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A b s t r a c t  

In this paper we propose a modified Morse’s dyna,mic 
certainty equivalent (DyCE) adaptive controllers in the 
continuous-time, single-input single-output linear time- 
invariant plant for the purpose of improving the tran- 
sient performance. In the new scheme the additive feed- 
back loop through a fixed compensator, which means 
non-adaptive one, is included. Furthermore a design 
method for the fixed compensator is also given, and 
performance analysis for the proposed DyCE adaptive 
controller is examined in ternis of the mean square 
tracking error criterion and the C ,  tracking error 
bound. According to the results of tlie paper the tran- 
sient perfornmnce can be improved arbitrarily by the 
properly desiglied fixed compensator. Firially a, Iiunier- 
ical cxarnple is illustrated in order to show the effective- 
ness of the proposed method. 

1 I n t r o d u c t i o n  

Recently much concern has been given to the dynamic 
certainty equivalent (DyCE) adaptive controller pro- 
posed by Morse [l]. Using the DyCE schemes, we 
can assure the stability of the system without the er- 
ror a.ugmentation a.nd tuning error normalization re- 
quired in the t,raditional model reference adaptive COIF 

trol systems (MRAiCS) based on the certainty equiv- 
alence (CE) principle. Siiicc the error augmentation 
aiitl tuning error normalization may bring allout iiiitie- 

sira1.de transient performance, the DyCE adaptive WII- 

t,o improve the tmnsient performancc 
trollers are cmrisidmx~d t o  lie onrs of cfFicic,iit sclieiiir~s 

Indeed performance analysis in DyCE sclieriics l l i j h  

been studied: a.nd tlie direct, computahlr p:rforni;inci> 
bounds in terms of both thc. C2 and C, criteria n‘erci 
given [2], [ 3 ] .  Hon-ex-er controller stri1ctiirt.i stntl icd 
so f i lr  were the same as the traditiorial 1IRXCS. For 
the purpose of improving the trarisient perforiiiaiic~s 
of adaptivc systems, tlie modification of tlic i.oiitroller 
structure is also an efficient approa.ch [3]-[7].  Hence by 
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introducing the idea of the modified adaptive system to 
the DyCE adaptive systems, still more excellent tran- 
sient performance are expected. However this method 
has been mainly applied to MRACS based on the CE 
principle and the transient performance improvement 
in DyCE adaptive controllers using the modification of 
the controller structure has not been studied yet. In 
[4] a fixed compensator was used for the DyCE ada,p- 
tive controller. However the aim to adopt the fixed 
compensator was the disturbance attenuation and the 
robust stability in the presence of unmodeled dynam- 
ics, and the design method of the fixed compensator 
for transient performance improvement was not given. 

Therefore in this paper we propose a modified Morse’s 
dynamic certainty equivalent (DyCE) adaptive co~i- 
trollers in the continuous-time, single-input single- 
output linear time-invariant plant for the purpose of 
improving the transient performance. In the new 
scheme the additive feedback loop through a fixed com- 
pensator, which means non-adaptive one, is included. 
Furthermore a design method for the fixed compen- 
sator is also given, and the performance analysis for 
the proposed DyCE adaptive controller is examined in 
terms of the mean square tracking error criterion and 
the C ,  tracking error bound. According to the results 
of the paper the transient perforniance can lie improved 
a,rbitrarily by the properly designed fixed compensator. 

The following notations are usctl. (.)T, I . 1 ,  1 1  . / I x  / /  . 
rcliresent transpose, Eiiclid norm of vector. L,x norm 
and L2 norm. When / I .  \ I x  is iisrd for traiisfer fiirictiori. 
it represents ‘Hx norm. 1 1  . ll,jg reprcscnt,s 1)t’illi gairi. 
namely C ,  norm of i i np i iL .  ~ i ~ s p o n  . R H ,  r r . p r t s e r i t s  

tlie ring of proper stalile ratiorial functions. 

2 Problem Statements 
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where y p ( t )  and ~ ( t )  are the nieasured oiitput and input 
respectively, and a p ( s )  arid ,B,,(s) are coprime rnoriic 
polynoniials of drgrecs n aiid ‘tn, respectively. The phn t  
is assumed to be strictly proper. In this pa.pcr we only 
consider the plant for the ca.sc of gp = 1. 

