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ABSTRACT 

In this paper, we propose a multicriteria decision mak- 
ing (MCDM) method by using a genetic algorithm (GA). 
The system consists of three phases. In the first phase, 
a rough set of Pareto optimal solutions is obtained us- 
ing Kohonen’s self organizing map (SOM). In the second 
phase, the decision maker (DM) selects his preferred sc- 
lutions among the obtained set, where the mechanism of 
GA is used with the DM’s preference assisted by radial 
basis function network (RBFN). In the third phase, the 
DM can explore the solution space further for the final 
decision. 

1. INTRODUCTION 

MCDM is often practically important in the real world. In 
these problems we can seldom expect the existence of the 
dominating solutions which optimize the several objec- 
tives simultaneously. Therefore Pareto optimal solutions 
axe crucial. 

For the MCDM problems, we have two important issues. 
They are 

1. generating feasible Pareto optimal solutions, 
2. making decision by DM’s preference among Pareto 

optimal solutions. 

In the traditional MCDM methods, the first problem was 
reduced to  the mathematical programming problem by 
aggregating the vector objective function into a scalar 
by pre-determined manner or by some interactive manner 
mentioned in the second item above. This method intrin- 
sically produces a single solution, and thus the searching 
point is usually only one. The primordial drawback of 
the traditional methods is that they all lack the parallel 
production of searching points. Considering the humans’ 
decision process, we cannot be satisfied without compar- 
ing many alternatives simultaneously. Even if the shown 
alternative is “best one”, we may have a difficulty in de- 
cision making and doubt whether there is no better ones 
for him/her. 

Recently, there are studies to  generate many Pareto op- 
timal solutions by using GA[lO],[7],[1]. This is certainly 
an attractive method, because the GA intrinsically treats 
multiple alternatives. But there is some kind of inef- 

ficiency in generating Pareto optimal solutions by GA- 
based methods that have been proposed so far, because 
the new alternatives are to  be generated by using only 
feasible solutions and thus it is not likely to  be easy to 
generate ones that are really near the frontier. Thus we 
propose here another method to  generate Pareto optimal 
solutions. It is based on Kohonen’s SOM. 

We are interested not only in generating Pareto optimal 
solutions, but also in the DM’s selection procedure. 

The authors proposed an interactive method for 
MCDM[13]. In terms of GA, selection is based on rank- 
ing, where the rank levels are two. The rank is decided by 
the Pareto optimality and DM’s preference. In this pa- 
per, we propose a revised version of the algorithm. The 
critical problem is the times of interactions between the 
DM and the DSS when the number of objective function 
is large. For the GA to  work efficiently, a good amount of 
the evaluation points by the DM is necessary, which forces 
the DM to input evaluations of many alternatives. To cir- 
cumvent this problem, the normalized RBFN is applied to  
form the utility function. 

2. PROBLEM FORMULATION 

The MCDM is given by 

minimize f(x) = ( h ( x ) ,  . . . , d,(x)) 

subject to I E X c R” 
(PI )  { 

where X is the set of admissible solutions given a priori 
explicitly and/or implicitly by inequalities. The solutions 
of the problem ( P l )  are called Pareto optimal solutions, 
and the whole set of Pareto optimal solutions is denoted 
as X(c X). Define also 

P = f(2) = {f(x) : x E 2) 

The DM is in charge of getting most preferable solution 
xf E 2. 
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3. REVIEW OF RELEVANT STUDIES 

3.1 Traditional MCDM Methods 
In traditional MCDM methods, the single objective func- 
tion or the aggregated vector objective function is opti- 
mized by mathematical programming methods. The pa- 
rameters for the aggregation are 

weight coefficients (weighting method, weighted min- 
imax method) 
weight coefficients and the goal (goal programming, 
compromise programming) 
admissible objectives bound (&-constraint 
met hod[3]) 
reference point (reference point met hod[ 141) 

and so on. These parameters are often input interactively, 
but they all have the common feature that they yield only 
one solution at a time basis. Figure 1 shows the concept 
of traditional MCDM flow. 

