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Pattern Classification by Stochastic Neural Network with Missing 
Data 

Masahiro Tanaka, Yasuaki Kotokawa and Tetsuzo Tanino 
Department of Information Technology, Okayama University 

Tsushima-naka 3-1-1, Okayama 700, Jqpan 

ABSTRACT 

In this paper, the pattern classification by stochag 
tic neural networks is considered. This model is also 
termed as Gaussian mixture model. When missing 
data exist in the training data, it is the usual cus- 
tom to remove incomplete instants. Here we take 
another approach, where the missing elements are es- 
timated by using the conditional expectation based 
on the estimated model by using the EM algorithm. 
It is shown by using Fisher’s Iris data that this ap- 
proach is superior than removing incomplete data. 

1. INTRODUCTION 

For pattern classification, various models have been 
considered in the field of neural networks. Multilayer 
neural network with sigmoidal activation function is 
widely used, where the learning is by “back propaga- 
tion” (Rumelhart et al. [SI). 

Gaussian function is also used in neural networks. 
The so called RBF network is usually adopted for 
function approximations (e.g. [3]), where Gaussian 
functions are used as the basis functions. 

There is another class of neural networks with Gaus- 
sian functions, where the network is used for pattern 
classification. This is called “stochastic neural net- 
work”, where the Gaussian functions are used to rep- 
resent the probability density functions (PDFs) for 
each pattern class. The simplest way to build stochas- 
tic neural networks is to use Parzen window [5]. 

Gaussian mixture, or also referred to  Gaussian sum, 
has a wide applicability of PDF approximations[7]. 
The classification is done based on the Bayesian ap- 
proach, i.e. a vector is judged to belong to  the class 
for which the a posteriori PDF is the largest, i.e. 

‘ 

class of z = arg max ,&si(*) 

where gi(z) is the probability density function of 2 

for the class i ,  and ,f3j is the prior probability of the 
class. The parameter estimation scheme was derived 
by using the EM algorithm [SI. 

In this paper, we exploit the stochastic representation 
of the data for the estimation of missing data based 
on the conditional expectation formula. 
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In section 2, the model is defined. In section 3, the 
learning algorithm is shown. In section 4, a numerical 
example is shown. 

2. MODEL 

Gaussian mixture model has been often used in 
statistical estimation problems for more than three 
decades where non-Gaussian distribution is well ap- 
proximated and the various estimation schemes de- 
veloped for the Gaussian model can be applied easily. 

Streit and Luginbuhl [8] proposed the model and the 
learning scheme in this kind of framework. 

Let the classes be expressed as j = l , . .  . , M ,  the 
problem is to classify n-dimensional real vectors z 
into M classes. 

The Gaussian mixture model for the class j(= 
1 , . . . , M) is described by 

G I  

where 

i denotes the index of the composite Gaussian func- 
tion and aij is the weight coefficient. 

The learning elements ‘ in  this model are 

@j = { @ ~ ~ , % ~ I . . . I @ G , } I  @,j = { p i j ~ c i j }  

{a*j,pjj,Z%j;Z = l , . . . , G j , j  = 1 , . . s I M } .  

In the above expression, the following constraints 
must be satisfied. 

aij 2 0 V i , j  

G i  
. -  ai, - 1 V j  

i=l 
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Cij > O(positive definite) W , j  

3. LEARNING 

The EM algorithm is even faster than the gradient de- 
scent algorithms [4] (the convergence rate is super lin- 
ear), but the advantage of the usage of EM algorithm 
is not only that. It has a nice property that the es- 
timated parameters can easily satisfy the constraints 
that have to be satisfied, These are satisfied automat- 
ically, while in the gradient descent, some additional 
trick is necessary, e.g. penalty for non-feasible values. 

3.1 Estimation of Parameters 
We derive the learning algorithm based on the EM al- 
gorithm. Although the PDF is Gaussian mixture, it is 
possible to treat that each datum instant is generated 
from one of the Gaussian sources. This is illustrated 
in Fig.1. 

datum 

--.. 
select one of them with probability 

Fig. 1. Generation of Gaussian mixture data 

Thus, if we know the source channel of Gaussian sig- 
nal, the problem is reduced to the Gaussian problem 
which has been extensively studied so far. 