Let tlic reference model is described as 

where r ( t )  and y,(t) are the reference model input and 
outpiit respectively, and r ( t )  is a piecewise continuous 
function of time. 

The following assumptions are made for the plant and 
the reference model. 

(A. l )  cyp(s) is a stable monic polynomial. 
(A.2) The relative degree n*of P(s )  is known. 
(A.3) The upper bound on the order n is known. 
(A.4) The relative degree of P M ( s )  is greater than or 

. 

equal to that of the plant. 

The control objective is to determine a differentiator 
free controller so that all the signals in the closed-loop 
system remain bounded and the tracking error tends 
to zero asymptotically, namely 

lim e ( t )  = t-+m lim (yp(t) - ym(t)) = 0. (2.3) 
t-+M 

3 A Cons t ruc t ion  of DyCE A d a p t i v e  
Controller Including a Fixed Compensator 

In this section we construct a proposed DyCE adap- 
tive controller including a fixed compensator and the 
stability of the system is proved. 

Let the following exact model matching (EMM) con- 
troller with the free parameter Q ( s )  E R H ,  be intro- 
duced [7]. 

u ( t )  = - P w ( t )  + K(s ) r ( t )  

where w ( t )  is the state variable filter defined as 

and 0 is the parameter vector of order 2n-  1 so that, the 

[7].  K ( s )  is the feedforimrd compensator which I)elong 
to RH,such that the next equation is satisfied. 

control law (3.1) allows us t o  obtain an  EMXf system 

1 P M ( s )  = - K ( s ) ,  K ( s )  E RH, .  ( 3 . 2 )  
Pm (3) 

Such a K ( s )  exists because the assumption (A.2) are 
made for the reference model P M ( s ) .  The EMM con- 
troller (3.1) has an optional compensator Q ( s ) ,  which 
can be selected freely among the proper stable rational 
transfer functions (RH, ) .  In [7] replacing unknown 
parameters of the EMM controller (3.1) with their es- 
timates based on the CE principle and regarding the 
free parameter Q ( s )  as a fixed compensator, MRACS 
including a fixed compensator was constructed. 

Based on the DyCE principle] in this paper, we con- 
struct MRACS including a fixed compensator using the 
EMM control law (3.1). In DyCE schemes high order 
times derivatives of unknown parameters of the EMM 
system are replaced with their estimates generated by 
an appropriate high order estimator. In order to adopt 
the DyCE principle we rewrite the EMM control law 
(3.1) as follows. 

where [(s) and ( s  + IC) are the factors of Pm(s ) ]  namely 

Pi(. )  = (. + & ) E ( S ) ,  IC > 0 (3.4) 

and [ ( t )  and v ( t )  are defined as 

Since [ ( s )  is a dynamic operator in ( 3 . 3 ) ,  we can obtain 
a DyCE controller by replacing the parameter 0 with 
their estimates 6 ( t ) .  Thus the following control law can 
be obtained. 

(3 .5)  
The control law (3.5) is the DyCE adaptive controller 
including a fixed compensator proposed in this paper. 
Here Q ( s )  is a. fixed compensator, and hi1.s the ability 
to improve the transient performance. The detail of 
how to design Q ( s )  will be given in the subsequent 
section. The additive ft:cdback loop through &(s) is 
the main difference 1)c:twectri the proposed control law 
and conventional ones [ a ] ,  [B]. Indecct whcri Q ( s )  equals 
to zero, the control law ( 3 . 5 )  turns to lie ixiuivaleiit to 
the conventional ones. 

