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DIRECT FINITE ELEMENT ANALYSIS OF FLUX AND CURRENT DISTRIBUTIONS
UNDER SPECIFIED CONDITIONS

T. Nakata and N. Takahashi

ABSTRACT

When the flux distribution of a magnetic
circuit is analyzed by using the conventional
finite element method, the magnetizing
currents must be given, Therefore, if the
flux distribution is specified, it 1is
difficult to obtain the distributions of

magnetomotive forces or configuration of
magnets producing the specified field
distribution by the conventional finite

element method.

New methods which are called the "finite
element method taking account of
external power source" and the "finite
element method with shape modification" have

been developed., The processes of calculation
in these methods are contrary to the
conventional technique., These new methods

have the following advantages:
(a) If there are many unknown independent
magnetizing currents, these currents are
directly calculated by the new method.
(b) When a flux distribution 1is specified,
the optimum shapes of the magnets can be
directly calculated.
(c) As these new methods need no repetition,
computing time can be considerably reduced.
The principles and the finite element
formulations of these new methods are
described, and a few examples of application
of these methods are shown.
These new methods make it ©possible to
design the optimum magnetic circuits by using
the finite element method.

1. INTRODUCTION

Magnetic fields of power apparatus and
electronic instruments should be analyzed
under the specified terminal voltages,
because these are usually excited by
constant voltage power sources, Sometimes
the flux distributions in some parts of

apparatus are specified, and the most
suitable configurations and sizes of these
parts have to be designed. We call such prob-
lems "inverse problems.!"In order to use the
finite element method in the practical design
of a magnetic circuit, new analyzing methods
for these inverse problems should be
developed.

If the terminal voltages are specified
and the corresponding magnetizing currents
are unknown, many iterative modifications of
assumed magnetizing currents are necessary
for the usual finite element
analysis. Especially, if there are multiple
unknown magnetizing currents as in the case
of three-phase transformers, .the analysis is
almost impossible, because there are infinite
combinations of unknown:'magnetizing currents
to be assumed [1].

Moreover, in the wusual finite element
analysis, the sizes of magnetic materials are
fixed, Therefore, when the sizes of magnetic
materials satisfying a specified field
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distribution are required, many iterative
modifications of assumed finite element

subdivision are necessary.

Two new methods whose processes of
calculation are contrary to the conventional
ones have been developed, and as these new
methods need no repetition, computing time
can be considerably reduced, As a few
examples of the application, the magnetic
characteristics of a capacitor motor and the
sizes of permanent magnets are computed.,

2, CLASSES OF INVERSE PROBLEMS

The inverse problems can be divided into

the following three classes:
(1) Class A: the configurations and the sizes
of magnetic materials are fixed, and the
magnetizing currents which  produce the
specified terminal voltages are unknown,

This class of problem corresponds to the
calculation of the characteristics of
electrical machinery excited by constant
voltage power sources,

The newly developed analysis method for
the class A problem 1is called the “finite
element method taking into account of
external power source" [2].

{2) Class B: the magnetizations are fixed,
and the sizes of magnets which produce the

specified flux distribution are unknown,

The calculation of the =sizes of the
magnet which gives the specified flux
distribution is important for a designer of
magnetic circuits. Because the magnetization
of a magnet is automatically determined by
the quality of the magnet used and the sizes
of it, Therefore, the determination of the
magnetization is not so important.

The newly developed analysis method for
the class B problem 1is called the "finite
element method with shape modification".

(3) Class C: the shape of electrical
machinery for which the maximum value of the

electric field strength or the iron loss

becomes a minimum is unknown.

Figure 1 shows the transformer
windings,.The configuration and size of the
winding should be designed so that the
maximum value of the electric field strength
becomes a minimum under the condition that
the total cross-sectional area of the winding
is constant, Class C problems correspond to
the optimum design of the shape of electrical
machinery as mentioned above,

In this paper, new methods for solving
the Class A and B problems are explained.

/7077,

/IRON A i
corE § 12
7 25
7, 34
=5l 2|
@]
Pa)

YL,

Fig. 1 Transformer
winding.

0018-9464/82/0300-0325800.75 © 1982 IEEE



326

3. FINITE ELEMENT METHOD TAKING INTO
ACCOUNT OF EXTERNAL POWER SOURCE

OQutline of Method

Two-dimensional magnetic fields with
some conductors and magnetic materials are
analyzed by the following egquation:

3 3 3

gg(vygf) + 7§%vx%§9 = - Jo + Jg (1)
Where A, Jo and Je are the vector potential,
the magnetizing current density and the eddy
current density respectively, vVvx and Vy
denote the X= and v~ components of
reluctivity respectively.

