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Abstract 

In this paper; we describe a visualization methodfor gen- 
eral logic clauses as the first step of a visualization of logic 
programs. Since we think inclusion is essential to represent 
an outline of knowledge, we propose a method based on 
Euler diagrams to visualize in$rence rules represented as 
a set of general logic clauses which consist of literals with 
no variable. We develop a prototype system and show that 
complex rules which are hard to understand in text are easy 
to understand by diagrams. 

1. Introduction 

We are interested in visualizing an outline of knowledge 
intuitively. In this paper, we discuss a visualization method, 
which we call inclusion diagrams. An inclusion diagram is 
an extension of an Euler diagram. We can visualize general 
logic programs by inclusion diagrams. 

We have known diagrams help us to understand complex 
or huge mount of information. For example, Euler diagrams 
are often used to explain sets theory for education. Also, 
Euler already found an inference rule can be represented by 
sets so they can be represented by Euler diagrams. How- 
ever, Euler diagrams have two drawbacks to represent a set 
of large amount of inference rules. The first is that Euler di- 
agrams are very hard for human to draw in hand if there are 
many sets. The second, that is more essential than the first, 
is that Euler diagrams can represent relation among only 
three sets precisely. It is very difficult for Euler diagrams to 
represent all combinations among more than three sets. 

In spite of the drawbacks, Euler diagrams are very useful 
for us to grasp relations between sets. Therefore, we try to 
extend Euler diagrams and to use for visualizing relations 
between large amount of sets. For the first drawback, we 
develop automatic drawing system for diagrams. On the 
second drawback, we will draw intuitive diagrams instead 
of precise diagrams. So, we combine precise diagrams on 
less than four sets and intuitive dmgrams on more than three 

sets so that we draw diagrams on relations among sets with 
no misunderstanding. 

In this paper, we consider a general logic program as a 
directed graph, and visualize it by a method based on Euler 
diagrams. 

A general logic program is defined as a set of general 
program clauses. A general program clause is defined as 
the following: 

A t B1,. . ., B,,- C l , .  . . , -  C,(m 2 O,n 2 0) 

where A ,  B1,. . . , B,, Cl,. . . , C, are atoms and - means 
negation. The left side of t is called as “head”, and the 
right side is called as “body”, 

In this paper, for the first step to visualize a general logic 
program, we deal with the clauses of which body consists 
of a literal. And to make a problem simple, we assume all 
literals have no variable. So, the clauses we deal with in this 
paper like the following: 

A - B  

or 
A t - C  

In section 2, we explain basic ideas of inclusion diagrams 
which we propose in this paper. In section 3, we show a 
prototype system of inclusion diagrams and mention some 
implementation issues. We mention related works in section 
4. And we give a conclusion in section 5. 

2. Ideas 

2.1. Euler diagrams 

Euler diagrams represent relations between sets. For ex- 
ample, the region in the circle of figure 1 represents a set A.  
The region out of the circle and in the rectangle represents 
a set of not A.  

A general program clause can be represented by Euler 
diagrams. For example, there is a general program clauses 

A - B  
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Figure 1. Euler diagrams 

Figure 2. Euler diagrams for a general pro- 
gram clause 

As well-known, this can be written A V T B .  If A is a set of 
cases in which A is true and B is a set of cases in which B 
is true, then the clause is equal to: 

A > B  

Thus, this can be represented by Euler diagrams as figure 2. 

2.2. Inclusion diagrams 

Euler diagrams are very useful to grasp relations between 
sets intuitively. However, they have the following problems 
to visualize general program clauses. 

0 In Euler diagrams, we divide a space into two regions 
by a circle that represents a set. If there are several 
sets, we expect a space will be divided into the number 
of the combination of the sets. However, for more than 
three sets, Euler diagrams cannot represent all combi- 
nations. 

0 In Euler diagrams, a “not” set like - A is represented 
as the region of out side of a circle. Thus, i t  is not easy 
to draw a diagram like B +-- A. 

Therefore, we design inclusion diagrams as the follow- 
ing. 

1 .  A circle corresponds to a literal in a general program 
clause. The inside of a circle represents the correspond 
literal is true. The outside of a circle represents the 
correspond literal status is unknown. For example, the 

Figure 3. An inclusion diagrams for three 
nodes with negation 

inside of the circle corresponds to a literal A means 
the cases of A is true. Similarly, the inside of the circle 
corresponds to a literal - A means the cases of A is 
false. 

2. We prefer intuitive understanding to preciseness. 
Therefore inclusion diagrams does not guarantee to 
represent precise information about sets if there are 
more than three sets in a diagram. They may allow 
users to grasp relations between sets intuitively. But, 
if there are less than four sets, inclusion diagrams can 
represent precise information about the sets. Users can 
understand precise relations among the sets by the di- 
agram. Also, a positive literal and a negative literal on 
the same atom should not have intersections in logic, 
but we don’t mind if they have intersections in a dia- 
gram. 