The role of the dyira.niic opcrator [(s) is similar to t.lie 
conventional ones. Namely (( s) rerlucc~s the relativc de- 
gree of the transfer fiiiii:tioii involving t,hc error equa- 

t h r  following way wlic~i thc control law ( 3 . 5 )  is utilizcvi. 
tion. In fact the  tracking wror  e ( t )  can he calculaterl in 

2999 



where e ( t )  is the parametcr error vector defined as 

e ( t )  = i ( t )  - 0. (3.7) 

and E ( t )  denotes an exponentially decaying term due 
to the initial conditions in the plant and the controller 
filters. As mentioned above, the relative degree of the - 

in (3.6) is 
1 

transfer function -- 
S + &  

one due to the dynamic operator [(s). However since 
the transfer function may not be strictly positive real, 
we introduce the filtered error G(t) defined as 

-) 1 e ( t ) .  (3.8) 

Then the error equation (3.6) becomes 

When the E ( t )  is regarded as the error signal, we can 
see that the error equation (3.9) is strictly positive real, 
and the obtained error equation (3.9) is similar to the 
conventional one. Hence the similar high order estima- 
tor to the conventional method [1]-[3] can be utilized. 

1 
where (A, 0, c T )  is a minimal realization of -, and 

Cz(t), i z ( t )  is the i-th component of C(t) and O ( t )  re- 
spectively. p, y are positive constants. In fact the next 
theorem on the stability of the system is satisfied. 

E ( $  

Theorem 3.1 Consider the MRACS with the control 
law (3.5) and the high order estimator (3.10) fo r  the 
unknown plant (2.1) except assumptions (A.1)-(A.3). 
It is assumed that 

(3.11) p > - QY IPoA-'b12 
2% 

,where Po is defined as follows. 

Po 5 PI + E[O]cc7- (3.12) 

where PI is the symmetric positive definite solution of 
ATPI + PIA = - I ,  and q = 2 n  - 1 is the order of 
parameter vector 0. Furthermore Q ( s )  E R H ,  is  as- 
sumed to  be satisfied with. such a condition. 

Under these conditions, all the signals of the closed loop 
system are uniformly bounded, and the control objective 
(2.3) is  achieved. 

Proof: 
the high order estimator (3.10), we define 

At first in order to give the error model of 

& ( t )  e x z ( t )  +[[O]A-l00,, z = l , . . . , q ,  (3.14) 
n 

f jz( t )  = qz(t) - EIO]Oz ,  L = 1,. . . , q. (3.15) 

Using (3.15), we can rewrite (3.10) as 

&(t)  = -rcz(Wt), fjz(0) = E[014z(O) 

&(t)  = $( t )  [A&(t) + b f j z ( t ) ]  , 
Z2(0)  = -~[O]A-'b~,(O), 
ez( t )  = c T Z z ( t ) .  p 2 ( t )  = 1 + p I((t)12 . (3.16) 

The next in order to show that the error model of the 
estimator (3.16) has a positivity property, we consider 
a quadratic function 

V[x(t)l e x(tITITx(t) 

X ( t )  [.T(t),.. . , .3t), Gl(t) ,  . . . , Gq@f 

I T =  a [ ̂ pi .;. A? 1 (3.17) 

AT3 AP? 

where Ap, E RQ(n*-l)Xq(n*-l), Ap, E Rqxq, Ap3 E 
Rq(n*-l)Xq are block diagonal matrices with P1 E 
Rqxq, P2 E R and P3 E Rq respectively. And P2, 
P3 are defined as 

A 1  
P2 = ~ +bTA-TPIA-lb (3.18) 

(3.19) P3 = PlA-lb 

Calculating the derivative of V[x( t ) ]  evaluated along 
the trajectories of (3.16), we obtain 

t PI 
a 

9 

V[x(t)l = IZZ(t)I2 - 2r+(t)E(t) 
z = 1  

-27 Zz(t)TPoA-'0C2(t)G(t) 
z = 1  

9 

5 -E izz(t)lz + 2yklG(t)l2 - 2-/$( t ) ; ( t )  (3.20) 
2 = 1  

where I C ,  $ ( t )  and z l ( t )  are defined as 

(3.21) 

