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Finite-size-scaling analysis of theXY universality class between two and three dimensions:
An application of Novotny’s transfer-matrix method

Yoshihiro Nishiyama
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sReceived 12 December 2004; published 12 April 2005d

Based on Novotny’s transfer-matrix method, we simulated thesstackedd triangular Ising antiferromagnet
embedded in the space with the dimensions variable in the range 2ødø3. Our aim is to investigate the
criticality of theXY universality class for 2ødø3. For that purpose, we employed an extended version of the
finite-size-scaling analysis developed by Novotny, who utilized this scheme to survey the Ising criticality
sferromagnetd for 1ødø3. Diagonalizing the transfer matrix for the system sizesN up toN=17, we calculated
the d-dependent correlation-length critical exponentnsdd. Our simulation resultnsdd appears to interpolate
smoothly the known two limiting cases, namely, the Kosterlitz-ThoulesssKTd andd=3 XY universality classes,
and the intermediate behavior bears close resemblance to that of the analytical formula via the 1/N-expansion
technique. Methodological details including the modifications specific to the present model are reported.

DOI: 10.1103/PhysRevE.71.046112 PACS numberssd: 64.60.2i, 05.10.2a, 05.50.1q, 75.10.Hk

I. INTRODUCTION

In analytical approaches, the spatial dimensiond is treated
as a continuously variable parameter, and, correspondingly,
various quantities such as the critical indexes are expressed
explicitly in terms of the parameterd. Such an approach
allows us to see how the criticality changes from the classical
smean-field-liked one as the spatial dimension deviates from
an either lower or upper critical dimension gradually. How-
ever, it is not quite obvious that such an analytical formula
could be justifiedsrealizedd by actual first-principles simula-
tions sand hopefully by experimentsd with respect to realistic
lattice models. In fact, in conventional computer-simulation
approaches, one has to fix thesembeddingd spatial dimension
to a certain integral value, and thus the analysis on criticality
has been restricted to the integral values ofd inevitably.

An attempt to circumvent such a restriction was made by
Novotny f1–4g. His approach stems on a very formal expres-
sion for the transfer matrix so that the embedding spatial
dimension can be varied continuously.sWe explain his
method in the next section. As anticipated naturally, this
method is also of use in studying high dimensionalsdù3d
systems. We refer readers to Refs.f1,5g for this develop-
ment.d Based on this formulation, he performed an extensive
computer simulation, and surveyed the criticality of the Ising
ferromagnet for 1ødø3. Astonishingly enough, he found
that the numerical result is well described by both the 1+e
and 4−e expansion formulas. In other words, his result clari-
fies that the analytical formulas for fractional values ofd are
meaningful in the sense that they are reproduced by the first-
principles-simulation scheme.sStrictly speaking, he utilized
two distinctive approaches to control the embedding spatial
dimension. In Ref.f2g, he varies the “connectivity” of the
lattice, whereas in Refs.f3,4g, he twists the boundary condi-
tion to control the magnetic-domain-wall undulations.d Here,
we stress that the Novotny approach is not a mere dimen-
sional interpolationscrossoverd that has been studied exten-
sively in the past studyf6,7g.

In this paper, we apply Novotny’s method to the “stacked”
triangular Ising antiferromagnetf8–21g embedded in the

space with the variable dimensions 2ødø3. Because of its
Z6 invariance, the model should exhibit theXY universality
class at the magnetic transition pointf22–26g. Our aim is to
examine whether his method is applicable to generic prob-
lems other than the Ising universality class. We calculate the
d-dependent correlation-length critical exponent. Thereby,
we will show that the simulation result is comparable with
the analytical 1 /N-expansion result up toOs1/Nd f27–30g.

In fairness, it has to be mentioned that the critical phe-
nomena for noninteger dimensions were studied extensively
in the pastf31–35g. In these works, the authors set up their
lattice models on a fractal structuresthe Sierpinski gasketd in
order to realize a magnetism in the fractional spatial dimen-
sions. Here, we stress that in our approach, the spatial dimen-
sion can be varied continuously within a range.