Problem solver 

Parameter 
‘ T ’ D S S  

Single Pareto solution 

I DM 

Fig. 1. Traditional MCDM 

3.2 Generating Pareto Optimal Solutions by GA 
In real world problems, DMs often need Merent  alter- 
natives in decision making[ll]. Recently GAS have been 
attracting our attention as an efficient technique for gen- 
erating Pareto optimal solutions. 

GA is an optimization method by using multiple al- 
ternatives (or “individuals” in GA terminology), where 
“crossover”, “mutation” and “selection” are the funda- 
mental genetic operators[2]. GA is used for the optimiza- 
tion problems mainly because of its ability to produce 
globally (semi) optimal solution. But it has been modi- 
fied so that it can yield multimodal problems, where tech- 
niques such as crowding and niching are created to  avoid 
the individuals to  converge and to  let the individuals be 
more variety. Further, by using such techniques, GA has 
been applied to  exhaustively generating Pareto optimal 
solutions. 

Schaffer[lO] developed a program called Vector Evaluated 
Genetic Algorithm (VEGA). In VEGA, selection is made 
based on each component’s value interchangeably. In 
other words, let xi E X. For j = 1, ..., p ,  1, ..., p, ..., selec- 
tion is made based on the fitness d j ( z )  with GA’s selec- 
tion mechanism. This has the drawback to select only the 
element-wise extremals. Thus, two operations are supple- 
mentally used to  avoid this phenomenon. One is “mate 

selection”, which is to  mate individuals generated based 
on different elements, and another is “non-dominated se- 
lection” that is to  penalize non-Pareto solutions. That 
paper has been the milestone of the research on the use 
of GA in generating Pareto optimal solutions. 

Ranking is used for the selection operation, so that Pareto 
optimal solutions are more likely to  remain in the next 
generation. Individuals of the same rank should have the 
same selection pressure. To alleviate the bias of alterna- 
tives (i.e. to generate alternatives uniformly on the Pareto 
front), “niching” technique was adopted. Horn et al.[4] 
proposed similar technique. Srinivas and Deb[ll] pro- 
posed also a similar technique, where the sharing method 
has some difference from that of Fonseca a.nd Fleming. 

3.3 Interaction for Higher-Level Decision Making 

If the objective space is one or two-dimensional, the DM 
can easily decide his/her attitude by seeing the plot shown 
on the screen. But for high dimensional problems, this is 
not a trivial problem. 

Fonseca and Fleming[l] used “goal attainment method” 
as the core methodology for this purpose. There are two 
kinds of parameters in that method: the goal vector and 
the weight coefficient for each objective. ‘They used GA 
for optimizing by the goal vectors. 

Another method is to  use the collection of Pareto opti- 
md solutions as a database, and the DM sitarches his/her 
preference solution among these finite number of given 
points. Next we introduce a GA-based technique for the 
higher-level decision making. 

3.3.1 GA-Based Interaction. The authors have already 
proposed the original version of the algorithm[l3]. In 
terms of GA, selection is based on ranking, where the 
rank levels are two. The rank is decided by the Pareto 
optimality and DM’s preference. If an individual is both 
Pareto optimal and tentatively acceptable by the DM, its 
rank is marked high, otherwise it is marked low. 

Next we show the algorithm in (13). Each alternative is 
coded as a chromosome in binary numbers. 

The algorithm can be described as follows. 

Step A-1: k := 0. Generate an appropriate number 
of individuals z1,x2, ... (values of tht: decision vari- 
able) and compute their objective function vectors 
(f(zl),f(zz), ...). Remove dominated members, i.e., 
leave only Pareto optimal solutions. Repeat generat- 
ing decision variables until the number of remaining 
members becomes appropriately large. The sur-Gv- 
ing members constitute the initial population X ( 0 )  
for the subsequent search. 

