
Engineering

Industrial & Management Engineering fields

Okayama University Year 2001

A visualization method for knowledge

represented by general logic programs

Mariko Sasakura
Okayama University

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information
Repository.

http://escholarship.lib.okayama-u.ac.jp/industrial engineering/38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/12525399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A visualization method for knowledge represented by general logic programs

Mariko Sasakura
Department of Information Technology, Okayama University

Tushima 3- 1 - 1, Okayama, 700-8530, Japan
sasakura@momo.it.okayama-u.ac.jp

Abstract

In this paper; we describe a visualization methodfor gen-
eral logic clauses as the first step of a visualization of logic
programs. Since we think inclusion is essential to represent
an outline of knowledge, we propose a method based on
Euler diagrams to visualize in$rence rules represented as
a set of general logic clauses which consist of literals with
no variable. We develop a prototype system and show that
complex rules which are hard to understand in text are easy
to understand by diagrams.

1. Introduction

We are interested in visualizing an outline of knowledge
intuitively. In this paper, we discuss a visualization method,
which we call inclusion diagrams. An inclusion diagram is
an extension of an Euler diagram. We can visualize general
logic programs by inclusion diagrams.

We have known diagrams help us to understand complex
or huge mount of information. For example, Euler diagrams
are often used to explain sets theory for education. Also,
Euler already found an inference rule can be represented by
sets so they can be represented by Euler diagrams. How-
ever, Euler diagrams have two drawbacks to represent a set
of large amount of inference rules. The first is that Euler di-
agrams are very hard for human to draw in hand if there are
many sets. The second, that is more essential than the first,
is that Euler diagrams can represent relation among only
three sets precisely. It is very difficult for Euler diagrams to
represent all combinations among more than three sets.

In spite of the drawbacks, Euler diagrams are very useful
for us to grasp relations between sets. Therefore, we try to
extend Euler diagrams and to use for visualizing relations
between large amount of sets. For the first drawback, we
develop automatic drawing system for diagrams. On the
second drawback, we will draw intuitive diagrams instead
of precise diagrams. So, we combine precise diagrams on
less than four sets and intuitive dmgrams on more than three

sets so that we draw diagrams on relations among sets with
no misunderstanding.

In this paper, we consider a general logic program as a
directed graph, and visualize it by a method based on Euler
diagrams.

A general logic program is defined as a set of general
program clauses. A general program clause is defined as
the following:

A t B1,. . ., B,,- C l , . . . , - C,(m 2 O,n 2 0)

where A , B1,. . . , B,, Cl,. . . , C, are atoms and - means
negation. The left side of t is called as “head”, and the
right side is called as “body”,

In this paper, for the first step to visualize a general logic
program, we deal with the clauses of which body consists
of a literal. And to make a problem simple, we assume all
literals have no variable. So, the clauses we deal with in this
paper like the following:

A - B

or
A t - C

In section 2, we explain basic ideas of inclusion diagrams
which we propose in this paper. In section 3, we show a
prototype system of inclusion diagrams and mention some
implementation issues. We mention related works in section
4. And we give a conclusion in section 5.

2. Ideas

2.1. Euler diagrams

Euler diagrams represent relations between sets. For ex-
ample, the region in the circle of figure 1 represents a set A.
The region out of the circle and in the rectangle represents
a set of not A.

A general program clause can be represented by Euler
diagrams. For example, there is a general program clauses

A - B

135
0-7695-1195-3/01 $10.00 0 2001 1E;EE

mailto:sasakura@momo.it.okayama-u.ac.jp

Figure 1. Euler diagrams

Figure 2. Euler diagrams for a general pro-
gram clause

As well-known, this can be written A V T B . If A is a set of
cases in which A is true and B is a set of cases in which B
is true, then the clause is equal to:

A > B

Thus, this can be represented by Euler diagrams as figure 2.