The rest of this paper is organized as follows. In the next
section, we explain how we constructed the transfer matrix
for the stacked triangular antiferromagnet in 2ødø3. In
Sec. III, we present the numerical results. Managing an ex-
tended finite-size scaling analysis, we estimate the
correlation-length critical exponent in the range 2ødø3. In
the last section, we present summary and discussions.

II. CONSTRUCTION OF THE TRANSFER MATRIX FOR
THE “STACKED” TRIANGULAR ANTIFERROMAGNET

IN 2ÏdÏ3

In this section, we set up the transfer matrix formalism to
simulate the “stacked” triangular antiferromagnet embedded
in the dimensions 2ødø3. Our formalism is based on No-
votny’s ideaf1g, with which he studied the Ising ferromagnet
on shyperd cubic lattices; in an earlier paperf5g, we adopted
his idea to thed=3 Ising ferromagnet with plaquette-type
interactions. Before going into details, we first set up a basis
of our scheme; namely, we dwell on the particulard=3 case.
Then, we extend this preliminary basis to incorporate the
embedding-spatial-dimension variation. We will also provide
a number of technical modifications to improve the effi-
ciency of the numerical simulation.
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We decompose the transfer matrix into the following two
contributions,

T = T'(Ti, s1d

where the symbol( denotes the Hadamardselement by el-
ementd matrix multiplication; note that the multiplication of
local Boltzmann factors yields the global Boltzmann weight.
As explained belowssee also Fig. 1 for the geometrical
structure of our finite-size clusterd, the decomposed partsT'

and Ti account for the contributions from the intra- and in-
terplanestriangular latticed interactions, respectively.

First, let us consider the componentTi. The matrix ele-
ments are given by the formula,

Tij
i = ki uAu jl = WSsi,1dSsi,2d

Ss j ,1dSs j ,2dWSsi,2dSsi,3d
Ss j ,2dSs j ,3d

¯ WSsi,NdSsi,1d
Ss j ,NdSs j ,1d, s2d

where the indexesi and j specify the Ising spin configuration
for both sides of the transfer-matrix slice; see Fig. 1. More
specifically, we considerN spins for the transfer-matrix slice,
and the index i denotes a spin configuration
hSsi ,1d , . . . ,Ssi ,Ndj arranged along the “leg.” The factor
WS1S2

S3S4 stands for the local Boltzmann weight for a unit cell of
the triangular lattice with the corner spinshS1,S2,S3,S4j. Ex-
plicitly, it is given by the following form,

WS1S2

S3S4 = expF−
1

T
S J

2
sS1S2 + S2S4 + S4S3 + S3S1d + JS1S4DG .

s3d

sThe denominator of the coupling constant is intended to
avoid double counting.d Here, the parameterT denotes the
temperature, and the parameterJ stands for the intraplane
antiferromagnetic interaction constant. Hereafter, we choose
J as the unit of energy; namely, we setJ=1. It is to be noted
that the componentTi swith T' ignoredd leads to the transfer-
matrix for a sheet of triangular antiferromagnet. In other
words, the remaining componentT' should raise the dimen-
sionality to d=3 through introducing the interplane interac-
tions. This is an essential idea of the Novotny methodf2g.

Second, we consider the componentT' that accounts for
the interplane interaction. The explicit matrix elements are
given by the following formula,

Tij
' = ki uBPvuil, s4d

with the interaction distancev. The matrixB is given by the
formula

ki uBu jl = WSsi,1dSs j ,1d
' WSsi,2dSs j ,2d

'
¯ WSsi,3dSs j ,3d

' , s5d

with WS1S2

' =exps−jS1S2/Td and the interplane interactionj .
The matrixP denotes the translational operator: That is, with
one operation ofP, a spin arrangementhSsi ,mdj shifts to
hSsi ,m+1dj; note that the periodic boundary condition is im-
posed. An explicit representation ofP is given in an earlier
paperf5g. Because of the insertion ofPv, the interactionB
bridges thevth neighbor pairs along the leg, and so it brings
about the desired interplane interactions. As a matter of fact,
in Fig. 1, we notice that the alignment of spins is folded into
a rectangular shape with the edge lengthsv andN/v. It is an
essential idea of Novotny that the operationPv is still mean-
ingful, although the powerv is not an integral value. This
rather remarkable fact renders freedom that one can construct
thed=3 transfer-matrix systematically with arbitrary number
of spinsN.