Integrating (3.20) from 0 to t arid rcarrangiiig. wr can 
derive 

I. t 
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On tlic other liitnd. froiii the error equation (3 .9) .  n-e 
gct 

nhrre c l ( t )  = (s + K ) e ( f ) .  Therefore from (3.24) and 
(3.23) it follows that 

t 5 --.(t)’ 1 + fS(0)’ + 1 dr 
2 2 

(3.26) 

for all positive constants 11. From (3.11) it follows that 
n - I; > 0. Hence there exists 11 sufficiently large 

so that n - b - - > 0. Therefore ive conclude that 

6‘ 6(r)’ d r  and I-[x(t)] IS bounded, and we can ob- 

tain that e( t )  and n* - 1 times derivative of the es- 
timated parameter 6 ( t )  is bounded. This means that 
we can extend the solutions of the error equation on 
[0, m). Hence it follows that 6 ( t )  E Cz. Further- 
more since (3 26) is satisfied for all t ,  it follows that 
6 ( t )  E C,. Therefore from (3.8) and (3.13) we con- 
clude that e ( t )  E C2 n C, and y,(t) € Lm. On the 
other hand. from the definition of [ ( t )  vie obtain 

1 
211 

C(t) = II7(S)YP(t) (3.27) 

where Il’(s) is defined a5 

, y l l - l . .  . . . 11 ?‘. (3 .25)  

Since TI*(s) E R H , .  < ( t )  E C,. From (3 .G) and 
e ( t ) ,  <( t )  E C,. it follows that i(t) E C x .  Hewc from 
e ( t )  E C?. it is concluded that c ( t )  couwrges to zcro. 

Finally we shon the IioundeAiic.ss of control input I / .  

Sotiiig that thc- houridedricw of i , , L ( t ) .  i t  folluns from 
the lmundedness of & ( t )  that i , , ( f )  is t ~ o i i r i d w l .  Hc~ricc~ 
<( t )  is bountletl from (3.27). Fur-thcmiorc friiiii ( 3 . G )  

and the boundedncss of i ( t )  and ( ( t ) :  it follows tliat 

S ( t j  is Irounded. \ l l e r i  the relative degree of the plant 
is greater than or equal two. 011e of the reference model 
l ~ ~ o n i e s  greater than or equal tivo. Hence y,,l(t) is 
liounried. and so ij,(t) is bounded. Since we can repeat 
the similar discussic:m until  the high order derii-ative of 
g,,, ( t )  does not exist. the relative degree times deriva- 
tive of y, , ( t )  is bounded. Therefore noting that P ( s )  
is niiniiiial phase. tlie invcrse system from the relative 
degree times derivatil-e of y p ( t )  to input u ( t )  can be 
described as a proper stalile rational function. Hence 
from the boundedness of liigli order derivative of y p ( t )  
it follows that ~ ( t )  is Iiounded. Therefore n-e can shon 
the boundedness of all signal of the closed loop system. 

4 The design method of the fixed compensator 
and performance analysis 

In this section n-e give the design method of the fixe({ 
conipensator for tlie performancc iniprovenieiit. Fur- 
thermore we show that the transient performance can 
be improved arbitrarily by usiiig the proposed fixed 
compensator in terms of the mean square tracking er- 
ror criterion and the C, tracking error bound. 

Using ( 3 . 6 )  the mean square tracking error can be eval- 
uated by 

+Il4t) I12 (4.1) 

and the norm of the tracking error is evaluated by 

+I4t) I .  (4.2) 

Using tlic ielatiori I)c~tn-cvn / I  . / I 1 , < ,  ~ u t l  H ,  iioriii [lo]. 
we get 

(4.4) 
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Proof: FITJIII 0 i . s )  defined i n  (4.5) it follon-s that 

1 < 1. (4.6) 

Ht~icc. from Lcmrria 2.8 in 181 it follows that 

( r  + 1p- I 

1 
1 - Q(s)- is unimodular over RH, .  

&(s) 

From Lemma 4.1 Q ( s )  defined in (4.5) is satisfied with 
(0.13). Therefore the condition of Theorem 3.1 is sat- 
isfied and we can see that the control objective is 
achieved using the fixed compensator (4.5). Further- 
more the 'Hx norm of (4.4) can be evaluated as given 
ill  i h i 3  folloiviiig Lemma hy using the fixed compensator 
('1: -5). 