2.2. Inclusion diagrams

Euler diagrams are very useful to grasp relations between
sets intuitively. However, they have the following problems
to visualize general program clauses.

0 In Euler diagrams, we divide a space into two regions
by a circle that represents a set. If there are several
sets, we expect a space will be divided into the number
of the combination of the sets. However, for more than
three sets, Euler diagrams cannot represent all combi-
nations.

0 In Euler diagrams, a “not” set like - A is represented
as the region of out side of a circle. Thus, i t is not easy
to draw a diagram like B +-- A.

Therefore, we design inclusion diagrams as the follow-
ing.

1 . A circle corresponds to a literal in a general program
clause. The inside of a circle represents the correspond
literal is true. The outside of a circle represents the
correspond literal status is unknown. For example, the

Figure 3. An inclusion diagrams for three
nodes with negation

inside of the circle corresponds to a literal A means
the cases of A is true. Similarly, the inside of the circle
corresponds to a literal - A means the cases of A is
false.

2. We prefer intuitive understanding to preciseness.
Therefore inclusion diagrams does not guarantee to
represent precise information about sets if there are
more than three sets in a diagram. They may allow
users to grasp relations between sets intuitively. But,
if there are less than four sets, inclusion diagrams can
represent precise information about the sets. Users can
understand precise relations among the sets by the di-
agram. Also, a positive literal and a negative literal on
the same atom should not have intersections in logic,
but we don’t mind if they have intersections in a dia-
gram.

3 . To avoid drawing complex diagrams, we make several
diagrams to represent the whole sets represented by
general program clauses. Each of the diagrams rep-
resents some sets, and every set is represented in at
least one of the diagrams. The details of how we de-
cide which set will be drawn in which diagram will be
mentioned in section 3.

For example, if there are general program clauses:

A t B

A t C

A t - D

then an inclusion diagram is figure 3. B, C and - D are
drawn similarly.

In the case of four sets, we make figure 4, for example.
This figure gives us intuitive understanding about four sets,
but i t is not precise. The regions correspond to A A C but
don’t care about B and D , and B A D but don’t care about
A and C are not represented.

136

A

Figure 4. An inclusion diagrams for four
nodes

Here, we should show whether inclusion diagrams can
represent any logic program or not. It is trivial that any
logic program is represented as directed graphs. In the di-
rected graphs, a literal is represented as a node. Therefore,
we consider whether inclusion diagrams can represent any
directed graph produced by logic: programs.

Inclusion diagrams draw the r4:lation between nodes only
by the inclusion of circles. So, they cannot draw general
directed graphs.. When there arc: loops in directed graphs,
we cannot generate inclusion dia,grams. Therefore, consider
whether logic programs produce loops in the correspond di-
rected graphs or not.

Case 1: loops with direction

For example, the following program clauses produce a loop.

A c E 3

B +- A

We assume A is a set of cases in which A is true and B is a
set of cases in which B is true. Then, above clauses can be
rewritten as:

A > B A E I 2 A
These mean A = B. Therefore, we regard A and B as one
literal. Thus we can avoid loops ,with direction.

Case 2: loops with no direction

There are cases that program clauses produce a loop with
no direction. For example,

A t € 1

B +- Cr

A-C‘

produce a loop with no direction. In this case, we are puz-
zled as to where we draw C . But. we think a proper way to

draw three clauses is that we ignore the third clauses, since
the third clauses is lead by the first and second. Therefore if
we have several passes between two literal, that is there is a
loop with no direction, we cut the shorter pass then the loop
will be removed.

Now, we know we can make inclusion diagrams for any
program clauses of which body consists of 1 literal.

A general program clause can have negative literal in its
body. Therefore, there are the cases that progmm clauses
produce conflicts. In this paper, conflict means the situa-
tion which A and N A also exist in same time. In a directed
graph, it means A and N A appear in the same pass. We can
draw an inclusion diagram if there is a conflict in directed
graph, but the diagram is not suite to our intuition. So, we
remove clauses that cause conflicts. The details about con-
flicts will be discussed in section 3.1.

