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Continuous-Time Anti-Windup Generalized
Predictive Control of Uncertain Processes with

Input Constraints and Time Delays
Mingcong Deng, Akira Inoue, Kazuhiro Takeda∗, and Yoichi Hirashima

Department of Systems Engineering, Okayama University
3-1-1 Tsushima-naka, Okayama 700-8530, Japan
∗Hiroshima Research and Development Center

Mitsubishi Heavy Industries, LTD., Hiroshima, Japan
deng@suri.sys.okayama-u.ac.jp

Abstract— In this paper, a design problem of a continuous-
time anti-windup generalized predictive control (CAGPC)
system using coprime factorization approach for uncertain
processes with input constraints and time delays is considered.
The uncertainty of the process is considered as an uncertain
time delay. To reduce the effect of the input constraint and
uncertain delay, controller for strong stability of the closed-
loop system is designed. As a practical appeal, the effectiveness
of the proposed design scheme is confirmed by a simulated
application to an industrial process with input constraint and
uncertain time delay.

I. INTRODUCTION

A great deal of effort has been made for developing
generalized predictive control of processes. As a result,
generalized predictive control becomes a popular technique
for process control. In general, the controlled process was
assumed as a linear process. However, real process control
systems must deal with uncertain time delay and some
constraints such as actuator output limitation. Furthermore,
the uncertain process is sometimes of non-minimum phase.
Then, we have to consider the case of this kind of uncertain
process with input constraints. In particular, usually the
control of a nominal non-minimum phase system needs an
unstable controller to cancel unstable zeros of the process
and satisfactory results were obtained by using conventional
generalized predictive control [12]. That is, the closed-loop
pole polynomial has a factor of non-minimum phase and
would give unstable controller for obtaining the desired
results. However, real process has uncertainties, the problem
of the above-mentioned processes with unstable controller
for non-minimum phase is a problem of considerable prac-
tical importance to guarantee bounded controller output.
Meanwhile, the increasing complexity of the uncertainty
of the non-minimum phase process has to be considered,
where the uncertain part including the non-minimum phase
factor is considered as an uncertain time delay. The main
reason is that high order or non-minimum phase exhibit
similar dynamic characteristics to a reduced order model
with a time delay [9,13]. This paper considers the above-
mentioned processes.

The purpose of this paper is to consider the design
problem of a continuous-time generalized predictive control
system for the uncertain time delay processes with input
constraints.

In general, in continuous-time generalized predictive
control approach, controller design for processes with in-
put constraints can be taken into account in two main
ways. In the first approach, model predictive controls of
constrained continuous-time systems were considered by
using quadratic programming [1], [2]. That implementa-
tion requires solving a linear program during the control
period. In the second case, two-step design paradigm [3]
was discussed by using coprime factorization representation
and Youla-Kucera parametrization [4], [5], [6]. The system
having the following two stabilities is called to be strongly
stable [4]. Namely, the controller is stable and the closed-
loop system is stable. The design idea is simply stated
as follows: design a linear strongly stable generalized pre-
dictive controller ignoring input constraint and then add a
compensator to minimize the adverse effects of any input
constraints on the closed-loop performance. The added con-
troller is called anti-windup controller. It is proved that if the
controller is strongly stable, then under some conditions the
closed-loop system with input constraints is stable. Despite
the above developments, generalized predictive control is
difficult to offer a robust stability to the uncertain delay
processes with input constraints. Recently, an example in
[10] shows that the controller output signal increases to a
huge value if the strong stability of the closed-loop system
is not guaranteed. However, concerning strong stability of
uncertain delay processes with input constraints, so far the
design problem of a continuous-time anti-windup gener-
alized predictive control (CAGPC) system using coprime
factorization approach was not considered.

In this paper, to obtain the robustness to uncertain input
delay, the design scheme for strong stability of continuous-
time generalized predictive control is given to the case of
non-minimum phase processes with uncertain time delay
and input constraints by extending the design idea in
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[3, 10]. Namely, we apply the method in [3, 10] to the
above processes by using a balanced realization [9] of all-
pass Padè approximation for uncertain time delay and by
using robust evaluating method for coprime factor process
description.

The paper is organized as follows. Section II states the
problem setup. Section III gives details of the design of
strongly stable robust CAGPC system. An example on a
process is illustrated in Section IV to show the proposed
method. Conclusion is drawn in Section V.

Notations: When A is a function of s, A[s] means
a polynomial function of s, whereas, A(s) is a rational
function of s.