Based on the above formalism, we readily simulate the
stacked triangular antiferromagnet ind=3. In the following,
we propose a scheme to tune the embedding spatial dimen-
sion continuously. Moreover, we will also provide a number
of technical modifications, aiming to improve the efficiency
of the simulation.

There are two controllable parameters for the dimension
variation. That is, the interplane interactionj and the inter-
action distancev: Apparently, the limit j →0 reduces the
system to a sheet of triangular lattice. On the other hand, for
large v, the stack widthN/v decreases, and, eventually, at
v=N, the system reduces to a sheet of triangular lattice as
well; note the identityPN=1 owing to the periodic boundary
condition. In this paper, we adopt the former scheme.
Namely, we will tune the parameterj , fixing the interaction
distancev to a moderate valuev=0.27N. This choice is
based on our observation that the finite-size-scaling behav-
iors become quite systematic forv<N/n sn: integerd, par-
ticularly at n=4.

Lastly, let us explain a number of technical modifications
to improve the efficiency of the simulation: We propose the
following replacement,

Tij
' = ki uBPvuil → Tij

'svd = ki uBPvuilki uP−vBuil. s6d

sNote that, correspondingly, we need to replace the tempera-
tureT with 2T in order to compensate the duplication.d With
this trick, the transfer-matrix elements become real: Other-
wise, the elements are complex for even values ofN. As a
matter of fact, in the past simulationsf1,2,5g, those cases of
even values ofN were excluded. Such an exclusion is obvi-
ously disadvantageous in the subsequent data analysis, be-
cause the available systems sizes are restricted severely. In
our simulation, because of the above trick, we are able to
consider arbitrary system sizes. In addition to this, we sym-

FIG. 1. A schematic drawing of the construction of the transfer
matrix for the “stacked” triangular antiferromagnet. Our scheme is
based on Novotny’s ideaf1g. The sheet of triangular antiferromag-
net extends along the “leg.” The leg is folded into a rectangular
shape: To be specific, with use of the translation operatorPv sv:
interaction distanced, we build a bridge between thevth neighbor
spins along the leg.
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metrize the transfer matrixf2g with the following replace-
ment,

T'svd → T'svd(T's− vd. s7d

sSimilarly as the above, we need to redefine the temperature
T→2T.d With this symmetrization, the symmetry of the de-
scendings j =N,N−1, . . .d and ascendings j =1,2, . . .d direc-
tions becomes the leg become completely restored. We ob-
served a significant improvement of the finite-size scaling
behavior due to this symmetrization.

III. NUMERICAL RESULTS

In the preceding section, we developed a transfer-matrix
formalism for the stacked triangular antiferromagnet embed-
ded in the fractional spatial dimensions 2ødø3. In this sec-
tion, we present the numerical results calculated by means of
the exact-diagonalization method for the system sizes up to
N=17. We analyze the data with the extended finite-size
scaling analysisf2g which allows us to estimate the “effec-
tive” dimensiondef f. The effective dimension plays a signifi-
cant role in the subsequent analysis of the criticality of the
magnetic transition.

