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Proof that Akers’ Algorithm for Locally Exhaustive Testing Gives Minimum
Test Sets of Combinational Circuits with up to Four Outputs

Hiroyuki Michinishi, Tokumi Yokohira and Takuji Okamoto

Faculty of Engineering
Okayama University
3-1-1, Tushima-naka, Okayama-shi, 700 Japan

Abstract

In this paper, we prove that Akers’ test generation algo-
rithm for the locally exhaustive testing gives a minimum test
set (MLTS) for every combinational circuit (CUT) with up
to four outputs. That is, we clarify that Akers’ test pattern
generator can generate an MLTS for such CUT.

1 Introduction

In built-in self-test of multiple output combinational cir-
cuits (CUTs), exhaustive testing is a simple testing method
to raise fault coverage, whereas 0o many test patterns are
necessary for the CUTs with large number of inputs.

In order to overcome the above problem, retaining the
advantages of the exhaustive testing, the locally exhaustive
testing!!?], the pseudoexhaustive testing!®*! and the verifi-
cation testing!>) have been proposed. The difference among
them is only in the naming, and the principal concepts are
almost same. We use the first naming. In the locally ex-
haustive testing, if an output y; depends on w; inputs, a test
set (LTS) is generated so that 2¢ patterns are applied to
them (1 < i < m; m is the number of outputs). Many re-
searchers, for example, Akers, Hiraishi, McCluskey, have
proposed the algorithms to obtain LTSs. Using these algo-
rithms, hardware generators for LTSs can be also obtained
directly. These algorithms, however, do not guarantee to
obtain a minimum test set (MLTS).

In general, an MLTS has more than or equal to 2% ele-
ments, where w is the maximum number of inputs on which
any output depends. We have proposed an algorithm!®! to
obtain an MLTS for every CUT with up to four outputs, and
clarified that the number of test patterns is equal to 2, in-
dependently of n, where n is the number of inputs. It has
not however been investigated how to construct a hardware
generator for an MLTS. We call such a generator an MLTS
generator.

In this paper, we show that Akers’ algorithm gives an
MLTS generator for every CUT with up to four outputs,
that is, that the algorithm gives an MLTS for such CUT.

In Section 2, the LTS, MLTS and a linear function are
formally defined, and the relation between linear function
and Akers’ algorithm is described for the succeeding sec-
tions. In Section 3, two theorems closely related to linear
function are established, and it is proved by the use of these
theorems that Akers” algorithm gives an MLTS.
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2 Akers’ Algorithm

2.1 Definition of Minimum Locally Exhaustive
Test Set

We shall consider a combinational circuit under test
(CUT) having n inputs z;, 22, - - -, ,,, and m outputs y;,
Y2, - Ym. Letaset X be {z), 22, -+, z,}, and let a set
X be {z}, 23, -, zi,,} (C X) when y; depends on i,
z3, -+ ay,, (1<1 <m, and | X;| = w;). It is assumed that
XiUX,U--- U X,, = X and the CUT remains combi-
national even if any fault occurs. A locally exhaustive test
set, an LTS briefly, for the CUT is defined as follows!!.

[Definition 1] We call an n-dimensional vector (z;, zz,
-+, @y ) a test pattern. If a set T of test patterns satisfies the
following condition for i (1 < < m), then the set T is an
LTS.

Condition : The projection of T onto (z}, 2}, - - -, zi,,)
subspace corresponding to X; contains all 2%+ distinct
binary patterns. |

Thus, an LTS is a set of test patterns which can exhaus-
tively test each output of the CUT. If the number of test pat-
terns is minimal, then the LTS is a minimum locally exhaus-
tive test set, an MLTS briefly. Note that the number of test
patterns in an MLTS is more than or equal to 2% from the

definition of the LTS, where w £ maz{w;,ws, -+, wm}.

2.2 Linear Function

In this section, we introduce the following definitions as
preliminaries for the succeeding sections.

[Definition 2] When each of matrices M;, M, - - -, M
has the same number of row vectors, the concatenation of
these matrices in this order, which is called a concatenated
matrix M., is represented as follows!S):

MEMMNMNX... XM, [

[Definition 3] The dependence matrix D for a CUT
has m row vectors and n column vectors. The ijth element
is 1 iff the output y; depends on the input =, and is 0 oth-
erwise. n

Note that the weight of the ith row vector of a D¢ is
equal to w;, and the maximum row weight is equal to w.

