&]. Nu is the control horizon. The T- 
ahead prediction approximation y’ ( t  + T )  is given as 

y*( t+T)  = T N ~ ( H ~ ~ + Y ’ O )  

where 

and y e ( t )  is inverse Laplace transformation of Y,?(s). 
Coilsider the following cost function 

J = i r (y : ( t ,T)  - zu:(t,T))’dT 

Ta - TI 
+A Yf(t, T)*dT (21) 

Z ( t , T )  = Y’(t+T)FY(t) (22) 
u:(t,T) = TN-G (23) 

T”“ TN, = [ 1 T . . .  
g =  [ u(t) ai(t) ... C N , ( ~ )  1’ (25 )  

The reference trajectory m:(t,T) will be taken as the 
output of a reference model R,[s] /R&] C z o ~ * ~ - l ,  
we obtain 

where 

(24) ] 

wf( t ,T)  = T N ~ T ( ~ ~ )  - y(t)) 

where, T is a column vector which contains the Markov 
parameters of Rn[s] /R&],  namely 

(26) 
T 

T = [ T o  T i  _ ’ ’  ?+Nv ] 
The minimization of the cost function J results in 

where, Lo[s] is given by 

Then, the closed-loop transfer function GyY(s) can he 
obtained as (Fig.2) 

We can select X so that To[s] = .4[s] + Lo[s] + gB[s]  is 
stable. 

TY 
Fig. 2. The former control system(S(s) = V - I C J )  

So far, the controller is designed without considering 
input constraint as step 1. Next, to obtain a stabilizing 
controller as design step 2, a stability conditioii will be 
derived by analyzing the stability of the proposed system 
in the presence of input constraints. The nonlinear 
system depicted in Fig.1 can be regarded as a system 
with perturbation depicted in Fig.3, where 4(.) satisfies 
the following relation [6].  

$(2) = z-2u(t )  (36) 

The input constraint u ( z )  in equation ( 3 )  can be rewrit- 
ten as 

1 
(37) U ( i )  = 5(z-4(z))  

From the definition of U ,  we have 

I4(z)l 5 l:l (38) 

In the general framework of Fig.3 

Fig. 3. The equivalent diagram of the proposed control system 
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U? = Q(w) (39) 

+ ( I  + v + UP)-~(V + U P  - z)uZ (40) 

-(I + 1/ + U P ) - ' P q  (41) 

I/ + U P  = I' - QN + XND-' + QDD-'N 

= D-' (42) 

u1 = ?(I  + V + UP)-'VRw 

y = ( I  + V + CiP)-lPVRw 

Further, from ( 5 ) ,  (6) and (7) 

= E' - ( I rD - 1)D-l 

The input-output relations from (U,, U Z )  to (w,  y) in Fig2 
are given by 

GII(S) Giz(s) [ ] = [ G?l(s) GZZ(S) ] [ ] 
where 

Gll(s) = ( I +  V + UP)-'(V +UP - I )  
G~*(s)  = 2 ( Z  + V + UP)-'VR 
G?i(S) = - ( I  + V + UP)-'P 
G ~ ? ( s )  = ( I  + V + UP)-'PVR 

Let us review the following definition [I21 

Definition: 

(1) L?, is the extended space of vector valued functions, 
T ( t ) ,  with the property 

(2) Given N :  Lze -+ L?, and LTI operators C and R, 
A' is said to be inside Cone(C, R) if 

I1 A'(.) - C x  (IT 5 II Rx llT;T t 0,s E Lze  (44) 

As stated above, in Fig.3 Q is an operator in the set Qa 

Qa IQ I 4 E U} 
Using the result of 1121, we have the following Lemma 
as a. sufficient condition for nonlinear stability in the 
specified cone. 
Lemma: In the case of G being an LTI operator with 
t,ransfer function G(s),  t,he system in Fig.3 is stable for 
all Q E Qa if 
l.G(s) is stable 
2.infTrE711 T'Gll(s)T'-' I j m  5 1 

where 

'r r {TI I T'QT'-' E 

For the simplification, instead of 7, the following set can 
be used. 

7' = {T' I T' E 7 and T' E C'X'} (45) 

However, when Fig.3 is the equivalent diagram of Fig. 
1, from (38) should be bounded. Then a strongly 
stable controller is necessary for ensuring the bounded 
controller output a t  the zero operator, U = 0 a i d  at 
B(s)  = 0. Namely, for guaranteeing global stability of 
the system with non-minimum phase of Fig.1, we must 
have S(s) = V-lU, P ,V  and R stable, where S(s) is 
the controller for the process without input constraints 
(Fig.2). 
Theorem: The closed-loop system described in Fig.3 is 
stable in the presence of Q, if 

l.S(s) is stable 

3.AZD(s)lM-' is strictly positive real 

where II4 is positive definite diagonal matrix. 
Proof From Fig.1, when no input constraint occurs, we 
have 

2.G11(~) E RH, 

~1 = VRut -Uy+(Z-V)u  

(46) - - U  

U. = Rw - T ' L i y  = Rm - Sy (47) 

The system (Fig.2) is stable [lo]. That is, R(s) and 
S(s)  are stable and u1 is bounded. For the case of non- 
minimum phase processes with input constraint, from 
Fig.1, U is bounded by input constraint, P(B(s)  # 0), U ;  
V and Rare stable, we get that u1 is bounded. Especially, 
at  B(s)  = 0, V and R are stable, we also get that u1 
is bounded. Further, we can show that if MD(s)Ad-' is 
strictly positive real and GII(S)  E RH,, 

AdGll(~)A4-' = Af(1- D)(I+ D)-'A4-' 
= ( I  - A ~ D M - ' ) ( I +  M D A ~ - ' ) - ~  

That is, 

11 M G ~ ~ A ~ - ~  11- < 1 (48) 

This fact leads to the desired result based on the Lemma. 
Remark This paper considers the case of SISO. However, 
t.he above proof can be extended to the MIMO case. 