Suppose the channel i k , j  has generated Z k J .  Also, 

and further 

a1 is the a priori probability of the class 1. Let c j , ~  be 
the cost function where the correct class is 1 and the 
judgement class is j. Then the risk pj(z) for judging 
the input o to be the class j is given by 

Ti M Ti M x = { { 2 k , j ) k = l ) j = l l  I = { { i k B j } k = l } J = l  

T =  {X,Z} 

M 

pj N c j , r a l g l ( a )  
I=1 

Thus the decisioifto minimize the risk can be written 
as 

j = arg minpj(z) 

3.1.2 Complete Likelihood and Eh4 Algorithm. The 
EM algorithm proposed by Dempster et al. [l] is a 
method when there is a imany to one mapping from 
some unobservable intermediate variable to the obser- 
vation and it is effective when the likelihood function 
for the intermediate variarble is easy to obtain. 

From the stochastic formiula, we have 

where Lu(X;Q) = p ( X I 0 ) .  Therefore 

Define 
Q(Ql0‘) = E [logp(X, IlO)lX, 0’1 

Froni Jensen’e inequality 
E [log P(IIX, S)lX, 0’1 5 E [log P(ZIX, c3’)IX, 0’1 

Hence, by selecting 0 such that &(@IO’) :. Q(0’10‘) 
holds, 

is guaranteed. 

Since 

the complete likelihood is given by 

logL(X;8) = logp(X,,qo) - logP(I(X,O) 

E[logL(X;O)IX,O’] > E[logL(X;O’)IX,0’] 

P(X1 ZlO) = P(IIO)P(XII,@> 

P(X,IIQ) = n n ajai*J,jpikJ,j(zkjIOi,J,j) hf TJ 

j = 1  k = l  

The conditional expectation is given by 

Then, since the unspecified stochastic variable is only 
Z, we have 

Q(Ql0’) = E [ b p ( X ,  I l@) lX,W 

Q(0lQ’) = logp(X, .TIO)P(IIX, 0’) 
r 

where 

* .  * E::=, * .  . c::,M::l 
By applying the Bayes’ rude, we have 

hf TJ 
3 -  

3.1.1 Incomplete Likelihood. If the channel that gen- 
erated x k j  for the class j is unknown (i.e. the case 
when I is unknown), the PDF of X given 0 is the 
usual likelihood, termed “incomplete likelihood” in 

= n w i k J , j ( x k j )  
j = 1  k = 1  

and 

%, , j  ( z k j )  
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Separating I into i k j  and the other E's, we have 
It can be found in the 'commonly used databases 

= xF [ 5 log("ijPij(zkjIOikJ,j))(C p(IIx,@'))  (e.g. [3]) that missing data is not a special case but 
a very common situation.; If we delete all the missing 
data instants, the amount of available data sometimes 
become very small and the useful information may be 
lost. 

Thus, we restore the missing point based on the es- 
timated model and exploit the partially missing data 
instants. In the following, how to restore the data is 

f i*,=l I\ikJ 1 
= 1% ( " i j p i j  ( Z k j  l@i j  )) W : j  ( s k j  ) 

j k i  
Hence 

&(@IO') = Tj logpj 

+ 'Ti3 l o g ( " i j P i j ( z k j  l o i j ) ) w : j ( z k j )  explained. 

j 

j k i  

= Qt + Q z  + Q3 

where 

j = 1  i=l k = l  

Q3 = ~ ~ ~ W : j ( z k j ) l O g P i j ( z k j l e i j )  
j i b  

The problem is to maximize this with respect to 0 = 
{ { ~ j } , { " i j , P i j } , E i j } } .  

Based on Q(OlO'), we have the following update 
equations for the parameters. 

T j  pj = - T 

First the missing elements of the vector z k j  are gath- 
ered to the top. The transformation matrix is ex- 
pressed T k j ,  with which we have 

T k j z k j  = [ 1:; ] 
where vkj is a vector of missing elements and the 
remaining are denoted by % k j .  

Since what we want to know is the estimate of y k j ,  
we estimate it by 

(7) 

where E ( " ) [ . ]  means the expectation based on the 
available model at  time n. Since 

P ( " ) ( Y k j I " k j )  = 
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we have 4. NUMERICAL EXAMPLE 

xi a~~)Sglljgi(n)(~llj,'kJ)dvkj 

xi J gin)(gkj  1 )dg,j 

(27+n-m)/2 - 

The Fisher's iris data [2] is commonly used for testing 
the classification algorithms. The data of irises are 
labelled, which are "Iris selosa (1)" "Iris versicolor 
(2)" and "Iris verginica (3)". 