[Definition4] For "7 (r > 1), let t,, be a column vector
which has 2" elements (1 < p < ), and it is assumed that
the concatenated matrix ¢, & ¢, M ... X ¢,. has all bin
r-dimensional row vectors. Then, the set { ¢,, ¢;, - - -, t:z
is called a base set.



[Definition 5] A linear combination k¢, ® kyt, & -- -
@ k.t, is called a linear function, where ky, k, ---, k.
€ O,I}M(kl,kz,"',kr)#(0,0,"',0). ]

ote that there exists 27— 1 linear functions.

In the discussions below, we implicitly assume that a
base setis 77 (£ {#;,22,--,t,}), and that linear functions
are linear combinations of ¢),%5,- - -, £,.

[Definition 6] The set of g distinct linear functions
fisfa, -+, fqis called g-independentif f; X f, X -. . ™M f,
has all binary g-dimensional row vectors. i

[Definition 7] For a given linear functionset § (£ {#,,
2.+, fq}), the set of all linear combinations of f1, fa, - - -,
£ is represented by F(S) or F ( f1, fo. -+, fo).

Note that, a given linear function set { f1, fa,- -+, fg } is
g-independent iff F(fy, fa, - - -, f,) has 27— 1 elements'.
Thus, by constructing F(. - -), we can examine whether a
given linear function set is g-independent or not.

[Definition 8] For two distinct linear functions f (£
kity ®kot2® - - - ©knt,) and f' (2 k[t Dk}12® - - - DkLL,),
if Yoo kp2P~! < Y0 k2P, then we call that f is
smaller than f'. ]

For example, let f 2 t,®t, and f' £ 1,®t5, then f is
smaller than f'.

2.3 Akers’ Linear Function Assignment Algo-
rithm

Akers’ test pattern generator is based on linear function
assignment described below.

[Definition 9] Let G be a set of u linear functions
fis fase ooy fu (w < u < n), and assume that there exists
such a mapping g from X onto G that satisfies the follow-
ing condition for ¥X;; (recall that X; £ {=}, %, .-,z }),
then we call that the CUT or the corresponding dependence
matrix D is r-assignable.

Condition: 1f g(z}) = fj (1 < j < wi), then the set
{1, 53, -+, 15, } is wi-independent. [ ]

If fi = g(=;), then we call that the linear function f;
is assigned to the input z;. Note that, if a CUT is r-
assignable, then r is greater than or equal to w.

Suppose a CUT whose dependence matrix is shown in
Figure 1(a). If t4, ¢, ¢, t3 and t,®¢, are assigned to z,
z9, %3, £4 and zs, respectively, then the condition above is
satisfied. Figure 1(b) shows ¢4 X £, M t; X t3 M (¢;t;).
From the definition 6, Figure 1(b) is therefore a matrix rep-
resentation of an LTS for the CUT.

Fach row vector of the matrix constructed with #,, #,,
.-+, t, can be easily generated by a maximum sequence
generator. Thus, if a CUT is r-assignable, then a test pattern
generator constructed with a maximum sequence genera-
tor and EXOR gates can be easily obtained. For example,
Figure 1(b) can be generated with a test pattern generator
shown in Figure 2.

For a given D¢, Akers’ algorithm assigns linear func-
tions as follows:

[Akers’ Assignment Algorithm]

(A-1) 7 =w.
(A-2) Select such an arbitrary output y; that the weight of

the corresponding row vector in the D¢ is equal to w,

and assign ¢; to each input z; (1 < j S w; =w).
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Figure 1 Relation between Dependence Matrix

and LTS.
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Figure 2 Test Pattern Generator for the LTS
shown in Figure 1(b).

(A-3) Repeat the following procedures (A-3.1) and (A-
3.2) until a linear function is assigned to every in-

ut.

?A—3.1) Select an arbitrary input z; to which a linear
function is not assigned, and find all output y{l, y;?;,
cee, yf‘ which depend on ;. Next, for each output yﬁ'
(1 £ v < ¢), find all inputs to which linear functions
have been already assigned, and construct a set L;Y"
of such linear functions (for an output yf', if y;.’" does
not have an input to which a linear function has been
already assigned, then L = ¢).