II. PROBLEM SETUP

Consider a single-input single-output time-invariant lin-
ear non-minimum phase uncertain process modeled by the
following transfer function:

Y0(s) = {B[s]
A[s]

e−Ts}U0(s) +
C[s]
A[s]

V0(s) (1)

where A[s], B[s] are stable known polynomials in differen-
tial operator s = d

dt . Y0(s), U0(s) and V0(s) are the system
output, control input and disturbance input respectively.
Y0(s) and U0(s) are the Laplace transforms of y(t) and
u(t). A[s], B[s] are comprime polynomials of degree n and
m respectively. T is unknown time delay but suppose that
the parameter range is known, and 0 < T − ≤ T ≤ T +. The
non-minimum phase factor is included in the time delay.
C[s] is a designed Hurwitz polynomial of degree n − 1,
since no assumption is placed on the disturbance V0. C[s]
can also be designed by choosing deg(C[s]) = n when
we would not wish to use the disturbance on the process
output directly [12]. The control input u(t) is subject to the
following constraints (Fig.1).

u(t) = σ(u1(t)) (2)

σ(v) =

⎧⎨
⎩

umax if v > umax ≥ 0
v if umin ≤ v ≤ umax

umin if v < umin ≤ 0
(3)

where, u1(t) is the input prior to input constraint part.
That is, u1(t) is the controller output. The objective is to

u
+

-

yw

U

V R P
u

sigma

I-V

1

Fig. 1. The proposed control system

design a strongly stable robust CAGPC system provided
that the controller and the closed-loop system are stable
by using coprime factorization representation and Youla-
Kucera parametrization.

III. DESIGN OF STRONGLY STABLE ROBUST CAGPC
SYSTEM

3.1 Design for the process without input constraint
One of the common techniques to handle the time delay

system is to approximate the time delay by Padè approxi-
mation, since the approximation is preferable for capturing
frequency response characteristic, and give a small gain
error [14]. In this section, for the process (1), the effect
of uncertain time delay for strong stability is evaluated.

The delay term of the controlled process will be approx-
imated by a balanced realization of all-pass Padè approxi-
mation such that

e−TDs =
B1[s]
A1[s]

≈ (−1)lsl + (−1)l−1q1s
l−1 + · · · + ql

sl + q1sl−1 + · · · + ql
(4)

qi =
(l + i)!
(l − i)!i!

(TD)−i, i = 1, 2, · · · , l (5)

where TD (0 < T− ≤ TD ≤ T +) is nominal time delay
and can be decided using the known ranges T − and T +.
Then, we have

Ḡ(s) =
B[s]
A[s]

e−Ts

=
B[s]B1[s]+(A1[s]B[s]e−Ts − B[s]B1[s])

A[s]A1[s]
(6)

From (4), the nominal non-minimum phase process of Ḡ(s)
is given as follows.

Ĝ(s) =
B[s]
A[s]

(
(−1)lsl+(−1)l−1q1s

l−1+· · · + ql

sl + q1sl−1 + · · · + ql
)

=
B[s]B1[s]
A[s]A1[s]

(7)

The proposed controller for the process with input con-
straints is given by the following Youla-Kucera parametriza-
tion [3] (Fig.1).

R(s) = (Y (s) − Q(s)N(s))−1K(s) (8)

U(s) = X(s) + Q(s)D(s) (9)

V (s) = Y (s) − Q(s)N(s) (10)

where Q(s) ∈ RH∞ is a design parameter for ensuring
a strongly stable feedback controller, and for tracking
performance K(s) is designed by the continuous-time GPC
method [12]. The design of X , Y , N , D, K and Q is given
as follows. First, X(s) ∈ RH∞ and Y (s) ∈ RH∞ satisfy
the following Bezout identity.

X(s)N(s) + Y (s)D(s) = 1 (11)

Next, defining the stable closed-loop polynomial T0[s] of
the process without input constraint, we choose the above
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coprime factorizations as

N(s) =
B[s]B1[s]

T0[s]
, N(s) ∈ RH∞

D(s) =
A[s]A1[s]

T0[s]
, D(s) ∈ RH∞

∆N(s) =
A1[s]B[s]e−Ts − B[s]B1[s]

T0[s]
(12)

where ∆N(s) is the mismatch between the uncertain time
delay and nominal time delay. Then, we have

P (s) =
N(s) + ∆N(s)

D(s)

where ∆N(s) ∈ RH∞. X(s) ∈ RH∞ and Y (s) ∈ RH∞
are designed as follows.