The Rayleigh-Ritz matrix

. equation for
(1) is denoted as follows:

Hl,l L Hl,nu Al
H- B ’
N, nu U u
C]'l Cik I Gy
T 4. (2)
Cnu,[ T C'ﬂu,l; Iok G;.u

where [H] is the so-called coefficient matrix
and [C] is the constant matrix related to the
currents {15} [1]. {@g} is the column matrix
which 1is a function of the known vector
potentials on the Dirichlet boundary. k is
the number of unknown magnetizing currents
and nu is the number of nodes whose
potentials are unknown.

In the conventional finite element
analysis, the vector potentials J{A} are
computed by solving {(2) in which the
magnetizing currents {Iy} are assumed. The
terminal voltage V 1is calculated from the
obtained vector potentials. In order to
obtain the magnetizing currents satisfying
the specified terminal voltage Vo, a number
of repetitions are necessary until the
desired results are obtained by modifying
{Iy} as shown by the thick lines in Fig.2(a).

EBEquation (2) denotes the relation among
the vector potentials {a}, the magnetizing

currents {Is} and the co~ordinates x and
Y. This relation can be rewritten in the
¥
{Io} (ASSUMED Vo (SPECIFIED
MAGNETIZING TERMINAL
CURRENTS) VOLTAGE)
{A} (VECTOR A}, (ot
POTENTIALS)
* STOP
V{TERMINAL
VOLTAGE)
@ (zo}=£rn}+vm}_]
{ stop )
(2) conventional (b) new method

method
Fig. 2 Processes of calculation.

following general form:
fit,y,ial,{zoh) =0 (i=1,..... MY (3)

If the number n of equations in (3) is larger
than nu, not only {A} but also {13} can be
treated as the unknown variable. A new
method which is called the "finite element
method taking into account of external power
source" is developed from the above-mentioned

idea, The process of calculation of this new
method 1is opposite to the conventional
technique, and the magnetizing currents can
be directly obtained as shown . in
Fig.2(b). This method has the following
advantages:

(a) It is possible to obtain directly unknown
magnetizing currents.
(b) As this method does not need repeated
trial and error, computing time can be
considerably reduced.

Finite Element Formulation

(1) Rayleigh-Ritz matrix equation

As the term {Ig} 1is unknown, {Io) 1is
transposed to the left~hand side of

(2). Then the following equation is
obtained.
(7 N
Hx,x' . 'Hl,nujci,l- . .C“k A, ] G,
. ‘ . . :
Hnu,.x ) .Hnu, nu C i Cﬂu,k J Amj nu
Igy }
Ltok ),
(4)
As the number of the equations is nu,

variables 1is
Therefore, the

and the number of the unknown
{nu+k), (4) cannot be solved,
following new relationships between the
vector potentials, the currents and the
terminal voltages are introduced.

(2} Relationships between vector potentials,
currents and terminal voltagdes

The windings in the finite element
region are usually connected to the external
power sources and the external loads such as
resistance, inductance and capacitance,

Figure 3 shows one pole pitch of the stator
of an induction motor, The finite element
region which 1is enclosed by broken line in
Fig.4 corresponds to the winding shown in
Fig.3 except the end coils. Vo, Ro and Lo
in Fig.4 are the terminal voltage of the
external power source, the resistance and the
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Equivalent circuit,

leakage -inductance of the end
corresponds to ®le in
resistance of the winding in the finite
element region, The following equation can
be obtained from Kirchhoff's second law:

coils., Lo
Fig.3. Rc 1is the

JA aly
5 2845+ (Ro*Ry) To+ Lo = Vg (5)
CFEM o
where CPEM is the contour along the winding

in the finite element region, § is an unit
tangent vector.

Let us calculate the first term of the
left-hand side of (5) in detail. The number
of conductors in a slot in Fig.3 is np, and
they are connected series with the conductors
in another slot. If the sectional-area of
each c¢onductor 1is small enough, the vector
potential of each conductor is assumgd to Dbe
constant at every point in the
conductor. Then the following eqguation <can
be obtained:

n
5 §5d5=22p§~((Aai—Adi)+(Abi-Aci)}(6)
CFEMBt 1:13t
where | is the thickness of the laminated
core shown in Fig.3, and the subscripts a, be
c, d of vector potentials denote the  slot
number., For example, Aci denotes the vector
potential of No,i conductor in No.c slot.
Though there is only one relationship of
(5) for the case of Fig.4, two relationships
similar to (5) are obtained in the case of
capacitor motor shown in Fig.5, because there