(A-3.2) Construct an set S/ according to the following
equation. . } .

ST AFWIL)UFWE)U---UFEL). ()
Next, construct F(T™), where T™ £ { t;, 85, -+, ¢, }.
If |S7] < |F(T™)|, then execute the foliowing proce-
dure (A-3.2.1), otherwise, execute the following pro-

cedure (A-3.2.2).
(A-3.2.1) Assign the smallest linear function in the

set §7 to z;.
(A-3.2.2) Assign t,,; to z;, and increase the value
of » by 1. ]

Thus,if L, ={ f{*, fy", - fi1, }, where q;, 2 |L] |,
then the procedure (A-3.2) assigns such a linear function £
that { £7, £, £33, F1 L F% £ on £, Fhoon |

2
tc gi
]vfc;"'9

;';c , F} become (g;, +1)-independent, (g;,+1)-



independent, - - -, (g;_+1)-independent, respectively.

3 Proof that Akers’ Algorithm Gives an
MLTS

The basic problem with respect to linear function assign-
ment is to find such a mapping g that the value of r is min-
imum, because the smaller the value of r is, the smaller the
number of test patterns is. Unfortunately, the problem is an
NP-complete one!?. Though Akers’ algorithm is straight-
forward and time-effective, it does not guarantee to obtain
the minimum value of .

In this section, we prove that the minimum value of
r can be obtained from Akers’ algorithm and is always
equal to the value of w for every CUT with up to four out-
puts. It is trivial that, if any CUT with four outputs is w-
assignable, then every CUT with less than four outputs is
also w-assignable. Thus, we prove only for four outputs.

Without loss of generality, it is assumed that a given de-
pendence matrix D¢ has the following properties (see Fig-
ure 3).

[Assumption-1] The weight of the row vector which cor-
responds to the output y; is w (w; = w), and X; =
{21;22,"’7310 . n

[Assumption-2] If Do has u column vectors whose
weight are four ( « < w ), these column vectors are lo-
cated in u successive column vectors starting with first
column vector. |

And without loss of generality, we assume that the arbi-
trary selection in the procedures (A-2) and (A-3.1) of Ak-
ers’ algorithm are determined as follows:

[Assumption-3] In the procedure (A-2), y is selected as
vi.and ty, &y, - - -, t,, are assigned to z,, 3, - - -, 2y, TE-
spectively.

[Assumption-4] In the j; th procedure (A-3.1), 2.,,.;, is se-
lected as ::j, (1 < 71 € n— w). That is, a linear function

t

is assigned to each of 2,1, Zo42, - * -, T, in this order. W
X1 X2 ore XwlXwhwtl  Zwsiy Xa
w[i[a] = Ti]iJe] -~ Jolo] -~ Jo
Y2 b 2y
¥ b: a.
Y4 ng

Figure 3 General Form of Dependence Matrix.

Under the assumptions above, if it is proved that | §**71|
< |F@T™)| for "w and Vj; (1 < ji < n — w) in the jith
visit of procedure (A-3.2), then a given D, with the max-
imum row weight w becomes w-assignable, where T £

t1,t2, ++,ty}. So, we prove that |S¥H!| < |F(T‘”)} for
e three cases, w = 1, w = 2 and w > 3. The proof for
each case is performed by induction with respect to j;.

In this section, two theorems are established, and the
proof is done using the theorems.
3.1 Theorems for the Proof

In the discussions below, we simply represent a column
vector and a row vector of a given D¢ by a column vec-
tor and a row vector, and we represent the column vector
which corresponds 10 2.5, by (0, a3, a3,a4)T, where v7
represents the transpose of a row vector v. Without loss of
generality, we assume that (a;, a3, a4) = (1,0,0) or (1, 1, 0)
or (1,1, 1) (note that (a;, as,as) # (0,0,0) since it is as-
sumedthat X = X; UX, U - U X,,).
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Let (1,52, b3, b4)T be the wth column vector (which cor-
responds to z.,). If (b, b3, bs) = (1,1, 1), then all elements
of a given D¢ are 1s from Assumption-2, i.e., w; = w; =
w3 = w4 =w = n. In this case, it is trivial that a given CUT
is w-assignable (the procedures (A-3.1) and (A-3.2) of Ak-
ers’ algorithm are not executed). Thus, in the discussions
below, we assume that (b;, bs,b4) #(1,1,1).