Lemma 4.2 For given Q(s) in (4.5) there exists a 
positive constant ct which is independent of r such that 

Proof: Substituting Q ( s )  in (4.5) into (4.4) we get 

- 1 (1 - Q'"") 1 
5 + r i  

< 1. r = l : . . . n  . m c  II ( T 5  + r +  1)' II rx 
Xot111g thar 

Dcfiric: (I  as n' rnax ~ then (1 is indepcmrlerit of T 

and (4.7) is satisfied. 

Proof: 
Using (3.8). (3.27) and (3.28) we can obtain 

c( t )= JT-(s)e(t) + Jl'(s)y,,,(t) 

K e  begin n-ith the evaluation of i l C ( f ) l l x .  

/ , \  

Hence l/<(t)llx can be evaluated as 

+ l l ~ ~ ~ - ~ ~ ~ l l ~ 9 l l Y ~ ~ ~ ~ ~ ~ l l ~ '  (4.12) 

Then using the relation between / I  . / I p 9  and 'Hm norm 
[ I O ] ,  we get 

Using (3.26) me get 

Hence from (4.12). (4.13) and (4.14). we get 

where 
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The next we show that B hclong to C2. From (3.16) we 
can derive 

9 

1=1 

2=1 

Hcnce it follows ihat 

From (3.26) we get 

I "9 + &W) + Jrhl l~l( t ) l l2 . (4 .20)  

And froin the definition of p 2 ( t )  and (4.15) and the 
evaluation of I I ( ( t ) l lw,  we get 

2 

l lP2(~)ll 'x, 5 1 + P ( C l l % ) l  + d,) ' (4.21) 

Therefore it follows from (4.19), (4.20) and (4.21) that 

8 E L 2  and we can get 

l l 8 l I 2  I { 1 + Ll  (clle(0)I + d J }  lcTAl 

x ( m l e ( o ) l  + J-316(0)l + f i l l 4 t ) l l 2 )  (4.22) 

Define C2 as the right-hand side of (4.22), then C2 is 
independent of r and (4.10) is satisfied. 

The next we show the evaluation of I16(t)llm. 
(3.26) we get 

From 

TqX(t) ]  5 ye(0)' + y h  F 1 ( 7 ) 2  d r  + <[0]~6(0)~~. 
(4.23) 

On the other hand, from the definition of T'[x(t)] in 
(3.17), we get 

1' 
Anin[n] 

lCl2 
IQ(t)I' 5 Xniiii[n]I~I' I I ' [ x ( ~ ) ]  (4.24) 

where X l n i n  [.I represets the minimal eigenvaliic. Define 
CX as 

then we get I18(t)llm 5 Cs. Since C, is independent of 
7, (4.10) is satisfied. 

Finally we evaluate I IC(L) i lm. Using (3.9) and (4.11) we 
get 

Define thc right-hand side of (4.27) as C,, then C, is 
independent of T and (4.10) is satisfied. 

Using Lemma 4.3 we can give the evaluation of 11' ( # ( ~ ) ~ c ( r ) ) '  d r  mid I18(t)T<(t)llm. 
t o  

Lemma 4.4 There exist positive constants Cg, Cs, 
C7 which are independent of r such that 

1 
t o  /' ( ~ ( T ) ~ < ( T ) ) '  d7 5 -Cs t + C,j (4.28) 

(4.25) (4.31) 
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+ n l l 4 t ) l l 2 .  (4.34) 

Here we used Theorem 6.75 in 1111. Using Lemma 4.3, 
we get 

I c;c; + tc;c,2. (4.35) 

And from (3.26) we get 

I l q t ) l l 2  I c218(0)l + d2 (4.36) 

where 

Hence from (4.34), (4.35) and (4.36) it follows that 

6’ ( e ( 4 T c ( 4 ) 2 d r  

1 L: n(c2p(o)] + d,)2 + zle(o)Ti(o)l‘ 
1 

nl 

Therefore defining C5 and CG as 

+-(C,zc; + t C $ )  + K / I € ( X ) 1 / 2 .  (4.39) 

c.5 = K(C2/H(0)I + d>)Z + L l H ( o ) ’ < ( o ) : ~  2ti 

(4.40) 1 7 +-c;c; + K . l l € ( t ) l l 2  G 
- c 2  Cz 
t i2 3 4 

CG = (4.41) 
1 

we can show that (4.28) is satisfied. On the other hand 
from Lemma 4.3 defining C7 = ClCS, we can show that 
(4.29) is satisfied. 