MAIN WINDING
Y

AUXILIARY
“ WINDING

«——CAPACITOR

Fig. 5 Connection diagram of
capacitor motor.

are two electric circuits, 1In  general, the
number k of the specified voltages
VilsesessrVok ~.i8 equal to that of the
independent currents. Therefore, 1if there
exist k independent currents, k relationships
similar to (5) can be obtained as follows:
N .
Fx'\‘ . 'Fx,(nu«x»k) A ﬂ Vor

Fr,p+ + - - Fk,(rLLH-k) A . B Yok
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The elements of the matrix [F] are constants,
and {Vo} is the column matrix corresponding
to the specified terminal voltages.

(3) Matrix equation for inverse problem

If (4) is combined with (7), the number
of unknown variables becomes equal to the
number of equations, Therefore, the unknown
vector potentials and the magnetizing
currents can be directly calculated by the
following equation obtained from (4) and (7).
7 - \‘(Cl,l' . ‘C\,k\rA‘ ) e )

1,1 . 1,71 l .

. . *I . ‘ .o
LH I kcnu,, Cau,x ni L 1G”M,L
Rl nu -

'Val‘
Fyye ooooov e PPN 'Fx,(nu+k)\\ Igt
, . .
i i
[,
’ Ii 1.
. NV
Take oK
LE‘;\.”. . Fk,(nu+k))/ L Tok ) 2/

(8)

Although the matrix of (8) is nonsymmetrical,
it is easily solvable by treating it as a
banded matrix with edges.

4. FINITE ELEMENT METHOD
WITH SHAPE MODIFICATION

Qutline of Method

If the class B problem is solved by
using the conventional finite element method,
the process of calculation should be as
Fig.6(a)., The vector potentials are
calculated using a temporary subdivision in
which the sizes of magnets are -adequately
assumed, In order to obtain the sizes of
magnets producing the specified flux density
{Bo}, a number of repetitions are necessary
until the desired results can be obtained by
modifying the subdivision as shown by the
thick lines in Fig.6(a).

By using the newly developed "finite
element  method with shape modification", the

” {Bo) (SPECIFIED
(LO)(éﬁiggEgF FLUX DENSITIES)
MAGNETS) (Lo}

-~

(A}, {DY(VALUES OF
(A} (VECTOR MODIFICATION)
POTENTIALS) T

. (]
(B} (FLUX -

DENSITIES)

e e e T e e e m e D

S .
(g lo) (D) ]
pom—m o= iy
| MODIFICATION |
MODLIFICATION { OF SUBDIVISION |
OF SUBDIVISION R bt -
(a) conventional (b) new method
method

Fig. 6 Processes of calculation.
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modified
obtained as
Fig.6(b). The

value ({p} of
denoted by
desired

sizes 1is directly
the solid lines in
size {L} of the

magnets is calculated by the following
equation:
{L}= {LO}+{D} (9)

When the value {D} is very larde, the result
obtained without any repetition is not
satisfactory because of the error due to the
shape modifying element, In such a case, a
few repetitions are necessary until the
desired result can be obtained by modifying
the subdivision by {D} as shown by the broken
lines in Fig.6(b). The number of repetitions
is much less than in the case of the
conventional method.

Shape Modifying Element

When the sizes of magnets are unknown
variables, (3) becomes a non-linear
equation, If the equation is a linear
function of the co-~ordinates x and y, (3) can
be solved easily. From this point of view, a
new element which is called a "shape
modifying element" is conceived. The new

element is

explained by an example shown in
Fig.7(a).

For simplicity, the width W and

M

MAGNET

S8

73 e
L?W4

D p&— Lo ~—3>

[ SHAPE
MODIFYING
ELEMENT

X e i1 =
(a) model (b) finite element
subdivision

Fig. 7 Shape modifying element

the magnetization of the magnet are given,

Lo and L of the magnet are the estimated and
the modified lengths . Therefore, length D
is unknown. As the number of the specified
flux densities {Bg} should be equal to the
number of the unknown variables {p}, only the
y—- component Boyp of the flux density at a
point P is specified for this example,
because there is only one magnet in Fig. 7.

If the length D is small, the flux
distribution in the hatched part is almost
uniform in the y- <direction. Then the

following equations can be assumed among the
vector potentials A1, ..., A. at the nodes 1,
.sep 4 in Fig. 7(a) [3}].

A= Ay, M= Ry (10)

As the aim of this analysis is to obtain the
size of the magnet producing the specified
flux density, the accuracy of the flux
distribution near the hatched area is not so

important.