A. Effective dimension: Extended finite-size
scaling analysis [2]

Before going into detailed analysis on the criticality, we
need to estimate the effective dimensiondef f f2g: At the criti-
cal point, the correlation length should be comparable to the
linear dimension of the finite cluster. Hence, the correlation
length j should obey the formulaj,N1/sdef f−1d; note that a
transfer-matrix slice containsN lattice points, and its embed-
ding spatial dimension should bedef f−1. This formula im-
mediately yields an estimate for the effective dimension,

def f
N,N8sTd =

1

ln„jNsTd/jN8sTd…/lnsN/N8d
+ 1, s8d

for a pair of system sizessN,N8d. By means of the transfer-
matrix method, the correlation length is calculated immedi-
ately: Using the largest and the next-largest eigenvalues,
namely,l1 andl2 of the transfer matrix, we obtain the cor-
relation length asj=1/ lnsl1/l2d. Provided by this, accord-
ing to Ref. f2g, we are able to determine both the critical
temperatureTcsN1,N2;N3,N4d and the effective dimension
def fsN1,N2;N3,N4d so that they satisfy the following equa-
tion,

def fsN1,N2;N3,N4d = def f
N1,N2

„TcsN1,N2;N3,N4d…

= def f
N3,N4

„TcsN1,N2;N3,N4d…, s9d

for the set of the system sizessN1,N2;N3,N4d. To summa-
rize, in the extended finite-size scaling analysis, the spatial
dimension is not a given constant, but a parameter that is to
be determineda posterioriwith the data analysis of the cor-
relation lengthj. As mentioned in the above, in the transfer-
matrix method, the correlation length is calculated quite
straightforwardly. In that sense, the transfer-matrix approach
is suitable to this type of finite-size-scaling analysis.

In order to examine the validity of the scaling parameters,
def f andTc, determined with the above method, we plotted, in
Fig. 2, the scaled correlation lengthsT−TcdN1/snsdef f−1dd

-j /N1/sdef f−1d for def f=2.50, Tc=5.13, 1/n=1.36, j =1.5, and
N=13,14, . . . ,17. These scaling parameters, namely,def f and
Tc, are determined from the set of system sizess14,16;13,16d
via the extended finite-size-scaling analysis.sWe explain
how we determined 1/n=1.36 afterward.d We see that the
scaled data collapse into a scaling function quite satisfacto-
rily. Hence, we confirm that the scaling parameters,def f
=2.50 andTc=5.13, are indeed meaningful. More signifi-
cantly, we stress that our simulation data should be described
under the assumption that the effective dimension takes such
a fractional value.

In order to analyze the criticality further in detail, we
calculated the Roomany-Wyld approximativeb function,
which is given by the following formulaf36g,

bN,N8sTd =
1 − sdef f − 1dlnsjN/jN8d/lnsN/N8d
Î]TjNsTd]TjN8sTd/jNsTd/jN8sTd

. s10d

In Fig. 3, we plottedb14,16sTd for the same parameters as

FIG. 2. Scaling plot of the correlation lengthsT−TcdN1/nsdef f−1d

−j /N1/sdef f−1d is shown for j =1.5 and the system sizesN
=13,14, . . . ,17. The symbols1, 3, p, h, andj denote the system
sizes ofN=13, 14, 15, 16, and 17, respectively. The scaling param-
eters are set to be 1/n=1.36,def f=2.50, andTc=5.13; see text for
details. We see that a good data collapse is achieved under a frac-
tional value of the effective dimensiondef f=2.50.

FIG. 3. We plotted the beta function,b14,16sTd s10d, for the same
parameters as Fig. 2. From the slope at the transition point, we
estimate the correlation-length critical exponent as 1/n=1.36.
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those of Fig. 2. The functional form of thisb function seems
to be almost straight, indicating that the corrections to the
finite-size scaling are almost negligible. This fact accounts
for the good data collapse of Fig. 2 shown above. From the
slope of thisb function at the transition pointT=Tc, we are
able to estimate the inverse of the correlation-length critical
exponent as 1/n14,16=1.36. To summarize, we estimated the
exponent 1/nN,N8 from the set of system sizessN,N8d. In
prior to this analysis, we should determine the scaling pa-
rameters,def f and Tc, from the extended finite size scaling
analysis for sN1,N2;N3,N4d. We will exploit the
def f-dependence of 1/n in the next subsection.