The dataset consists of 4 elements: Sepal length (XI), 
Sepal zuidlh ( q ) ,  Petal length (23) and Petal width 

E(")[Ykj l z k j ]  = 

By some cumbersome matrix manipulations, we have 
1 1 

/ g y ' ( v k j ,  'k j )dgkj  = lAg)11/2 

x exp{-s ( x k j  - z;;) (~(2n2)l-l ( x k j  - $j)} ( 2 4 ) .  
1 T 

and Table 1 shows some statistics of the data. 

TABLE 1 Statistics of original da.ta - 

where the parameters in the right hand side are the 
estimated values by the EM algorithm in the current 
iteration, 

3.3 Whole Algorithm 

21  1 2 2  I 23 I "'L 
mean value 

standard deviation 

The contribution of this parper is to simultaneously es- 
timate the unknown system parameters ancl the miss- 
ing data. Thus, we comparre the results of two cases: 
one is the approach this paper has proposed (Model 
A) and the other one is to delete the incomplete data 
instants and estimate the parameters (Model B). Fig. 2 shows the flowchart of the proposed algorithm. 

The initial model uses random model. 

initial model e 
estimate missing data 
by eqn. (7) for 

&Step (eqn. (1).(6)) for 
j= I ,.... M, k= 1 ,... ,Tj 

t 

t 
Evaluate the test data 

~ END 

First 75 (= 25 x 3) instimces were selected as the 
learning vector and same number of instances were 
for the testing. In each experiment, the performances 
are compared for the models A and B. 

Model A is built with usiing all the learning data by 
estimating the missing elements. 

Model B is built with data with instances of all the 
elements existing. By using the model thus obtained, 
the testing data are evaluated by first int'erpolating 
the missing elements and next classifying using the 
model. This evaluation method is the same for Mod- 
els A and B. In all the corresponding experiments 
(e.g.Figs. 3,4), the missing instants were supposed to 
be the same. 

As we can expect that the Model A is generally supe- 
rior because more information is used, the following 
results support this hypothesis. In all the following 
figures, the real lines denote the classificakion error 
percentages for the learning vectors, and the dashed 
lines for the test data. 

Fig. 2. Flowchart of proposed algorithm Figs. 3 and 4 show the misclassification portion for 
the learning and test datar by the model wrth kernels 
(l,l ,l),  respectively for thie models A and B, also re- 
spectively. Here, about 5% of all the elements were 
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supposed to  be missing. 

In the 10% case, 25 instants of data were incomplete, 
thus, a lot of information has to  be lost if partially 
missing datum is to be removed. Figs. 5 and 6 show 
the results by using (5,5,5) kernels, and Figs. 7 and 
8 show the results for 10% case by (5,5,5) model. 

In the 25% case, 50 instants of data were partially 
missing.Figs. 9 and 10 show the result for this case. 
The Model B is inappropriate for such very incom- 
plete data. Model B had a numerical problem for 
computing ( 6 ) ,  i.e. the denominator is sometimes 0. 
This is because, as the learning proceeds with small 
amount of learning data, the kernel becomes very lo- 
cal (E tends to  zero matrix) and thus, there is no 
Gaussian kernel that covers for many instants of test 
data. 

Jo . . . . . . . . .  

Fig. 3. Model A (1 kernel,5% missing) 

t , . . . . . . . . .  

/ Fig. 5. Model A (5 kernels, 5% missing) 

Fig. 6. Model B (5 kernels, 5% missing) 

Fig. 7. Model A (5 kernels,lO% missing) 

Fig. 4. Model B (1 kernel,5% missing) 

It should be noticed that the classification errors are 
not always monotinically decreasing, rather in many 
cases, the error rates increase as the learning pro- 
ceeds. Although it was not shown here, the likeli- 
hood function values are always increasing which is 
the explicit objective function to be maximized. 

5.  CONCLUSIONS 

Since the objective function was the likelihood func- 
tion, the learning successfully proceeds as the number 
of epochs increased. But, with respect to the classifi- 
cation result, the ability of the model attains its best 
property only at the second or third epoch. As far as 
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Fig. 9. Model A (3 kernels,25% missing) 

_ _ _ _ _ _ _ _ _ _ _ - - - - - - - -  
*____I 

--.&-a-= 

Fig. 10. Model B (3 kernels,25% missing) 

we consider the classification problems, this problem 
has to be extensively studied. 

TABLE 2 Centers of the kernels, 
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