IV. PERFORMANCE ANALYSIS OF THE 
PROPOSED SYSTEM 

In this section. the analysis of input constraint for 
control performance is discussed. First, when no input 
constraint occurs, we have that the system is strongly 
stable. Then, 

pg 
D-1 

y = -w 

Next, in the process with input constraint, we obtain 
the following input-output relations for the former design 
method [lo] and the proposed method. 
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1) Former method with input constraint 
PR P 

a, = 21 + v-'PUU'- 21 + V-'PUU2 
PV 

(50) - - PY V + D-lW - V + D-lu2 

From (6), the design parameter Q(s) in V(s) affects the 
system performance. For reducing the influence of V(s), 
we have to reduce the gain of V(s). However, from the 
definition of S(s), this may give a high gain controller 
and may reduce the robustness of the control system 
in some cases. The selection of Q(s)  is also limited for 
ensuring the stability of the zero of V(s). 
2) The proposed method with input constraint 

P I/- R P 
I + v + Pug'- I + v + PUU2 Y =  

(51) 
P w-- - pg - 

I + D - l  I + D - I U 2  
If only D-' is large by selecting adequate coprime 
factorization in a sense, that is, the gain of the closed- 
loop characteristic polynomial is large, the output under 
input constraint can be expected to track the output in 

For adjusting paranleter Q ( s ) ,  a simple and quantita- 
tive design method is given as follows. The parameter 
Q(s)  = q is chosen such that the following polynomial is 
a Hurwitz polynomial. 

(49). 

T[s]CC[s] + G o [ s ] )  - qB[s]C[s] = 0 ( 5 2 )  

V. NUMERICAL EXAMPLE 
The purpose of this simulation is to compare the 

former and the proposed methods and t,o demonstrate 
the benefit of the proposed method when input constraint 
exists. Simulation study is conducted using the following 
non-minimum phase process. 

A[s] = s2 +0.7s+O.l (53) 
B[s] = -0.29 + 1 (54) 
C[S] = s +0.2 (55) 

The design parameters of the former method are shown 
in Table 1. Fkom (10) and ( l l ) ,  

(56)  
0.0892s + 0.0178 

3 + 0.2 S ( S )  = 

s - 0.0354 
s + 0.2 Y(s) = (57) 

The control law of the former method is given by 
0.0i104s3+0.04595s2+0.01143s+0.001016 

s3+0.2115s2+1.016s+0.1975 
-0.9108s3~.8423s2~) .2257s~.01873 

s3+0.~115s~+1.016s+0.19~5 

R(s)= 

S(s)= 

By selecting q so that (52) is stable, we obtain -1.0816 < 
q < -0.0125. 

CGPC 

Reference input: w = 1 
Predictor order: N, = 6 
Control horizon: N, = 1 
Control weighting: X = 0.1 
Min. prediction horizon: TI = 0 
Max. prediction horizon: T2 = 10 
Design parameters: U, = -1; ud = 1 

Str. stable 

Closed-loop characteristic poly.: 

The unstable pole of the CGPC [9]: 

0.0354 

The poles of the former method [lo] 

-0.0082 f 1.0062i 

To(s) = S* + 0.4468s + 0.0715 

I -0.1950 

Table 1 Design parameters 

The control law proposed in this paper is given by 

s2 + 0.7s + 0.1 
s2 + 0.4468s + 0.0715 
-0.2s + 1 

sz + 0.4468s + 0.0715 

- 0.0892s + 0.0178 
s + 0.2 

U ( s )  = 

V(s) = + s - 0.0354 
s + 0.2 

In the case of input constraint being present (timar = 0.1; 
U,;,, = 0), Fig.4 shows the process output (dashed line) 
of the former method under Q(s )  = -1 and the process 
output (solid line) for the same conditions using the 
proposed method. Meanwhile, Fig.5 shows the process 
input (dashed line) of the former method and the process 
input (solid line) of the proposed method, Fig.6 shows 
the process input (dashed line) of the former method 
prior to input constraint part and the process input 
(solid line) for the same conditions using the proposed 
method. Comparing the preceding simulation results in 
Fig.4, the proposed control algorithm shows a better 
tracking performance. Also, better tracking performance 
is obtained on same conditions for the case of Q ( s )  = 
-0.5 (Fig.7). From the above simulations, the design 
parameter Q ( s )  does not affect the proposed system 
performance. 

VI. CONCLUSIONS 
In this paper, a design problem of a continuous- 

time anti-windup generalized predictive control system 
using coprime factorization approach for non-minimum 
phase processes with input constraints was considered. 
Under the existence of input constraint, a condition for 
the closed-loop stability and a straightforward method 
to improve the output performance of the syst,em are 
given. The effectiveness of the proposed method is also 
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Fig. 5. Procevs input 

Fig. 6. Process input prior to input constraint part 

Fig. 7. Process output 

confirmed through simulations. The further work will be 
on the control system design for non-minimum phase 
uncert,ain processes with input constraints. Meanwhile, 
disturbance rejection will be discussed. 
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