Step A-2: k := k + 1. Create new indivnduals Z ( k )  by 
mating current ones; apply mutation and recombi- 
nation as the parent individuals matt:. 
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Step A-3: Evaluate the obtained individuals and let 

@(k) = {f(z) : z E *(k)} 

Remove dominated (non-Pareto optimal) solutions 
from ( a ( k ) , @ ( k ) ) .  

Step A-4: If Steps A-2 and A-3 have been repeated sev- 
eral times, go to Step A-5. If not, reproduce the 
remaining individuals and return to Step A-2. 

Step A-5: Show {*(&), F ( & ) }  to the DM. If he accepts 
one of them, then stop. If he is not satisfied with 
any solution, the DM provides his preference attitude 
based on the solutions shown to him, and return to 
Step A-2. He may provide the information on his 
preference attitude in three different ways. 
1) He chooses satisfactory solutions and unsatisfac- 

tory solutions. Reproduce the satisfactory solu- 
tions and remove the unsatisfactory solutions. 

2) He inputs the aspiration levels of the objective 
functions, which constitute a desirable point for 
him. Compute the distances between the aspira- 
tion levels and the shown solutions. Delete (re- 
produce) the solutions for which the distances are 
long (short). 

3) He inputs the level of each objective function 
which should be satisfied at  the worst. If every ob- 
jective value of a solution is better than the above 
level, reproduce it. Otherwise, delete it. 

We have found some drawbacks of the above algorithm. 
They are 

premature convergence This occurs because only the 
Pareto optimal solutions remain. 

interaction times In the interaction method l) ,  the 
number of evaluations of individuals tend to be large. 

The items 2) and 3) above are the methods used in the 
traditional MCDM methods. They can be effectively used 
for scalarization, but it is doubtful if the required parame- 
ters can be easily determined. Moreover, they are not ori- 
ented for treating various preferable sets of alternatives. 
Fonseca and Fleming[l] used goal programming for GA 
whose approach is like 2). 

4. NEW MCDM METHOD 

The algorithm consists of three phases: 

1. Generating Pareto optimal solutions 
2. Selecting among the prepared alternatives 
3. Exploring new alternatives 

The basic flow is denoted in Figure 4. In the following, 
these phases are explained in more detail. 

4.1 Phase 1 

Step 1 (Generation of Pareto optimal solutions) 
k := 0, and generate Pareto optimal solutions. 
Here, we propose a new method based on Kohonen’s 
SOM, which is the mapping from input data to 2- 

I 

Pareto solution generator 

I Phase 1 

C Pareto solution set 3 

J. 
(Final preferred solution) 

Fig. 2. Flow of the algorithm 

dimensional grid, on each grid point a vector of the 
size of input vector is prepared[5], [6]. It has two 
convenient features for this applications: 
1. The topological relation is well preserved. 
2. The distribution of input data reflects to the num- 

The first feature can be used for detecting Pareto 
optimal points. Suppose a grid point p is mapped 
from Werent category of data z1 E X and 22 E a, 
i.e. feasible and non-feasible solutions. This means 
z1,x2 are near the boundary. If z1 -+ pl, 22 -+ pz 
and (p1,pz) are neighbors, (zl,z2) are also under- 
stood as located near boundaries. Pareto optimal is 
judged among the vectors that appeared above. 
The second feature can be used for generating solu- 
tion alternatives near the boundary. The point that 
should be further explored is where 

in the map, different category data are mapped 

the code vector on SOM is not very similar. 
In this algorithm, pick up the feasible solutions found 
there, and judge whether they are Pareto optimal or 
not by comparing them to other vectors. Suppose 
K Pareto optimal solutions were found. Then create 
new vectors around them so that they are not domi- 
nated until the total number amounts to the original 
number of vectors. 
For the problems where finite number of alternatives 
X are given a priori, the algorithm can be used be- 
ginning with the second phase using *: the Pareto 
optimal ones in X. Because the input-output rela- 
tion is already found and there is no need to  generate 
new points in the first place, it is sufficient to use P 
for GA operations in the next phase. 

ber of grid points on the map. 

nearby 

4.2 Phase 2 

In this phase, DM selects his preferred solutions among 
the prepared (2, F ) ,  and find most preferable ones in 
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the iterating interaction. 