X(s) =
gC[s] + F0[s]

C[s]

Y (s) =
C[s] + G0[s]

C(s)
K(s) = g

where, F0(s), G0(s) and L0(s) are designed as follows [3,
12].

F0[s] =
Ny∑
i=1

kiFi[s]

G0[s] =
Ny∑
i=1

kiGi[s]

L0[s] =
Ny∑
i=1

kiLi[s]

and Ny is predictor order, and F0[s], G0[s] and L0[s] are
given by

skC[s]
A[s]A1[s]

=
Fk[s]

A[s]A1[s]
+ Ek[s]

B[s]B1[s]Ek[s]
C[s]

=
Gk[s]
C[s]

+ Hk[s]

skB[s]B1[s]
A[s]A1[s]

= Hk[s] +
Lk[s]

A[s]A1[s]

Finally, Q(s) is chosen so as to satisfy the following
inequality.

‖
[ −S(s)

1

]
(D + NS)−1 ‖

∞
‖

[
∆N
0

]
‖
∞

< 1 (13)

Then it is well known from small gain theorem [10, 11]
that the perturbed closed-loop system will remain strongly
stable, where S(s) = V −1U , U and V are given by
(9) and (10). S(s) is the stable controller for the process
without input constraint. Here, the maximum of ∆N can
be summarized as follows [9].

|∆N(jω)| ≤ |A1[jω]B[jω]
T0[jω]

|{|G̃o(jω)|T2(ω)

+ |G̃e(jω)|T1(ω)}, ω ∈ [0,∞) (14)

where

T1(ω) =
{
|e−jωT+ − 1|, if 0 ≤ ω ≤ π

T+

2, if ω > π
T+

T2(ω) =

⎧⎪⎨
⎪⎩

|e−jωT−
+ 1|, if 0 ≤ ω ≤ 2π

T++T−

|e−jωT+
+ 1|, if 2π

T++T− < ω ≤ 2π
T+

2, if ω > 2π
T+

G̃e(s) =
ql + ql−2s

2 + · · ·
sl + q1sl−1 + · · · + ql

G̃o(s) =
ql−1s + ql−3s

3 + · · ·
sl + q1sl−1 + · · · + ql

Instead of |e−jωT − 1| ≤ 2 and |e−jωT + 1| ≤ 2, in this
paper we evaluate these terms using the range values of T +

and T−. For example, when 10 ≤ T ≤ 20, the upper bound
T1(ω) and T2(ω) can be obtained as Fig.2 [9].
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Fig. 2. Gain diagram of T1(ω) and T2(ω) (10 ≤ T ≤ 20)

The controller S(s) = V −1U can be designed by using
(9) and (10) under u = u1.

Concerning the approximation of time delay, it is noted
that if the time delay term is small relative to the dominant
time constant, then 1st order (l = 1) approximation will be
sufficient. On the contrary, if the time delay term is large
relative to the dominant time constant then a 2nd or higher
order approximation of the delay term (l ≥ 2) would be
considered provided that (13) is satisfied.
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3.2 Design for the process with input constraint
In this section, an anti-windup controller for control

system with input constraints is proposed by adding a
controller. It also shows that the controller gives the robust
stability of the closed-loop system under the condition of
strong stability.

In general, CGPC in [12] can work well for the case
of non-minimum phase processes without input constraints,
even if the controller is unstable and the non-minimum
phase process has uncertainties. However, in the case of
uncertain non-minimum phase processes with input con-
straints, when unstable controller causes an excess output
signal over an input constraint, the controller output will be
huge but process input and output are bounded. An example
is given in [10], and it is reviewed as follows (Figs.3, 4,
5). This example also confirms the theoretical analysis in
[7]. However, concerning strong stability of uncertain delay
processes with input constraints, robust design condition of
the closed-loop system was not considered.

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

y

Fig. 3. Process output

0 50 100 150 200 250 300
0

0.05

0.1

0.15

Time(s)

u

Fig. 4. Process input

For guaranteeing strong stability for the anti-windup con-
trol system described in Fig.1, the object in the following
is to obtain a control system in the presence of input

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

Time(s)

u1

Fig. 5. Controller output

constraint. In this paper, φ(·) satisfies the following relation
[7,8].

