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Abstract

The satisfiability problem (SAT) is a typical NP-
complete problem where a wide range of
applications has been studied. Given a set of
variables U and a'set of clauses C, the goal of SAT
is to find a truth assignment to variables in U such
that every clause in C is satisfied if it exits, or to
derive the infeasibility otherwise. This paper
presents an approximation algorithm called a
minimal-state processing search algorithm for SAT
(MIPS_SAT). MIPS_SAT repeatedly transits
minimal states in terms of the cost function for
searching a solution through a construction stage
and a refinement stage. The first stage greedily
generates an initial state composed of as many
satisfied clauses as possible. The second stage
iteratively seeks a solution while keeping state
minimality. The performance of MIPS_SAT is
verified through solving DIMACS benchmark
instances.
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1 Introduction

This paper presents a heuristic algorithm
called a minimal-state processing search algorithm
for satisfiability problem (MIPS_SAT). SAT is a
typical NP-complete problem [1], and extensive
studies on its complete or incomplete
approximation algorithms have been reported. In a
SAT instance, an m variable set U and an n distinct
clauses C are given. A clause consists of literals
connected by logical or. A literal is a variable or
its negation. The goal of SAT is to find a truth
assignment to variables such that the following
Boolean formula is
made satisfiable if exits:
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CIACyA...ACy (1)
or derives its unsatisfiability.

A wide range of practical applications has
been reported for SAT and its related problems, in
mathematical logic, inference, machine learning,
constraint satisfaction, VLSI design automation,
and computing theory. For example, in [2}-[4], the
test pattern generations were reported using SAT
formula. In [6], the maximum power dissipation
estimation problem for CMOS circuits was
transformed into a weighted max-satisfiability
problem. In {7]{8], SAT in database systems was
studied.

A number of SAT algorithms have been
developed. In {12}, Gu et al. provided a general
survey on them with their performance evaluations
and practical applications. GRASP is one of best
complete SAT algorithms which incorporates
several search-pruning techniques with the non-
chronological backtracking procedure. However,
due to the computational complexity, even GRASP
cannot solve large size SAT instances such as fand
g in DIMACS [16]. An incomplete SAT algorithm
can find only one random solution, although its
multiple executions may produce different
solutions. Besides, it usually cannot give an
answer to an infeasible instance. The advantage of
an incomplete algorithm is in the capability of
finding a solution quickly even for large size
instances. Within our knowledge, the discrete
Lagrangian-based global-search method (DLM)
[15] provides the best one. DLM formulates SAT
as a discrete constrained optimization problem,
where a Lagrangian function is defined to be
minimized with the term for the constraint of
satisfying every clause and the term for the
objective function of minimizing the number of
unsatisfied clauses. The performance of DLM is
verified through solving DIMACS, where the
search capability and the computation time are
better than GSAT, GRASP, and other
sophisticated algorithms. GSAT [17] is a
randomized greedy local search algorithm, which



performs well for solving hard random SAT
instances. With help of three heuristic strategies
[18], clause weights, averaging in, and random
walk, GSAT can handle hard SAT instances with
intricate underlying structures. DIMACS includes a
variety of SAT instances from practical and
theoretical worlds; circuit synthesis, circuit
diagnosis, parity learning , artificially generated 3-
SAT, randomly generated instances, large
satisfiable 3-SAT, hard graph coloring, and
towers-of-Hanoi encoding. Many papers have
reported the simulation results for this benchmark
suite.

The proposed MIPS_ SAT is an incomplete
algorithm to formulate SAT as a discrete
unconstrained optimization problem like by
GSAT. MIPS_SAT repeatedly transits minimal
states in terms of the cost function to solve a SAT
instance through a construction stage and a
refinement stage. The first stage greedily produces
an initial truth assignment to variables. The second
stage iteratively seeks a solution through
transitions of minimal states with the hill-climbing
capability. The performance is verified through
solving DIMACS suite, where the solving
capability and the computation time is summarized.

2 Framework of MIPS_SAT

In any state, MIPS_SAT assigns 1 (= True) or
0 (= False) to every variable in U. The unsatisfied
clauses in C are kept in a clause list CL for further
assignment changes. The state transition is
designed to minimize the cost function E? «

E-= 2 wU(x) @)
where Uj(x) = 0 if the ith clause C; is satisfied in a
variable assignment state x, and Ugx) = 0

otherwise, and w; is the clause weight. As in the
clause weight strategy [18], w; is incremented
when C; is not satisfied by x. When £ = 0 is
achieved, the variable assignment state x
represents a solution.

For efficient search, MIPS_SAT repeatedly
visits minimal states in terms of the cost function E.
A minimal state is defined as a state where any flip
of a variable cannot reduce E. A flip is defined as a
movement of changing an assigned value to its
opposite one. This framework of minimal state
transitions is based on a simple fact that a global
minimum always exists among local minima. Thus,
MIPS_SAT first generates an initial state greedily
in the construction stage, and then, iteratively
transits minimal states with hill-climbing and
search-restarting functions in the refinement stage.
All the unit variables in unit clauses are assigned

the corresponding values and fixed in the
construction stage beforehand as in the David-
Putnam-Loveland scheme [21]. A unit clause is an
unsatisfied clause that can be satisfied by exactly
one unassigned variable, and a unit variable is an
unassigned variable in a unit clause. An
unassigned variable is a variable whose value is
not assigned either 1 or 0.