3. Implementation

We develop a prototype system that visualizes a logic
program by our inclusion diagrams automatically. The sys-
tem consists of two parts. The first part makes and ma-
nipulates directed graphs and the second part visualizes the
graphs.

3.1. Graph manipulation part

The graph manipulation part of the prototype system

1 . makes directed graphs from a set of general program
clauses,

2. manipulates the graphs to draw diagrams,

(a) reduces loops,

(b) extracts conflicts, and

3. sets a level for each node of the graphs.

At first, we make directed graphs from a set of general
program clauses. A node of the graphs corresponds to a
literal in the general program clauses. An arc corresponds
to a relation “c”. If there is a rule A c B, then we call A
is a child of B and B is a parent of A. The node that has
no child is called a leaf node. The node that has no parent
is called a root node.

Then, we check and reform the graphs if there is any loop
or conflict in the graphs.

Regarding a set of general program clauses as a directed
graph, loops with direction in the clauses make a strongly
connected component in the graph. We extract a strongly
connected component from a directed graph and replace it
as a node. The algorithm to find a strongly connected com-
ponent in a directed graph is known[8].

137

We deal with loops with no direction in the drawing part.
So we will discuss it in section 3.2.

To find a conflict we mentioned in section 2.2, we check
if we can reach from a positive literal to a negative literal
of the same atom or vice versa. For example, if there are
A and N A in the same directed graph and we can reach
form N A to A, they cause a conflict. In practice, after
making directed graphs, we check that all negative literals
have their positive literal as an ancestor. Because negative
literals must be appeared in a body of a clause, so a node
corresponds to a negative literal must be a root node. If we
find a conflict, we cut the pass from the negative literal to
the positive literal. Thus we can remove the conflict.

At last, we set a level for each node. The level decides
which node will be drawn in which diagram, when we make
several diagrams to represent a directed graph. A level of a
node will be decided the following way:

1.

2.

3.

3.2.

The level of a leaf node is 0.

If the level of a node is n, then the level of parents
nodes of it are n + 1.

If different number of levels will be assigned to a node,
we choose bigger one.

Drawing part

We will draw a set of general program clauses as several
diagrams. The number of diagrams must be not too many
because many diagrams confuse users. But, we should also
avoid making a complex diagram which has too many nodes
in it. Therefore, basically, we draw nodes that are in the
same level in a diagram. If users want to see the parents
of one of the nodes, they select a menu for the node then
we make a new diagram for the parents node. But, in the
following cases, we draw parent nodes in the same diagram
of the children nodes.

0 There is only one node in a diagram.

0 The all nodes drawn in a diagram have the same par-
ents.

Now, we explain how we draw a diagram from a directed
graph. A node is represented as a circle. First, we draw all
leaf nodes. If there is only a leaf node or all leaf nodes have
the same parents nodes, then we draw the parents nodes in
the diagram. An algorithm to draw a diagram is shown in
table 1. This algorithm will draw circles until the condition
is not satisfied. So, in some cases there will be too many
nested circles in a diagram. Therefore we explicitly restrict
the number of recursive calls of procedure draw. Currently
we restrict the number as 5 experimentally.

In the procedure drawcircles, we may draw several
nodes. The node in the list of the parameter of drawcir-
cles should not include the other node in the list. If there
is such a node, it means there is a loop with no direction.
Therefore, we check there is such a node in the list at the
first of the procedure drawcircles. If there is, we remove the
included node from the l ist

Then, we draw the nodes in the list like an Euler dia-
gram. If there are A and C in the list, a diagram is figure
5. Similarly, 10 nodes should be represented as figure 6.
To make this figure, we draw 10 circles shifting a center of
circles on a circle by 2 * ~ / 1 0 radian.