Figure 7(b) is the subdivision
corresponding to Fig.7(a}. The newly
developed so-called "shape modifying element™
is denoted by the thick line in Fig.7(b). It
corresponds to the hatched area. in
Fig.7(a). If the shape modifying element has
the same energy as the hatched area in Pig.
7(a), the nodes 3 and 4 may be superposed on
the nodes 1 and 2 -as shown in Fig 7(b).

The energy x(e) of the shape modifying
element e 1is calculated by the following
equation,

K = -fé(e)(jgamdA)dxdy (11)

Where gs(e)
is the
[4,51.

As the shape modifying element has no
area, it 1s easy to set it on an arbitrary
position of the subdivision without any
re-subdivision,

15 the area of the element and Jn
equivalent magnetic current density

Finite Element Formulation

(1) Rayleigh-Ritz matrix equation

From (10), (ll) is rewritten as follows:

A

yle) :_DJ(J’OdeA)dx (12)
For simplicity, let us assume that the
magnetization has only the vy- component

My. Then the following
obtained from (12).

a><_(e)
JAL

Where Ai is the vector potential of a node i.

equation can be

= — vo DMy (13)

If D in (13) is treated as an unknown
variable, the matrix equation 1like (4) is
obtained as follows:

By oo H:'nuT CT,I' .. Cf,r A, N Gx.k
de .. .m Lo ; ;
Nt nu, nu Cnu,x C:u,rj Ao G"“j
Dl
5
(14)

where [C*] is the coefficient matrix of
{p}. Though there is only one magnet in Fig.
T usually there are many magnets: The
lengths Di, ..., D of their shape modifying
elemgnts are denoted by a column matrix
{D}. Where r is the number of the magnets.

In order to solve (14),the following new
relationships between the vector potentials
and the flux densities are introduced in the
same way as in chapter 3.

(2) Relationships between vector potentials
and flux densities

Figure 8 shows an first-order triangular
element e, The x- and y- components Boxp
and Boyp of the flux density at a point P in
the element are specified.

The following relationships exist
between the vector potentials and the flux
densities [5}.
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Fig. 8 An element whose flux
density is gpecified.

3
Boxp = jzldje Aje/ZA

(15)
3
Byyp = —j§1c3<e Aje /248

Where Cje, dje and 4 are constants. Then the

following matrix equation corresponding to
(7) is obtained.,
* *
By oc o B b (Al s,
. . . = . (16)
% r* ;\ 8
Fr,; »oe o vE op, (nusr) S or

D,

L.
Where [F*] is the coefficient matrix of {a}
and {p}. Bpi is the specified i'th x- or y-
component of flux density, and, for example,
this corresponds to Boyp in Fig.7.

{3) Matrix equation for inverse problem

The unknown vector potential {a} and the
modified value {p)} of magnets can be directly
calculated by the following equation obtained
from (14) and (16).

* * A 3 . 1)
(H‘,\ ot Hl nu C‘«’ T chrﬂ : G,
. . - . L
. . e . < - ),
H . C:m v C:u r LA'“‘ Snu
Lonugt nusnu ' i, ﬁ >= I 4
3 4 1 B
’ ~ * D 1
F‘l,l """ c rx,(nm-l'.‘) .1 3
° * ) D 1’30!‘[
L{F*r e e e e e e e S ETE Omeny J L‘L T4 LI
i /v

(17)

If the caiculated value D 1is
magnet should be shortened.

The case of linear equation and only one
specified component of flux density is dealt
‘in Fig.7. The case of non-linear equation
and many specified components of flux density
can also be analyzed,

In this paper, though only the value {D}
is unknown, the magnetization {M} of magnets
can also be unknown variables, But, in the
latter —-case, the Rayleigh=~Ritz matrix
equation becomes a non-linear ' simultaneous
equation. The details of this problem will

negative, the
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be reported in another paper.

5. SOME EXAMPLES OF APPLICATION

Analysis of Capacitor Motor

As an example of the application of the
"finite element method taking into account of
external power source”, flux distributions of
a capacitor motor are analyzed. In this
case, there are two relationships 1like (5)
between the vector potentials, the currents
and the terminal voltages. One is obtained
for the main winding and the other is for the
auxiliary winding,

Figure 9 shows the
dimensions of an

structure and
analyzed

capacitor

M : MAIN WINDING
A : AUXILIARY WINGING

Fig. 9 Capacitor motor.

motor. This motor has 2-poles and the rated
voltage and the input are 100(V) and 170(W)
respectively. The core is made of 0,5mm
thick non-oriented silicon steel (Grade
: AISI, M~43), The rotor is die-cast. A
capacitor whose capacitance is 11(uF) is
connected to the auxiliary winding,

Figure 10 shows the flux distribution at
slip $=0.05 (corresponding to the rated
load)., Figure 11 shows the flux density
waveform at the stator teeth (¢ shown in
Fig.9. Points denoted. by o represent the
calculated results and the s0lid line denotes

the measured one.