(Theorem 1] For Yw and ¥j; (1 < j; < n — w), the
following property holds.

[Property-1] Assume that (a3, a3, a4) = (1,0,0)
or (1,1,0) . And consider a matrix constructed by re-
moving the (w + j;)th to nth column vectors from a
given D¢ as a new dependence matrix DZ, (note that
the maximum row weights of Dy, is equal to that of
Dc from the general form of dependence matrix). If
Dy, is w-assignable, then |S**+1] < |F(T“’)$. |

[lfroof of Theorem 1] If (a;,@3,a4) = (1,0,0), then
S = F(Ly*"). Since D; is w-assignable, Ly*" is
g:-independent, and consequently, [F(L;*"")| = 2% — 1,
where g2 £ |L7""'|. On the other hand, since a; = 1,
@ < w-1/( ise, a contradiction that w, is larger
than w occurs). Thqs, the following relation holds.

S = |[FLy")) =22 -1<2¥ - 1= IF(T™). (2)
If (ay, a3, as) = (1, 1, 0), then SWHi = F(L;"*")' U
F(LY™). Sinceas = 1, ¢s < w — 1, where g3 £ |L3*%).
Thus, the following relation holds.

|| = |FEyyu FEy|
IP@y)| + | Py
= 221420 _1<2vl 142wl
< 2 —1=|F@™). (3.)

[Theorem 2] Let two linear function sets L and L’ be
{fi. oo fuor Jand { £, £, ---, £, }, respectively,
where 4 < w — 1, and assume that L and L’ are (w—1)-
independent and u-independent, respectively. Then the fol-
lowing equation holds.

|F(L)n F(L))| = {

IN

2*—1
22 -1

(F@)2FAY, 0
(F(L) 2 F(L'). .

[Definition 10] Let a linear function set L be { fi, f5,
-+, fg }, and assume that a linear function £ is not an ele-
ment of L. We represent the set {f®f,, f®f, - -, fefﬁ
by f®L.

[Proof of Theorem 2] It is trivial for the case that
F(L) 2 F(L'). Thus, we prove for the case that F(L) 2
F(L'). If it is assumed that all elements of L’ are ele-
ments of F(L), then F(L) O F(L'). Thus, in the case
that F(L) 2 F(L'), there exists such an element of L' that
is not an element of F(L). Without loss of generality, let
{fgs Fgr1s- -+ fu} be aset of such elements that are not in-
cluded in F(L). We prove the following three cases.
Case-1: u=1.

Since L' 1s {f.}, F(L') = {f.} . On the other hand,
f. & F(L). Thus F(L) N F(L') = ¢. Therefore, |F(L) N
F(L) =0=2*"1-1.

Case-2: u > 2 and g = u (see Figure 4(a)).




(i) F(L')is represented as follows:

F(L) = F(fi,fp - fu_)U{fi}U

(Fu®F(f1, 20, fuc -9

(ii) The following equation holds.

FLYN (L ®F(f1, fry s fu1)) = 6. ®
(iii) Since f{, f3,- -, fi_, are elements of F(L), F(f], f3,

e fi_)) C F(L). :

(iv) f. is not an element of F(L)
(v) From (i) ~ (iv), the following equation holds.

FI)NFWLY=F(f, 55 Fur)- )
The set {f{,f3, > fh_1} is (@ — 1)-independent.
Thus, |F(L)NFL)| =2*"1 -1

F(TT) E(TT)
F()

<o

F(L) F@L)

A1 fq@fae]
, fo@fqs2

AN

/7 , AW ‘
F(ti, £2,, fu1)  fueF(f, f2,, ful1)
(a) g=u ®) 1sqsu—1
Figure 4  Relation between F(L) and F(L).

Case-3: u > 2and1 < g < u — 1 (see Figure 4(b)).

Since f, ¢ F(L) (¢ < @1 < u), f,, is an element of
{fu} U (fu®F(L)), where f,, is such a linear function that
the set { f1, f2, -+, fw-1, fu} is w-independent. Thus, f,
is represented as follows:

f';l=fwek1qlfl$kg"f2$ te @k?,:_lfw—h (8)

where there may exist the case that k7', kJ',--- kZ_)) =
(0,0,--+,0). Thus, for Vq; (g+1 < q; < u), the following
equation holds.

f;®fs’n = qu;fl ® kglfz & -0 kfy‘—]fw—l-
1@, is therefore an element of F'(L).