3 Greedy Construction Stage

In the construction stage of MIPS_SAT, the
unsatisfied clause list CL is initialized by C, and
every unit clause is satisfied by assigning
corresponding values to unit variables, which is
repeated until no more unit clause exists in CL.
Then, all unit clauses and variables are removed
from C and U respectively, so that the succeeding
procedures can avoid the unnecessary computation
load. Let n and m be the number of clauses in C
and the number of variables in U respectively. A
greedy method for SAT sequentially produces an
initial state of variable assignments to satisfy as
many clauses as possible. An unassigned variable
list VL is generated from U. To assign a value to
one variable in VL sequentially, a critical clause in
CL is detected for the corresponding value
assignment. A critical clause is defined as a clause
satisfiable by only one variable in the current state.
Here, if two or more critical clauses exist, one
variable in these clauses whose value assignment
can satisfy the maximum number of clauses is
selected. When no critical clause exists, a variable
in VL whose value assignment can satisfy the
maximum number of clauses in CL is selected. In
either selection, the tiebreak is resolved randomly.
Then, two lists CL and VL are updated. This
sequential procedure is terminated when either list
becomes null.

4 Tterative Improvement Stage

In the improvement stage of MIPS_SAT, the
search process starts from the initial state by the
construction stage, and repeatedly transits minimal
states to minimize the cost function in (2).
However, if only descent moves are allowed,
the state may be trapped into a local minimum.
Thus, three schemes for global convergence,
weight reset, variable shuffle, and variable reset,
are used together. The first scheme is designed to
change the search direction, the second one
provides a restating state without degrading the
current cost, while the last one provides a
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restarting state far from the cwrent one with
degradation.

4.1 Descent Minimal State Transition

In a next minimal state, a variable of an
unsatisfied clause in CL should be flipped to
reduce E. At each iteration step, the change of £ is
checked for each variable flip for every clause in
CL, which is started from a randomly selected
clause to avoid a biased flip movement, and is
stopped as soon as a variable flip of reducing E as
in the hill-climbing [20]. Then, this variable is
flipped, and the state of two lists and variable
assignments is updated. This variable flip is
repeated until a new minimal state is reached
where E is not reduced by any variable flip. Then,
to resume the state transition into a new state of
satisfying harder clauses, the clause weight w; for
every unsatisfied clause in CL is repeatedly
incremented by 1, until a new variable flip comes
out.

As in [15[[20], hard SAT instances sometimes
have large plateaus besides many local minima. In
a plateau, some range of neighboring variable
assignments gives the same value for E. To escape
there, sideway move in [20] with a tabu list in [15]
has been introduced, when hard instances are
solved. Here, a variable flip for no change of E is
also picked up. A tabu list is used together to avoid
the cyclic state change, where any variable in the
list is not selected for the sideway move. The list
keeps the variables that have been flipped within a
predefined number of flip movements Tabu since
their last flips.

4.2 Weight Reset Scheme

Some clauses may have very large weights as
the search proceeds. To escape from this state,
every clause weight is initialized by the given
initial clause weight WB regardless of its current
value. Here, WB determines the degree to prevent
the up-hill moves of increasing the number of
unsatisfied clauses. For example, WB = 100
requires roughly 101 times of weight increments to
accept an up-hill move. On the other hand, for WB
= 1 requires only one time weight increment.
Hence, when the divergence of search directions
before and afler this scheme's application should
be restricted, WB should be assigned a large value.’
This scheme is actually applied when the
minimum number of unsatisfied clauses is not
updated within a predefined number of steps since
its last application or the last update.

4.3 Variable Shuffle Scheme
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When several trials of the weight reset scheme
does not improve the solution quality, the variable
for CL satisfying at most one critical clause is
sequentially flipped. The number of critical clauses
satisfied by each assigned variable is updated
every time the state is changed. The flip procedure
is repeated until no more such variables exist. The
variable shuffle scheme can be regarded as
continuous applications of sideway move and
downhill moves with the unit clause weight.

4.3 Variable Reset Scheme .

To further expand the search space, a
restarting state with larger difference than the
variable shuffle scheme is provided if the aboved-
metioned schemes are insufficient. Actually,
variables that are usually hard to be flipped, are
flipped without any condition. Specifically,
variables are flipped when their opposite value
assignments satisfy many clauses with smaller
clause weights compared to others. In addition, the
number of flipped variables is increased when the
solution quality has still not been improved after
its several applications.

5 Simulations for DIMACS

For the performance evaluation of
MIPS_SAT, the satisfiable DIMACS benchmark
instances are solved. Like most existing SAT
algorithms, the hardest instances "par32" and
“hanoi5*" cannot be solved.