Step 2: Here the DM chooses samples from P ( k ) .  Sup- 
pose that the sample size is N .  
Step 2-1: Pick up a point f E P randomly and 

Step 2-2: Randomly pick, up two samples f l ,  f2  

from P. Select the one f whose smallest distance 
from the already selected ones is larger than the 
other, i.e. 

W) = If). 

IIE - Pll 2 Ilfi - 44, VP,  q E W); i = 192- 

and add this point to  Q(&): 

9 ( k )  := 9 ( k )  U {E} 
Step 3: Show estimates of utility function 

Except the first generation, DSS shows the esti- 
mate of the alternatives in 9 ( k ) .  The histogram 
of their utility value is also shown to  DM. 
The estimates are computed by using normalized 
RBFN. Suppose the DSS has collected M evalu- 
ations y(f~), y(f2), a-., y ( f ~ )  by the DM's pref- 
erence. Based on these evaluations, we form the 
normalized RBFN as 

M M 

i=l j = 1  

where the s u e  is the index, 9 is the RBF which 
is here defined as a Gaussian function 

where U is a predetermined parameter. This net- 
work smoothly connects the evaluated value, and 
keeps the value outside the evaluated values. To 
decide {w;} from the given data, we can get the 
coefficients WI , . . . , W M  by 

where 

M 

~ i j  = T ( I I ~ ~  - fill)/ T ( I I ~ ;  - fill) 
1=1 

Input preference When the shown preference val- 
ues are not appropriate, the DM inputs his prefer- 
ence values y(f;) to  the sample data f; E !P(k); i = 
1,2,. . .. 

Re-calculate RBFN Based on the evaluates 
{ y ( f ; )  : f; E Q ( k ) ; i  = 1,2,..-}, DSS forms an 
RBFN. This step exploits the past interaction to  
release the DM's task, but the DM has to  remem- 

ber his attitude he made in the past. Here, we 
took an approach to  add the outputs of RBFNs 
that were obtained up to  the currenit iteration. 

Figure 3 shows the given data, and Figure 4 shows 
the function surface generated by normalized RBFN 
using data in Figure 3, where U = 1. 

0 
4.5 

Fig. 3. Given data points (circle is the posntion, value is 
the utility value) 

5 

4 

3 

2 

1 

0 
c 

0 

Fig. 4. Function surface by normalizeid RBFN 

Step 4: Crossover and mutation operations are-done in 
the function space. The nearest point in F to the 
newly generated point is selected as a new member 
of Q (k) if it is not a member yet. 

Step 5: k := k + 1 and go to  Step 2. 

The GA operations are based on the methods by 
Michalewicz[8]. In the ranking method, the reproductive 
number is based on the ranking, 

~ = - a q + b  

where T is the reproductive number, q is the ranking, with 
b = 2 or 3 and a > 0 is decided appropriately. 
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Table 1 GA used here 

code I real value code 
crossover I arithmetical crossover. simde crossoverlsl 
mutation I non-uniform mutation p ,  = 0.1 
selection I rankine: selection 

4.3 Phase 3 

In the last phase, DM has selected his preferred 
solution(s) among the prepared alternatives. Here, he 
searches and makes the final decision. 

Step 6: Explore new points of DM’s preference. 

DSS shows the final alternatives to DM. DM selects sev- 
eral points that he likes among them. Due to GA, new 
points are generated, and this interaction is repeated until 
he is satisfied. 