On the other hand, let L be { fi, f. -~ fi-1, for

F1® e [1® 502+ - f;® . }. then L" is u-independent,
and subset of F(L'). Therefore, F(L") = F(L').

Therefore, relation between L” and L is as same as
the relation between L’ and L in Case-2. Thus, |F(L) N

F('™)| = 2*~! — 1. Consequently, |F(L) N F(L")| =
v, |

3.2 Proof that |SU*| < |F(T")|

For w = 1, we prove by induction with respect to j;.

[Basis Step : w = 1] From Assumption-3, the as-
sumptions of Property-1 are satisfied. From Theorem 1,
the proof is trivial for the case that (az, a3, as) = (1,0,0) or
(1,1,0). If (az,@3,a4) = (1,1,1), then by = b3 = by = 0,
since w = 1 (see Figure 5(a)). Therefore, each of L%, L§
and L2 is an empty set. Thus, |$?| = |F(L3) u F(L}) U
F(L2)| =0. [ |

[Induction Step : w = 1] If (az,a3,a4) = (1,0,0)
or (1,1, 0), then the discussion in the basis step similarly

()]
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holds. If (a3,a3,a4) = (1,1,1), then the general form of
D¢ becomes as shown in Figure 5(b). All elements of
shadow area are 0s, since w = 1. But this is contradic-
tory to the assumption that X = X; UX, U---UX,,. In
other words, if j; > 1, then there does not exist such a case
that (a;,a3,a4) = (1,1, 1). a

f 41

v v

X1 X2 X1 X14j,
n[1]o N1 A0
va[o]1 wlo 27\ V.S,
o1 ¥ LN L
vafol1 AN ITINTITS

(a) Basis Step (b) Induction Step

Figure 5 Dependence Matrix in case that w=1
and (a3,a3,a4)=(1,1,1).

For w = 2, we prove by induction with respect to 7;.

[Basis Step : w = 2] If (a3,a3,a4) = (1,0,0) or
(1, 1,0), then the proof is trivial from Theorem 1. The proof
for the case that (az,as3,a4) = (1,1, 1) is as follows:

If ¢;, c3 and ¢4 are defined as shown in Figure 6(a), then
(cibs) #(1,1), since w = 2. Thus, |L3] < 1, |L3| < 1 and
|L3| < 1, and it is trivial that L} = ¢ for %, or L} = L}
for %, and 34, (i, # éy). Therefore, the following relation

holds.
1°] = |FIHUFILY)UFEL
|P(L}) U F(L})| < |[FAILY)| +|FE3)|

< 2<3=|F(T?Y), (10)
where i3 # 4, and i3 # 1. |
[Induction Step : w =2] If (a3,a3,a4) =(1,0,0) or
(1,1, 0), then the proof is trivial from Theorem 1. The proof
for the case that (ay, a3,a4) = (1,1, 1) is as follows (note
thatJL%*“l < 1,|L37Y < 1and |L2*| < 1, since w = 2):
If the second row vector does not have an 1-element in
(2 +j; — 1) successive columns starting with the first col-
umn, i.., y does not depend on each of inputs z;, 22, - -,
Z244,-1, then L3/ = 6. In this case, the following relation
holds. |
|Sz+hl =

|[FE7y U Py U FILEY)|
|F(LE9y U L2
I[P + | PP

< 2<3=|F(T?). 11
Similarly, we have |§%*t| < | F(T?)| for the case that y3 or
yq does not depend on each of inputs 1, 23, « - -, Ta4j,—1.
Thus, we assume that each of outputs y», y3 and y4 depends
on one of 21, @3, - - -, T245, -1 (this situation can occur only
when j; = n — w, since w = 2). Let z,, g and z, be
such inputs for y,, y3 and ys, respectively. If z, and z are
identical inputs, therg the same relation as (11) holds. Sim-
ilarly, we have |§?*!| < |F(T?)| for the case that zg and
z., are identical inputs, or z, and z., are identical inputs.
Thus, in the discussions beiow, we assume that z,, 25 and
z., are different each other, and without loss of generality,
we assume that o < 8 < 7.