Lastly, we exploit the region in close vicinity of the lower
critical dimensiond=2, at which the KT-type singularity
should emerge. In Fig. 4, we present the functionb14,16sTd
for j =0.9,Tc=2.74, anddef f=2.07; these scaling parameters
were determined from the set of system sizess14,16;15,17d.
In contrast to the behavior shown in Fig. 3, theb function is
curved particularly in the vicinity of the transition point. Ac-
tually, we estimate the slopescritical exponentd as 1/n14,16
=0.804, which is considerably suppressed compared with
that of Fig. 3. This feature indicates that an essentially
singular-type critical behavior emerges asdef f→2. For T
,Tc, the b function starts to increase, and, eventually, it
becomes even positive in the low-temperature regime. Such
a feature may reflect an instability to theZ6-symmetry-
broken phase. Actually, it has been knownf22g that right at
d=2, an additional phase transition of the KT type takes
place at a low temperature, where theZ6-symmetry-breaking
field becomes marginally relevant. The simulation data
around this regime may be affected by the notorious loga-
rithmic corrections to the finite-size-scaling behavior, which
are inherent to the KT-type critical phenomenon.

B. Correlation-length critical exponent 1/n„deff… for deff

In the above, we analyzed the criticality of the magnetic
transition for j =1.5 and 0.9 in terms of the effective dimen-
siondef f. Managing the similar analysis for variousj , we are
able to survey thedef f-dependence of the critical exponent
1/nsdef fd. In Fig. 5, we plotted the critical exponent 1/n for

variousdef f. The exponent was determined from the set of
system sizes,sjd s14,16d, s3d s15,17d, s* d s14,16d, andshd
s13,17d, for respective symbols, and the corresponding scal-
ing parameters, namely,def f and Tc, had been determined
from the set of system sizessjd s14,16;15,17d, s3d
s15,17;13,17d, s* d s14,16;13,16d, and shd s15,17;13,17d, re-
spectively. We also plotted a result 1 /n=1.489 09s60d for the
d=3 XY universality classf37g with the symbol1. We no-
tice that our numerical results interpolate smoothly the
known limiting cases of KTs1/n=0d andd=3 XY universal-
ity classes. As for a comparison, with a dotted line, we pre-
sented the 1/N-expansion-approximation result up to
Os1/Nd f27–30g,

1

n
= d − 2 +

2s3 − eds2 − ed
Ns4 − ed

4 sin
pe

2
Gs2 − ed

pGS1 −
e

2
DGS2 −

e

2
D , s11d

with N=2 ande=d−2. Rather remarkably, we see that the
simulation data and the 1/N-expansion result exhibit similar
intermediate behaviors. In other words, we can make contact
with such a dimensional-regularized analytical expression
via the computer simulation calculation. On closer inspec-
tion, however, it seems that our first-principles simulation
predicts even more convexlike functional form. Actually, our
simulation result suggests a notable steep increase aroundd
=2.

It is to be noted that our data extend to the regime exceed-
ing the thresholdd=3. As a matter of fact, we intended to
cover the parameter range 2ødø3, when we constructed
the transfer matrix in Sec. II. However, such a feature was
also observed in a previous study of the Ising ferromagnet
f3g. In the study, the author reported that the effective dimen-
sion does exceed the intended range, and, astonishingly
enough, the data are still in good agreement with the
s4−ed-expansion result. We expect that our result makes
sense even fordef f.3 as well. Our data seem to approach to

FIG. 4. The beta function,b14,16sTd s10d, is plotted for j =0.9
and def f=2.07. We notice that fordef f<2, the beta function gets
curved, indicating that a nonstandardsessentially singulard critical-
ity emerges. From the slope at the transition point, we estimate the
correlation-length critical exponent as 1/n=0.804.

