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THREE-DIMENSIONAL EDDY CURRENT ANALYSIS 
BY THE BOUNDARY ELEMENT METHOD USING VECTOR POTENTIAL 

H. Tsuboi and M. Tanaka 

Department of Electrical and Electronic Engineering, 
Okayama University, 

Tsushima, Okayama 700, Japan 

Abstmct: A boundary element method using a magnetic 
vector potential for eddy current analysis is described. For 
three-dimensional  problems,  tangent ia l  and normal  
components of the vector potential, tangential components 
of the magnetic flux density and an electric scalar potential 
on conductor surfaces are chosen as  unknown variables. 
When the approximation that the conductivity of conductor 
is very large in comparison with the conductivity of air is 
introduced, unknowns can be reduced. Futhermore, for 
axisymmetric models the scalar potential can be eliminated 
from unknown variables. Formulation of the boundary 
element method using the vector potential and the 
computation results by the proposed method are presented. 

INTRODUCTION 

For l inear  problem in three-dimensional eddy 
current analysis, boundary element methods are attractive 
in term of pre-processing and computer requirements. 
Several formulations of boundary integral equations were 
reported[ 1-41. T h e  boundary element method using 
unknown electric field vector and magnetic flux density 
vector has been developed for  three-dimensional eddy 
current analysis[5], and can be applied to  conducting, 
magnetic and dielectric regions. 

In this paper, we propose a boundary element 
method using a magnetic vector potential as an unknown 
vector variable. For the conducting and magnetic regions 
in which fields are'. excited by current source, the eddy 
current analysis can be performed by using the magnetic 
vector potential and an electric scalar potential. When the 
approximation that the conductivity of conductor is ve'y 
large in comparison with the conductivity of air IS 
introduced, the normal component of the gradient of the 
scalar potential on the boundaries can be related to  the 
normal component of the vector potential and unknown 
variables are  reduced. Formulation of the proposed 
boundary element method and its computation results are 
descr ibed.  

FORMULATION 

Boundary element methods using vector variables 
are formulated by the vector Green's theorem[6]. In the 
proposed method, a magnetic vector potential is introduced 
as  an unknown variable and the boundary integral 
equations are formulated. 

A magnetic vector potential A and an electric scalar 
potential cp are generally introduced to solve the Maxwell's 
equations. The electric field E and the magnetic flux density 
B with sinusoidal time dependence are defined by using the 
potentials as follows: 

E = -joA - Vcp (1 )  

B = V x A  (2) 

The sources of the vector potential A and the scalar 
potential cp in free space are electric current and electric 
charge, respectively. Here, we consider the region 
including conductors and magnetic materials in which the 
fields me excited by electric currents and no displacement 
current arises. Therefore the source of the scalar potential 

appears on the boundary surfaces between conductor and 
a i r .  

From Eqs. (1) and (2).  the equations for A and cp to 
solve eddy current distributions which are governed by the 
Maxwell's equations are given by 

VxVxA-o2pc*A+jwpE*Vcp=pJo (3 )  

V2cp + j0V.A = -pole* (4 )  

where J o  and po are the source current density and the 
source charge density, respectively. Furthermore the 
Lorentz gauge is introduced as a gauge condition. That is 
given by 

( 5 )  

where E *  is the generalized complex permittivity. In the 
case of. integral equation methods using the vector potential 
and the scalar potential, we can prove that the Lorentz 
gauge is equivalent to the following continuity equation. 

V.J + jop = 0 ( 6 )  

Using the vector Green's theorem for the vector 
potential A and the Green's theorem for the scalar potential 
c p ,  following boundary integral equations at computation 
point i are obtained from Eqs. (l)-(S). 

V.A + jwp&*cp = 0 

Qi - 4x A i = I  (-(A.n')V'@+(Axn')xV't$-(V'xA)xn'@ 

-jope*cp@n') dS + p J&dv + Aoi (7) 

1 
I v  

Qi 
~ 4x cpi = 

(@V'cpm'-cpV'@.n') dS + - Iv po@dv 

+Wi ( 8 )  

where Q i  is the solid angle subtended by S at i ,  A o i  and Cpoi 
are potentials which are induced by the external sources, 
and @ is the fundamental solution given as 

e-jkr 
@ =- 

4xr 
k = o w  

The boundary conditions between the region 1 and 
the region 2 are given by the continuity conditions of the 
potentials and the tangential components of the magnetic 
field and the normal component of the electric flux density 
on the boundaries as follows: 

Aii=Aiz (9)  

Cpi 1 'W (10 )  

(V 'xA)i 1 x n i '/p 1 =( V 'x A )i2x n i'/p 2 (11 )  

EI* ( - joAi l -V'cpi l ) .n i '=~~* (-joAi2-V1cpi2).ni' ( 1 2 )  

After applying Eqs. (7) and (8) to the both side of the 
boundary surfaces, we can obtain the boundary integral 
equations which is expressed by the unknown variables in 
region 1 as follows: 
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When the approximation that the conductivity of 
conductor  i s  very large in comparison with the 
conductivity of air can be introduced, the term, V'cp.n', can 
be related to A . n '  by Eq. (12) because the normal 
component of the electric field is equal to zero. The relation 
between V'cp.n' and A .n '  is given by 

V ' cp .  n'=-j o (A .n ') (17)  

Therefore  the interaction between the simultaneous 
equations for A and that for cp can be removed, and the final 
simultaneous equations which consist of only Eqs. (13) and 
(14) are solved for A ,  (V'xA)xn and cp .  In this case, V ' p n '  is 
removed from the unknowns. 