3 .  To avoid drawing complex diagrams, we make several 
diagrams to represent the whole sets represented by 
general program clauses. Each of the diagrams rep- 
resents some sets, and every set is represented in at 
least one of the diagrams. The details of how we de- 
cide which set will be drawn in which diagram will be 
mentioned in section 3. 

For example, if there are general program clauses: 

A t B  

A t C  

A t - D  

then an inclusion diagram is figure 3.  B,  C and - D are 
drawn similarly. 

In the case of four sets, we make figure 4, for example. 
This figure gives us intuitive understanding about four sets, 
but i t  is not precise. The regions correspond to A A C but 
don’t care about B and D ,  and B A D but don’t care about 
A and C are not represented. 
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A 

Figure 4. An inclusion diagrams for four 
nodes 

Here, we should show whether inclusion diagrams can 
represent any logic program or not. It is trivial that any 
logic program is represented as directed graphs. In the di- 
rected graphs, a literal is represented as a node. Therefore, 
we consider whether inclusion diagrams can represent any 
directed graph produced by logic: programs. 

Inclusion diagrams draw the r4:lation between nodes only 
by the inclusion of circles. So, they cannot draw general 
directed graphs.. When there arc: loops in directed graphs, 
we cannot generate inclusion dia,grams. Therefore, consider 
whether logic programs produce loops in the correspond di- 
rected graphs or not. 

Case 1: loops with direction 

For example, the following program clauses produce a loop. 

A c E 3  

B +- A 

We assume A is a set of cases in which A is true and B is a 
set of cases in which B is true. Then, above clauses can be 
rewritten as: 

A > B A E I 2 A  
These mean A = B.  Therefore, we regard A and B as one 
literal. Thus we can avoid loops ,with direction. 

Case 2: loops with no direction 

There are cases that program clauses produce a loop with 
no direction. For example, 

A t € 1  

B +- Cr 

A-C‘ 

produce a loop with no direction. In this case, we are puz- 
zled as to where we draw C .  But. we think a proper way to 

draw three clauses is that we ignore the third clauses, since 
the third clauses is lead by the first and second. Therefore if 
we have several passes between two literal, that is there is a 
loop with no direction, we cut the shorter pass then the loop 
will be removed. 

Now, we know we can make inclusion diagrams for any 
program clauses of which body consists of 1 literal. 

A general program clause can have negative literal in its 
body. Therefore, there are the cases that progmm clauses 
produce conflicts. In this paper, conflict means the situa- 
tion which A and N A also exist in same time. In a directed 
graph, it means A and N A appear in the same pass. We can 
draw an inclusion diagram if there is a conflict in directed 
graph, but the diagram is not suite to our intuition. So, we 
remove clauses that cause conflicts. The details about con- 
flicts will be discussed in section 3.1. 

3. Implementation 

We develop a prototype system that visualizes a logic 
program by our inclusion diagrams automatically. The sys- 
tem consists of two parts. The first part makes and ma- 
nipulates directed graphs and the second part visualizes the 
graphs. 

3.1. Graph manipulation part 

The graph manipulation part of the prototype system 

1 .  makes directed graphs from a set of general program 
clauses, 

2. manipulates the graphs to draw diagrams, 

(a) reduces loops, 

(b) extracts conflicts, and 

3.  sets a level for each node of the graphs. 

At first, we make directed graphs from a set of general 
program clauses. A node of the graphs corresponds to a 
literal in the general program clauses. An arc corresponds 
to a relation “c”. If there is a rule A c B, then we call A 
is a child of B and B is a parent of A. The node that has 
no child is called a leaf node. The node that has no parent 
is called a root node. 

Then, we check and reform the graphs if there is any loop 
or conflict in the graphs. 

Regarding a set of general program clauses as a directed 
graph, loops with direction in the clauses make a strongly 
connected component in the graph. We extract a strongly 
connected component from a directed graph and replace it 
as a node. The algorithm to find a strongly connected com- 
ponent in a directed graph is known[8]. 
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We deal with loops with no direction in the drawing part. 
So we will discuss it in section 3.2. 

To find a conflict we mentioned in section 2.2, we check 
if we can reach from a positive literal to a negative literal 
of the same atom or vice versa. For example, if there are 
A and N A in the same directed graph and we can reach 
form N A to A,  they cause a conflict. In practice, after 
making directed graphs, we check that all negative literals 
have their positive literal as an ancestor. Because negative 
literals must be appeared in a body of a clause, so a node 
corresponds to a negative literal must be a root node. If we 
find a conflict, we cut the pass from the negative literal to 
the positive literal. Thus we can remove the conflict. 

At last, we set a level for each node. The level decides 
which node will be drawn in which diagram, when we make 
several diagrams to represent a directed graph. A level of a 
node will be decided the following way: 

1. 

2. 

3. 