Using Lcnimas obtained so far, we can evaluate the 
incan square tracking error criterion and the L, track- 
ing error bound for the proposed DyCE MRACS. 

Theorem 4.1 Given MRACS which consists of the 
control 1uw (3.5), the high order estimator (3.10) and 
th,e fin:ed compensator (4.5),  there exist positive con- 
sta.nts Gs, Cs and C7 which is independent of r such 
that 

Proof: It  is clear from (4.1), (4.2), (4.3), Lemma 4.2 
and Lemma 4.4. 

From Theorem 4.1 we can see that transient perfor- 
mance can be improved arbitrarily in terms of the mean 
square tracking error criterion and the C, tracking er- 
ror bound except influences of exponentially decaying 
term due to the initial condition of the system. 

5 Numerical Example 

In this section a numerical example of the proposed 
DyCE adaptive controller is shown in order to illus- 
trate the effectiveness of the proposed design method 
of the fixed compensator. Single-input single-output. 
plant with the transfer function 

1 
P ( s )  = ~ (5.1) (s - 1 ) 2  

is studied. The plant is assumed to be unknown except 
for the following a priori information. 

1) The highest frequcncy gain g p  is kriown(y, = 1). 
2)  The maximal system order n. is known(n = 2). 
3) The plant is minimum phase. 

The control objective is to follow thca reference inotlel 

m d  thc boundedness of all the sig- 

na.ls are assuretl. The refercricc signal is sinusoidal 
wave with period of 277 a n d  amplitude of 1, that is. 
~ ( t )  = sin t .  Tlic characteristic polynoniial of thc rc- 
grcssor vector i s  X(s) = (.s + 2) arid one of th(. secorid 
filter is [(,s) = .i + 1. h: = 1 and -/ = 10 and p = 50 is 
selectctl. p = 50 is satisfied with the condition (3.11). 
A11 the initial conditio11 of the states and the initia.1 
value of tlie control param.eter are assumed to be zero. 

1 
P,Zi(S) = ~ 

(s + 112 
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The simulation results of DvCE adaptive systems h t l l  
n-ithout and with tlie fixed coinpensator are given i:i 
Figure 1 and Figure 2. In Figure 2 7 is selected as 
"i = 0.005. The solid line and tlie dashed !ine repre- 
sent the plant output and the reference niodel o u t p u t  
respectively. 

i) -3'  ' ' ' I 
O 2 4 6 8 10 12 14 16 I 8  20 

Figure 1: Plant output(so1id line) and reference model 
output(dashed line) of DyCE adaptive control 
system without a fixed compensator 

1 -  

I 

-2 '  

0 2 4 8 8 10 12 14 18 18 20 
-3 " " " " ' 

Figure 2: Plant output(so1id line) and reference model 
output(dashed line) of DyCE adaptive control 
system with a fixed compensator ( T  = 0.005) 

From Figure 1 and Figure 2, it folloivs that tlie trail- 
sient performance can be improved according as t lie 
value of T which is the design parameter of thc fixed 
compensator tends to be small. 

6 Concluding R e m a r k s  

In this paper we have proposed the modified llorse's 
DyCE adaptive controller in order to improve the  trari- 
sient performance. In the new scheme the additive 
feedback loop through a fixed compensator is iricludcd. 
The design method of the fixed cornpelisator for the 
purpose of improving the transient, perforrnirncx, is also 
given. Furthermore we show that the transient perfor- 
mance can be improved arbitrarily in terms of the mean 

square tracking error criterion and the L x  tracking er- 
ror bouiid hy the properly designed fixed compensator. 

Essentially the transient performance improvement in 
the proposed method is achieved by high gain feedback. 
Hence the mechanism of the performance improvement 
is similar to ones in the modified URXCS based on the 
CE principle [5]-[7]. However due to the DyCE princi- 
ple. the computable performance bounds of the track- 
ing error can be obtained; n-hich was not given based 
on the CE principle. -4s a future work, the effect of un- 
modeled dynamics on the proposed MR-ICS remains 
to be studied. 
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