Figure 6(b) shows the general form of D¢ under these
assumptions, and a; and 3; are defined as shown in the

AN VAN 1}



figure. From Assumption-1 and w = 2, all elements in a
shadow area of the first row vector are 0s. And from w = 2,
all elements in shadow areas of each of the second, third
and fourth row vectors are 0s.

() Let fo, fs and f, be linear functions which are as-
signed to z,, =3 and z,, respectively. The first, sec-
ond and third rows of the 4th column vector are 0s. In
the (y — w)th visit of (A 3.1), i.e., in the assignment to
z., therefore, §7 = F(L]) = ¢. Smce ¢, is the smallest
linear function of F(T?%) (& {z1 ,t2, 1, @1, }), therefore,
t, is assigned to z,, i.e., f, = t;.

If3, =1, thena; =1 from Assumption-1 and w = 2,
ie., zq and zg are identical to 2, and z,, respectively.

Thus, fo = t,. From (i), therefore, L2*"' = L2*7" in the
assignment to z3.;. Thus, the same relatlon as (11)
holds.

(iii) If B; = O, then the first, second and fourth rows of

the Ath column vector are Os. Thus, §% = F(Lf) = ¢.
Therefore, fs = t,. From (i), therefore, L3/ = L2*
in the assignment to 22 Thus, we have |S’+5‘[ <

(i)

|F(T?)| by replacing L2** in (11) with L2*, [ |
1 t2 fa fp fy
Yy v v ¥
X1 X2 X3 Xa Xg Xy X245 Xa
nj1{1/0l0o 0] »n o &Y 0
ADE ¥2 VW X 1
y3fcabal 1 W YA 1
YalCalbgl1 W YL LA 7NV A

(a) BasisStep  (b) Induction Step
(Xa, X g and x, are different each other )
Figure 6 Dependence Matrix in case that w=2
and (az,a3,a9) =(1,1,1).

We assume that any D¢ with the maximum row weight
(w—1) is (w—1)-assignable, and we prove that || <
[F(T*)| for ¥, in any D¢ with the maximum row weight
w. The proof is done by induction with respect to j;.

[Basis Step : w > 3] If (a3,a;3,a4) = (1,0,0) or
(1,1, 0), then the proofis trivial from Theorem 1. The proof
for the case that (a3, a3,a4) = (1, 1, 1) is as follows:

Let ¢; £ |L}"”| 2<i<4 ¢g<w-1). IfF(L}‘l’*’)
C F(LX*) for %, and 3, (iy # iy), then the following
relation holds.

IS*M = |F@U FAYH U FEEY)|

= |FIEYHYUFEEY)
< 2% 142% — 1< 2wl 40wl
< ¥ 1= ]F(Tw)l, (12)

where iy # iy andis #4p. If g, =0(2 <4, < 4), then
the same relation as (12) holds. Thus, in the discussions
below, we assume that F(L¥*') ¢ F(LE*) for i, and
iy (¢ # 1), and assume that g; > 1 for V4.

Without loss of generality, we assume thatw — 1 > ¢
> g3 > qa, and prove the following four cases.
Case-l:w-22¢>2¢p2q

5% |F(Ly*Y U FILY U FLEH)|
|F(Lw+1 )I + |F(L;M1)[ + |F(L;"+l)|
29 1428 —1+2% -1

h
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= %72 14+2¥ 2o 142v 2
< 2% —1=|F(@TY)|. (13)
Case-2:w—-l=quw-22q¢2>q
|+ 20— 1420 — 142% — |
= 2T o140 1a2e2 o
< 2¥—1=|F@TY). 14)
Case-d:w—l=gg=g,w—22>q
The following equation holds from Theorem 2.
lSwHI = ]F(L H)UF(LWH)UF(L l)l
=[PP +|FEY| + | PEE)|
—|F@y*Yy N FEL)|
—|FLY Y NFEY)
—|FIZY YN FEEY)|
+HF(LY™MYN FILY™MN Py
= 292142~ 142% -1
AR VR ¢l D ¢t )
+HFLYHYNFEYYHn FEEY)
= 2924991
+HFLy*HN FEYMn P (15)
From Theorem 2, |F(L¥*') N F(Lp+)| = 291 — 1,