φ(z) = z − 2σ(z), φ ∈ Cone(0, 1) (15)

The input constraint σ(z) in (3) can be rewritten as

σ(z) =
1
2
(z − φ(z)), σ ∈ Cone(1/2, 1/2) (16)

From the definition of σ, we have

|φ(z)| ≤ |z| (17)

u2 = φ(u1) (18)

u1 = 2(I + V + UP )−1V Rw

+ (I + V + UP )−1(V + UP − I)u2 (19)

y = (I + V + UP )−1PV Rw

− (I + V + UP )−1Pu2 (20)

V + UP = Y − QN + (X + QD)(
N(s) + ∆N(s)

D(s)
)

= D−1(1 + U∆N) (21)

The input-output relations from (w, u2) to (u1, y) are given
by [

u1

y

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
u2

w

]
where

G11(s) = −(I + V + UP )−1(V + UP − I)
G12(s) = 2(I + V + UP )−1V R

G21(s) = −(I + V + UP )−1P

G22(s) = (I + V + UP )−1PV R

Theorem: The closed-loop system described in Fig.1 is
stable in the presence of φ, if

1.S(s) is stable
2.G11(s) ∈ RH∞
3.MD(s)M−1 is strictly positive real
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4.|U [jω]
D[jω] ||A1[jω]B[jω]

T0[jω] |{|G̃o(jω)|T2(ω)+ |G̃e(jω)|T1(ω)} <

1, ω ∈ [0,∞)

where M is positive definite diagonal matrix. A stable
predictive controller is guaranteed by Conditions 1 ∼ 3, and
the robustness of the control system is ensured by Condition
4.

Proof: From (14), ∆N is bounded. Based on the result
in [3], from (21), we have that the closed-loop system is
stable provided that ‖ U∆N(s)

D ‖∞ < 1. The desired result
is obtained under Condition 4.

Condition 1 of the theorem shows that the strong stability
should be ensured for the robustness of the control system.

IV. EVALUATION OF THE PROPOSED METHOD ON A

PROCESS

The purpose of the simulation is to demonstrate the benefit
of the proposed method when input constraint and uncertain
time delay exist. Simulation studies are conducted using the
following uncertain process.

A[s] = 1500s3 + 3500s2 + 1000s + 6
B[s] = 56, T− = 0.2
T + = 0.8, TD = 0.5 (22)

The input constraints are set as umax = 0.2 and umin =
−0.2. In the simulation, we select l = 1, then Ḡ is of non-
minimum phase.

The design parameters and some properties are shown in
Table 1. By selecting Q(s) based on [3], we can obtain
a strongly stable system by the proposed method under
consideration of uncertainty. However, when the above input
constraint and uncertainty are present, the condition 4 of the
theorem and (13) are violated for some values of Q(s).

CGPC

Reference input: w = 1
Predictor order: Ny = 6
Control horizon: Nu = 1
Control weighting: λ = 0.1
Min. prediction horizon: T1 = 0
Max. prediction horizon: T2 = 29
Design parameters: un = −1; ud = 1
Design parameter: C[s] = 0.5s2 + s + 0.1

Str. stable

Closed-loop characteristic poly.:
T0(s)=1500s3+492.2s2+36.6s+1.4

The unstable pole of the CGPC [12]:

0.0026 + 0.4756i; 0.0026− 0.4756i

The poles of the former method [3]

−0.0021 + 0.4815i;−0.0021+ 0.4815i

−0.2599;−0.0501;−0.0088

Table 1 Design parameters

The control law proposed in this paper is given by

U(s) =
0.5s2 − 0.0026s + 0.1131

0.5s2 + s + 0.1

+ Q ∗ 56
1500s3 + 492.2s2 + 36.6s + 1.4

V (s) =
−5.4752− 1.9286s + 0.0025

0.5s2 + s + 0.1

− Q ∗ 1500s3 + 3500s2 + 1000s + 1
1500s3 + 492.2s2 + 36.6s + 1.4

The detailed example for selecting Q(s) was given in [10].
In this paper, we omit it. In the case of input constraint and
uncertainty being present, Fig.6 shows the process output
(dashed line) under T = 0.8 and the process output (solid
line) for the same conditions under T = 0.5 by using the
proposed design scheme, where Q = 0.025. Meanwhile,
Fig.7 shows the process input for T = 0.8 (dashed line)
and the process input for T = 0.5 (solid line). Comparing
the preceding simulation results in Fig.6, desired tracking
performances have been obtained under the existence of the
uncertainty of time delay.
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Fig. 6. Process output
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Fig. 7. Process input
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V. CONCLUSION

In this paper, a design problem of a continuous-time anti-
windup generalized predictive control system using coprime
factorization approach for uncertain delay processes with
input constraints was considered. Under the existence of
input constraints and uncertainty of time delays, strong
stable controller design scheme for the uncertain process
is given. The effectiveness of the proposed method is
confirmed by a simulation of an uncertain process.
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