Z 00,
LTS XETAA
MG UZ N

! §}}&L\@C

Fig.lD Flux distribution.

measured 3
~eecalculated
1.0
0 ~ -

180
° wt(deg)
-1.0 o

|

flux aensity (T)

Fig. 11 Flux density waveform.

Determination of Magnet Shape

Figure 12 shows a magnetic circuit with
two magnets., The magnets are anisotropic and
both @ of the magnetizations are 1.0
{(wb/m*), The estimated lengths Lo's are both
0.2(m), The 1lengths L; &and Ly of the
magnets 1 and 2 which produce the
y-directional flux densities Byy; and Bpyz at
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Fig. 12 Magnet model.

the points 1 and 2 on the surfaces of the
magnets are calculated by setting the shape
modifying elements at the edges of the
magnets shown by the thick lines in Fig.12.
When Boy1 and Boy2 are specified to be
0.5 and 0.46(T), the calculated lengths L1
and L2 of the magnets are 0.147 and 0.103(m)
respectively. Figure 13(a) shows the

YA RN AT
i o

L ———]
—
KL

e

.

(a) approximate (b) exact
calculation calculation
Fig. 13 Flux distributions.

obtained flux distribution wusing the new
method. The true flux distribution for the
magnets the lengths of which are 0.147 and
0.103(m) is shown in Fig.13(b). The flux
distribution around the shape modifying
element in Fig.13(a) is different from that
around the corresponding part in
Fig.13(b). However, both flux distributions
near the surfacesg,the flux densities on which
are specified’are almost the same .

6. Conclusions

The development of our new methods of
analysis  has made it easy to design
practically the magnetic circuits using the

finite element method.

We have already applied these methods to
the analysis of the commutation of a
universal motor [6], the characteristics
of synchronous machines under load, and the
optimum design of the magnetic circuit of the
magnet roll in a copying machine [7].

The finite element method taking into
account of external power source needs
further investigation about (a) estimation of
the impedance outside the finite element
region, (b) improvement of the accuracy of
this method.

The following problems should be
investigated in order to establish the finite
element method with shape modification:

(a) non-linear analysis, (b} modification of
the width of magnet, (c¢) determination of the
magnetization when the size of magnet is

unknown, (d) accuracy of this method,

It is hoped that the range of
application is enlarged, and the new method
for class C problem will be developed.

 REFERENCES

[1] T. Nakata, Y. Ishihara, and N. Takahashi,
"Some Useful Technigues on Implementing
the Finite Element Method for Computation

of Electromagnetic Fields in Electrical
Machinery", U.8. - Japan Seminar on
Interdisciplinary Finite Element

Analysis, J-14, Aug., 1978,

[2] T. Nakata, N. Takahashi, and T. Fujiwara,
"Analysis of Induction Motors by Using
the Finite Element Method Taking into
Account of External Power Source", Papers

of Technical Meeting on Rotating
Machines, IEE, Japan, RM~-80-9, Feb.,
198¢.

[3] T. Nakata, Y. Ishihara, and N. Takahashi,
"Finite Element Analysis of Magnetic
Fields by Using Gap Element", Proceedings
of Compumag Conference, 5-7, Sept., 1978.

[4] T. Nakata, N. Takahashi et al, "Finite
Element Method (Simulaticn Technology
3)", Tokyo : Corona Sha, 1981,

[5] T. Nakata and N, Takahashi, "Finite
Element Method in Electrical
Engineering”, Tokyo Morikita Shuppan,
1981.

[6] T. Nakata, N. Takahashi, M. Natsumeda, Y.

Kodama, and T. Fujiwara, "Analysis of
Universal Motors by Using the Finite
Element Method Taking into Account of
External Power Source", Papers of

Combined Technical Meeting on Rotating
Machines and Transformers and Capacitors,

IEE, Japan, RM-81-41, SA-81-31, Sept.,
1981.
[7] T. ©Nakata, N, Takahashi, and K. Hatano,

"New Design Method of Magnetic Circuit by
Using the Finite Element Method with
Shape Modification", Papers of National
Convention, Magnetics Society of Japan,
Oct., 1981.