5. NUMERICAL EXAMPLE 

Here we demonstrate a numerical example with two- 
dimensional input. The problem is given by 

( minimize f(z) = (21,m) 

(p2) { s. t. 2:: + 2; 2 1 + 0.1cos (16g3ctan 2) 
(m - +)2  + ( 2 2  - + ) 2  5 f 

I 0 < 2 1 , 2 2  5 U 

0.8 - 

0.6 - 

0.4 - 

a2 - 

0- 
0.2 0.4 0.6 0.8 

Fig. 6. SOM at second generation 

see that the vectors are more concentrated at the Pareto 
optimal frontier. 

Figure 7 shows the set of solutions that were finally gener- 
ated (10th generation) in phase 1, and these are shown to 
DM. In high dimensional systems, this kind of map can- 
not be shown. The vector values (or some visually shown 
figure in certain sophisticated manner) of the points de- 
noted by the circles are shown to DM. 

Figure 5 shows the feasible solutions. Note that such an 
exhaustive solutions are not shown on a plane nor gener- 
ated for high dimensional system. This figure is only for 
demonstration. 

0.2 

0 
0.2 0.4 0.6 0.8 1 1.2 

Fig. 7. Alternatives finally generated in phase 1 

0: 0:2 01.4 o:L3 0:iI ; 1; 1:4 

Fig. 5 .  Feasible solutions 

The used SOM is 1 0 ~  10 size. It was learned by presenting 
the 30 times of 500 learning vectors interchangeably. 

Figure 6 shows the SOM at the second generation. We can 

Now phase 2 begins. Table 2 shows the samples at 1st 
run. DM inputs evaluations for 10 alternatives. The size 
of population is between 100 and 150 whose number is 
variate on the selection condition. In normalized RBFN, 
U = 0.1 

Table 3 shows the samples at the second run. The third 
row shows the estimated evaluations by using the RBFN. 
The 4th row shows the values entered by the DM. 

Table 4 shows the 5th run. Suppose that the DM satisfies 

1560 



Table 2 Entered preferences at the 1st turn 

21 

2% 

21 I 0.05 0.12 0.48 0.51 0.56 

0.75 0.78 0.78 0.83 1.04 
0.73 0.57 0.54 0.49 0.05 

~2 I 1.04 0.98 0.87 0.80 0.78 

2 1  

22 

0.76 0.77 0.81 0.85 0.86 
0.71 0.57 0.51 0.48 0.48 

input I 3 1 O O o 

RBFN 
input 

Table 3 Entered preferences at the 2nd turn 

2.64 0.51 0.28 0.16 0.15 
2 1 0 0 0 

2 1  I 0.47 0.51 0.59 0.62 0.65 
2% I 0.91 0.81 0.77 0.77 0.77 

RBFN 
51 
2 2  

RBFN 

I 

RBFN I 1.74 3.03 3.92 4.03 3.93 

10.33 10.38 10.39 10.45 10.54 
0.585 0.595 0.596 0.601 0.626 
0.774 0.773 0.773 0.773 0.773 
10.625 10.703 10.707 10.723 10.586 

21 

5 2  

0.6149 0.5931 0.5294 0.6170 0.6214 
0.7731 0.7731 0.7734 0.7733, 0.7731 

with this evaluations. 

Table 4 Result at the 5nd turn 

2 1  I 0.565 0.568 0.568 0.572 0.579 
5% I 0.775 0.775 0.775 0.775 0.774 

Table 5 shows the best alternatives obtained at the fi- 
nal run. In this case, the DM can easily decide his best 
alternative among these ones. So, phase 3 is omitted. 

6. CONCLUSIONS 
We proposed an interactive decision making method for 
multi-criteria optimization problems. Various techniques 
are included: to generate many Pareto optimal solutions 
by SOM, and GA-based interaction for selecting preferred 
solutions, and GA-based generation of new alternatives. 
The algorithm is particularly useful in the problems of 
which objective functions are not given explicitly and/or 
not differentiable. A numerical example shows the basic 
interaction manner. RBFN was used for the selection, 
but there still remains to develop a sophisticated selection 
met hod. 
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