3.3. Examples

In this section, we show two example diagrams gener-
ated by our prototype system. Our prototype system is im-
plemented by Java.

Example1 shows how negative literals are drawn in a di-
agram. The diagram of this example is shown in figure 7.
In this example, B +-- A and A +- B cause a conflict. So,
these two clauses are not shown in a diagram. The inmost
circles of the diagrams are A, C, D and - C. As we can
see in the diagram, negative literals are drawn as same as
positive literals. There should be no intersection between C
and - C, but in the diagram there is. It is too complicated
to draw precise diagrams. So, we don’t mind if C and N C
have an intersection. We think such intersections are not
obstacles to users’ intuitive understanding.

Example2 is a a little big example to feel usefulness of
the visualization. Table 3 is an example that consists of
14 rules. Even 14 rules, it is not easy to grasp an outline
of rules written in text. Our prototype system visualizes
this example as figure 8, 9, 10. The first figure is figure 8.
C and D have parents that are not appeared in this figure.
So, the menu “More ...” is appeared to allow users show
their parents. If we select C from the menu then figure 9 is
appeared. If we select D, figure 10 is appeared.

4. Related Works

In this paper, we describe a visualization method for
logic programs. There have been several studies on visu-
alizing logic programs. However, almost of them propose
visual logic programming[7, 5, 6, I] , that is, they visualize
syntax of logic programs.

We are influenced by the studies in [2]. However, our
work differs from logic reasoning with diagrams. A theo-
retical background on Euler diagrams are discussed in [4].

In this paper, we visualize a logic program as a di-
rected graph. Although there are many studies in graph
drawing[3], we don’t find a study about graph drawing
based on VennEuler diagrams.

138

Table 1. An algorithm to draw a diagram
list := a list of leaf nodes;
draw(1ist);

procedure draw(list)
begin
n = the number of list;
if n = 0 then return
else if n = 1 then

begin
parent := a list of parents of list;
draw(parent);
end

begin
parent := a list of parents of list;
draw(parent);
end

drawcircles(1ist);
end

else if parents of all member:< of list are the same then

Table 2. Example1
B c - A
E t - A
A t B
B t E
E t C
E t - C
E + D

Table 3. example: 14 rules
G c A H c F
H c B F t H
J t B J c H
A + - C C + I
A + - D D + J
A + K A + - L
F c E A c M

5. Conclusion

In this paper, we describe a method to visualize a re-
stricted logic program. Our method is based on Euler dia-
grams. We show examples generated by our prototype sys-
tem. In future, we will expand this method to general logic
programs.

References

Figure 5 .2 nodes

File I

A

[I] J. Agusti, J. Puigsegur, and D. Robertson. A visual syntex for
logic and logic programming. Journal of Visual Languages
and Computing, 9(4):399427, August 1998.

[2] G. Allwein and J. Barwise, editors. Logical Reasoning wifh
Diagrams. Oxford University Press, 1996.

[3] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing. Plentice Hall, 1999.

[4] E. Hammer and S.-J. Shin. Euler and the role of visualiza-
tion in logic. Languages, Logic and Computation: The 1994
Moraga Proceedings, pages 21 1-286, 1994.

Vlp: a visual logic program-
ming language. Journal of Visual Languages and Computing,

[5] D. Ladret and M. Rueher.

2(2):163-188, 1991.
[6] M. Najork. Programming in three dimensions. Journal of

Visual Languages and Computing, 7(2):219-242, 1996.
[7] L. Pau and H. Olason. Visual logic programming. Journal of

Visual Languagesand Computing, 2(1):3-15, 1991.
[8] R. Sedgewick. Algorithms in C. Adison-Wesley, 1990.

Figure 6.10 nodes

139

Figure 7. A diagram for example1

Figure 8. The first diagram for example2

Figure 9. The diagram for node C of example2

U 1

Figure I O . The diagram for node D of exam-
ple2

140