FIG. 5. The inverse of the correlation-length critical exponent
1/nsdef fd is plotted for the effective dimensiondef f. The exponent is
determined from the pair of system sizes,sjd s14,16d under the
extended scaling analysisf2g for s14,16;15,17d, s3d s15,17d with
s15,17;13,17d, spd s14,16d with s14,16;13,16d, andshd s13,17d with
s15,17;13,17d, for respective symbols; see text for details. We also
plotted the 1/N-expansion-approximation result up toOs1/Nd
f27–30g. The symbol1 denotes a result for thed=3 XY modelf37g.
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the mean-field value 1/n=2 asd→4 rather directly than the
1/N-expansion-approximation result.

In close vicinity of the lower critical dimension, particu-
larly, arounddef f<2.3, the numerical data turn out to be
scattered. As noted in the preceding subsection, this data
scatter should be attributed to the logarithmic corrections to
the finite-size scaling, which are inherent to the KT-type
critical behavior.

IV. SUMMARY AND DISCUSSIONS

In this paper, we developed a transfer-matrix scheme to
simulate the “stacked” triangular antiferromagnet embedded
in 2ødø3. Our scheme is based on Novotny’s idea, which
has been applied to the Ising ferromagnetsuniversality classd
in 1ødø3 successfullyf2–4g. Here, we studied theXY uni-
versality class in 2ødø3; the triangular antiferromagnet
should belong to theXY universality class due to theZ6
symmetryf22–26g. The numerical data are analyzed in terms
of the extended finite-size-scaling methodf2g, which allows
us to estimate the effective dimensiondef f. Thereby, we ob-
tained thedef f-dependent correlation-length critical exponent
1/nsdef fd; see Fig. 5. We notice that our first-principles data
interpolate smoothly the known limiting cases of both KT
andd=3 XY universality classes. Furthermore, we found that
the intermediate behavior bears close resemblance to that of
the analytical formula via the 1/N-expansion technique. In
other words, by means of the computer simulation method,
we are able to checkssupportd the validity of the
dimensional-regularized formulas with thee and 1/N expan-
sion techniques. On closer inspection, our simulation result
suggests a notable steep increase aroundd=2.

The present study on the stacked triangular antiferromag-
net shows that the Novotny method would be generic, and it
should be applicable to a wide variety of universality classes
other than the Ising universality. So far, the transfer-matrix
approach has been restricted to the problems in two dimen-

sions, because it requires huge computer memory space as
the system size increases.sAlthough the density-matrix-
renormalization-group method resolves this difficulty to a
considerable extent, its extension tod=3 is still a current
topic underwayf38g.d With the aid of the Novotny method,
we are able to construct the transfer matrix ford.2 quite
systematically with a modestsactually, arbitraryd number of
constituent spins. Moreover, we can survey the criticality
even in the fractional dimensions by means of the extended
finite-size-scaling analysis. This opens a way to reexamine
the longstanding problems in three dimensions such as the
chiral universalityf39g and the Lifshitz-type multi-critical
phenomenonf40g.

One may wonder what affects the variation ofdef f most
significantly: Actually, there have been known two ap-
proaches in order to controldef f in the past studies of the
Ising ferromagnet. In Ref.f2g, the interaction distancev, in
other words, the connectivity of the finite-size cluster, is
tuned carefully. On the other hand, in Refs.f3,4g, the bound-
ary condition is twisted so as to control the thermal undula-
tions of the magnetic domain walls. In our scheme, as ex-
plained in Sec. II,we fixed the lattice connectivityv, and
rather varied the interplane interactionj : In this sense, we
took an advantage that our systemsstacked triangular anti-
ferromagnetd is, by nature, spatially anisotropic, and so we
are able to tune the interplane interaction freely. We suspect
that our case may belong to the latter category. That is, the
interplane interaction, somehow, controls the domain-wall
undulations effectively. This interpretation is based on the
fact that our system is subjected to the magnetic frustration
due to the triangular antiferromagnetism, and the domain
walls should be created inevitably. It is desirable that this
mechanism would be exploited in the future study.
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