5.1 Parameters in MIPS_SAT

In our tuning process of MIPS_SAT, it has
first been fixed that the global convergence
schemes are applied only for hard instances, of
"parl6”, "f", "g", and "hanoi4". They are applied
when the minimum number of unsatisfied clauses
has not been improved during m iterations, which
assumes that every variable has been flipped once
on average. For "parl6", our simulations have
found that m/2 iterations can speed up the
convergence. Actually, when the global
convergence schemes are applied, the weight reset
scheme is always applied first. Then, the shuffle
scheme is applied when the best state has not been
improved for five consecutive applications of the
weight reset scheme. Finally, the variable reset
scheme is applied when the best state has not
improved for 50 consecutive applications of the
shuffle scheme. For "hanoi4", the variable reset
scheme is applied whenever the shuffle scheme is
applied. Frequent applications of the variable reset
scheme have been found to be very effective. This
SAT instance has only one kind solution, and it



has a lot of deep local minima where only one
unsatisfied clause remains but is still far from the
unique solution. Many restartings from a variety of
states are necessary to escape from them and to
reach the solution state. WB = 1 is normally used
for SAT instances while WB = 10 is for "f600" and
"f1000", WB = 50 for "f2000", WB = 300 for
"g250.29", and WB = 100 for other "g" instances.
We have found that WB should be assigned larger
values in very large size instances. We have also
found that sideway move should not be used for
"par16". The tabu list length is 50 for "g" and "f",
100 for "hanoi4”, and 0 for other instances.

5.2 Effects of Global Convergence Schemes

To see the effects of our schemes for global
convergence, the following four cases are
performed for hard SAT instances:

(1) case 1: weight reset,

(2) case 2: weight reset + variable shuffle,

(3) case 3: weight reset + variable reset, and

(4) case 4: weight reset + variable shuffle +
variable reset. We note that MIPS_SAT cannot
find any solution for hard SAT instances if the
weight reset scheme is not adopted. Table 1 shows
the number of successful runs among 10 runs for
each case in "parl6-2", “"parl6-5", "f2000", and
"hanoi4". For the other instances, any case finds a
solution in any run. This table indicates that each
of three schemes individually helps the state of
2DOM to escape from a local minimum and
converge to a solution. Particularly, they are very
useful to solve "hanoi4".

In addition, the effect of the imitial clause
weight is examined for a large size SAT instance.
Figure 1 depicts the change of the best number of
unsatisfied clauses per 5,000 iteration steps to
solve "g250.29", when WB is varied from 1 to 300.
This figure indicates that the small value easily
saturates the state improvement, where the weight
reset scheme causes too much divergence in search
directions.

5.3 Simulation Results for DIMACS

MIPS_SAT is applied to solve DIMACS SAT
instances. A total of 10 runs are repeated with
different random numbers for each instance. Table
2 shows the instance name, the number of
successful runs among 10 runs, and the average,
the minimum, and the maximum computation
times (seconds) on Pentium-III 550 MHz only for
hard SAT instances. For other SAT instances,
MIPS_SAT can always find a solution in any run
within 1.3 seconds on average. Table 2 indicates
that MIPS_SAT finds a solution in any run even
for hard SAT instances except for “hanoi4"”. For

"hanoi4", the successful run rate is 70%. Most of
existing algorithms cannot always solve these SAT
instances. The extensive search capability of
MIPS_SAT is very sigunificant as an incomplete
approximation algorithm, because an incomplete
algorithm cannot guarantee either to find a solution
even if it exists or to decide its infeasibility. A
large number of repeated runs by

fast efficient algorithms may be necessary to
improve the accuracy of the results obtained by
incomplete  algorithms. We conclude that
MIPS_SAT contributes to achieving the goal of
incomplete SAT algorithms by its extensive search
capability and efficiency for a variety of instances
in the NP-complete satisfiability problem.

6 Conclusion

This paper has presented MIPS_SAT, a
minimal-state processing search algorithm for the
NP-complete satisfiability problem. In
MIPS_SAT, a construction stage first produces an
initial search state by a simple greedy method,
after all unit clauses are extracted and their
corresponding unit variables are assigned values tc
satisfy them. Then, a refinement stage iteratively
seeks a solution state while keeping minimality,
This stage consists of the descent minimal state
transition with three schemes for global
convergence of the weight reset, the variable
shuffle, and the variable reset. The performance of
MIPS_SAT is verified through solving satisfiabls
DIMACS benchmark instances. The simulation
results confirm the extensive search capability and
efficiency of our MIP_SAT. The performance
investigation for solving other instances than
DIMACS  benchmarks and the  further
improvement for solving hardest instances of
"par32" and "hanoi5" will be in our future works.
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parl6-2c | 10/10 | 25.62 6.617 77.15
parli6-3< | 10/10 | 21.73 0.328 75.10
parl6-4-c | 10/10 | 20.36 4.230 58.13
arl6-5 | 10/10 | 24.92 4.171 48.84
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212517 11010 | 120.2 15.67 436.8
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