In axisymmetric models, the normal component of 
the vector potential and the scalar potential become zero 
because the eddy current has no normal component and the 
divergence of the vector potential is zero in all places. As 
the result, the number of unknowns can be reduced. 

The magnetic flux density B i  and the electric field Ei 
at the field point i in the region to be analyzed are given by 
using the rotation of Eq. (7) and the gradient of Eq. (8) as 
follows: 

Bi=(VxA)i 

=Is [-[(Axn').V)V'@+k2(Axn')@ 

+ V@x [ (V'xA)xn') -jop~*cpV@xn']dS 

E.- 1- _' JaAi-(vY')i 

=Is (cpo(A,n')V'@-jo(Axn')xV'@ +jw(V'xA)xn'@ 

+k2cp+n' -V@(V'cp.n')+cp(n'.V)V'@]dS 

COMPUTATION RESULTS 

In order to verify the applicability of the proposed 
boundary element method, a conducting sphere model in an 
uniform alternating magnetic field as shown in Fig. 1 was 
chosen as a computation model which can be solved 
theoretically. T h e  conducting sphere model is an 
axisymmetric model but the computation of rhe model was 
pcrforrned as a three-dimensional model. The number of 

455 
triangular elements is 64 on one eighth part of the sphere 
surface and unknown variables are defined to be constant 
on each element. 

Figure 2 shows the distributions of the vector 
potential along x-axis for 50(Hz). Computation results agree 
with theoretical values[4]. Figure 3 and 4 show the 
distributions of the vector potential and the tangential 
component of magnetic flux density which are unknowns 
on the boundary surface, respectively. In the conducting 
sphere model, the external potentials Aoi and cpoi were 
defined by 

qoi = 0 (22)  

Eqs. (21) and (22) give the external magnetic flux density 
Boi= k and the external electric field Eoi=jo(yi/2i-xi/2j) 
which arise from a large circular loop current. 

z 

:io7 

Fig. 1 Conducting sphere model. 
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Fig. 2 Distributions of the magnetic flux density and the 

electric field along x-axis, (a) magnetic flux density, 
(b) electric field. 
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Figure 5 shows a conducting cube model in 

uniform alternating magnetic field which is a truly three- 
dimensional model. The external potentials were given by 
Eqs. (21) and (22). The number of triangular elements is 216 
on one eighth part of the cube surface. Figure 6 shows the 
distribution of the eddy current density on the x-y. y-z. x-z 
planes for 50(Hz). Figure 7 shows the distribution of the 
magnetic flux density on the y-z plane. The computation 
results agree with those of the boundary element method 
using magnetic flux density and electric field as 
unknowns[5]. 

Equi-value lines of the normal component of the 
vector potential on the boundary between the conductor 
and air are shown in Fig. 8. Large values appear at the 
locations where the normal components of the external 
vector potential are large. Therefore the scalar potential is 
induced so that the normal component of the electric field 
which is expressed by - joA.n-Vpn becomes zero. 

Fig. 3 Computation results of the vector potential on the 
boundary surface, (a)real part, (b)imaginary part. 

Fig. 4 Computation results of the tangential component of 
the magnetic flux density, (a)real part, (b)imaginary 
part. 

Fig. 5 Conducting cube model. 

i 

Fig. 6 Eddy current distributions on the x-y, y-z, x-z 
planes, (a) real part, (b) imaginary part. 
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CONCLUSION 
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Fig. 7 Magnetic flux density distributions 
(a) real part, (b) imaginary part. 
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Fig. 8 Equipotential lines of the normal component of the 
vector potential on the boundary, (a) real part, 
(b) imaginary part. 

The boundary element method using the magnetic 
vector potential was proposed, and the formulation and the 
computation results were described. The conclusions can be 
summarized as follows: 

1) For  the three-dimensional problems, the 
tangential and normal components of the vector potential, 
the tangential components of the magnetic flux density 
which is given by the curl of the vector potential and the 
scalar potential are defined as unknown variables on the 
boundaries .  

2) Using the approximation that the conductivity 
of conductor is very large in comparison with the 
conductivity of air, the normal component of the gradient 
of the scalar potential on the boundaries can be related to 
the normal component of the vector potential and unknown 
variables can be reduced. In this case, the scalar potential is 
induced so that the normal component of the electric field 
becomes zero. 

3)  By using the computation results, the 
applicability of the proposed method were verified. 
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