3.2. 

The level of a leaf node is 0. 

If the level of a node is n, then the level of parents 
nodes of it  are n + 1. 

If different number of levels will be assigned to a node, 
we choose bigger one. 

Drawing part 

We will draw a set of general program clauses as several 
diagrams. The number of diagrams must be not too many 
because many diagrams confuse users. But, we should also 
avoid making a complex diagram which has too many nodes 
in it. Therefore, basically, we draw nodes that are in the 
same level in a diagram. If users want to see the parents 
of one of the nodes, they select a menu for the node then 
we make a new diagram for the parents node. But, in the 
following cases, we draw parent nodes in the same diagram 
of the children nodes. 

0 There is only one node in a diagram. 

0 The all nodes drawn in a diagram have the same par- 
ents. 

Now, we explain how we draw a diagram from a directed 
graph. A node is represented as a circle. First, we draw all 
leaf nodes. If there is only a leaf node or all leaf nodes have 
the same parents nodes, then we draw the parents nodes in 
the diagram. An algorithm to draw a diagram is shown in 
table 1. This algorithm will draw circles until the condition 
is not satisfied. So, in some cases there will be too many 
nested circles in a diagram. Therefore we explicitly restrict 
the number of recursive calls of procedure draw. Currently 
we restrict the number as 5 experimentally. 

In the procedure drawcircles, we may draw several 
nodes. The node in the list of the parameter of drawcir- 
cles should not include the other node in the list. If there 
is such a node, it means there is a loop with no direction. 
Therefore, we check there is such a node in the list at the 
first of the procedure drawcircles. If there is, we remove the 
included node from the l ist  

Then, we draw the nodes in the list like an Euler dia- 
gram. If there are A and C in the list, a diagram is figure 
5. Similarly, 10 nodes should be represented as figure 6. 
To make this figure, we draw 10 circles shifting a center of 
circles on a circle by 2 * ~ / 1 0  radian. 

3.3. Examples 

In this section, we show two example diagrams gener- 
ated by our prototype system. Our prototype system is im- 
plemented by Java. 

Example1 shows how negative literals are drawn in a di- 
agram. The diagram of this example is shown in figure 7. 
In this example, B +-- A and A +- B cause a conflict. So, 
these two clauses are not shown in a diagram. The inmost 
circles of the diagrams are A,  C, D and - C. As we can 
see in the diagram, negative literals are drawn as same as 
positive literals. There should be no intersection between C 
and - C, but in the diagram there is. It is too complicated 
to draw precise diagrams. So, we don’t mind if C and N C 
have an intersection. We think such intersections are not 
obstacles to users’ intuitive understanding. 

Example2 is a a little big example to feel usefulness of 
the visualization. Table 3 is an example that consists of 
14 rules. Even 14 rules, it is not easy to grasp an outline 
of rules written in text. Our prototype system visualizes 
this example as figure 8, 9, 10. The first figure is figure 8. 
C and D have parents that are not appeared in this figure. 
So, the menu “More ...” is appeared to allow users show 
their parents. If we select C from the menu then figure 9 is 
appeared. If we select D, figure 10 is appeared. 

4. Related Works 

In this paper, we describe a visualization method for 
logic programs. There have been several studies on visu- 
alizing logic programs. However, almost of them propose 
visual logic programming[7, 5, 6, I] ,  that is, they visualize 
syntax of logic programs. 

We are influenced by the studies in [2]. However, our 
work differs from logic reasoning with diagrams. A theo- 
retical background on Euler diagrams are discussed in [4]. 

In this paper, we visualize a logic program as a di- 
rected graph. Although there are many studies in graph 
drawing[3], we don’t find a study about graph drawing 
based on VennEuler diagrams. 
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Table 1. An algorithm to draw a diagram 
list := a list of leaf nodes; 
draw(1ist); 

procedure draw(list) 
begin 
n = the number of list; 
if n = 0 then return 
else if n = 1 then 

begin 
parent := a list of parents of list; 
draw(parent); 
end 

begin 
parent := a list of parents of list; 
draw(parent); 
end 

drawcircles(1ist); 
end 

else if parents of all member:< of list are the same then 

Table 2. Example1 
B c - A  
E t - A  
A t B  
B t E  
E t C  
E t - C  
E + D  

Table 3. example: 14 rules 
G c A H c F  
H c B F t H  
J t B J c H  
A + - C C + I  
A + - D D + J  
A + K A + - L  
F c E A c M  

5. Conclusion 

In this paper, we describe a method to visualize a re- 
stricted logic program. Our method is based on Euler dia- 
grams. We show examples generated by our prototype sys- 
tem. In future, we will expand this method to general logic 
programs. 
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Figure 7. A diagram for example1 

Figure 8. The first diagram for example2 

Figure 9. The diagram for node C of example2 

U 1 

Figure I O .  The diagram for node D of exam- 
ple2 
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