On the other hand, |F(L¥*") N F(L¥*) N FL¥*) <
|F(L“’+1) N F(L¥*Y)|. Therefore, the following relation
holds

lF(L“’“)nF(L“’“)nF(L“’“)| <24l 1. (16)
From (15) and (16), the followmg relation holds.
[§¥] < 2m 42074201 g
S zw—l +2w-2+2w—3 -1
< 2¥—-1=|F@T™)). 17)

Cased:pp=q3=q=w—1

Note that, for also this case, (15) holds. This case can
occur if z,,41 = &, (see Figure 7(a)). If b; = 0, then the jth
column of the sthrow vectoris 1 2 < 1 < 41 < j <
w — 1), since g =w — 1. Thus, if b; =0, then L¥*! = { ¢,,
t3, - - - tw-1 }. Using this, the proof is done as follows:

Without loss of generality, we prove for the case that
(b2,b3,b4) =(0,0,0) or (1,0,0) or (1, 1, 0).

If (b2,b3,b4) = (0,0,0) or (1,0,0), then LY*! = L¥*! =
{ t1. 2, -+, tw_1 }. Consequently, F(LY*') = F(L¥*).
This is contradictory to the assumption that F(LY*) ¢
F(L¥*Y). In other words, if F(L¥*') ¢ F(L¥*), then
there does not exist such a case that (b2, b3, b4) = (0,0,0)
or (1,0,0).

If (b2, b3, b4) = (1, 1,0), then both L¥*! and L¥*! con-
tain ¢y, and Ly*' never contains t,,. Thus, F(L¥*!) N
FIy™ > FLy™)yn FEILY*) N F(L¥*). On the other
hand, |[F(Z¥*) N F(LY*Y)| = 2¥~2 — 1 from Theorem 2.
Therefore, |F(LY*) N F(L'”*’) NFELEY < 2v-2 -1,
Thus, from (15), the followmg relation holds.

|Sw+ll = 20 4961
HFLY™M N PLYTYn FLEY)|
AR VAR VAREES |




= 2¥-1=|FT"). (18)
]
[Induction Step : w > 3] If (ay,a3,a24) = (1,0,0)

or (1,1,0), the proof is trivial from Theorem 1. And, if

(a2,a3,a4) = (1,1, 1), then the discussions until Case-3 in

the basis step hold by replacing w+1 with w+j;.

Thus, in the discussions below, we assume that, ¢, =
g3 =gs =w — 1, where ¢; £ |F(L{""7")|, and F(Ly™) #
F(LY), FLY 4 F(LY) and P(LY™) # FLY)
(see i:igure 7(b3). Note that this case can occur when j; =
n—w, i.e., Twij; = Tn.

u
¥
x

1

] w1 bw

¥ vy

X2 Xw-1XwAw+1=Xn

w1l - J1]1]0

Y2 T byl 1

Y3 bi3j 1

Ya : by 1

w-1
w-

(a) Basis Step

(qZ=q3=Q4= w—1)

—

ut tw-1 bw
X1 X2 Xw-1Xwhw+l Xwsj-1 Xwej=Xn

Yifi{1, - j1}1{0} - [0{0
Y2 bl 1
b ba 1
Ys Q 1
a given dependence matrix

remove the wth and nth

S column vectors

b w1

\BJ

X] X2 Kw-1Xwel  Xwaj-l
Ya{1|1{ === {1{0} -0
2
Y3
Ya

w-1

() Induction Step
(9=q3=q,=w—1)

Figure 7 Dependence Matrix in case that w23
and (az,85,a9) =(1,1,1).

The maximum row weight of a new matrix constructed
by removing the wth and nth column vectors from a given
D¢ is w ~ 1. On the other hand, we have assumed that
any D¢ with the maximum row weight (w—1) is (w—1)-
assignable. Thus, if the new matrix is considered as a new
dependence matrix Dy, the Akers’ algorithm assigns a lin-
ear function constructed with some of ¢, ¢z, -« -, £ty tO
eachofinputs T1,E2, 5 Twp—1s Tawtls ** *s Tawrj —1- There-
fore, for the original D, Akers’ algorithm assigns a lin-
ear function constructed with some of ), t;, -, ty- tO
each of inputs x1, 2y, -+ «, Tw—1, Tws1, * * * Twj; 1, SINCE
the smallest linear function is assigned in the procedure
(A-3.2.1). Thus, (i) if b = 0, then ¢,, never appears in
the expression of any linear function of L;"*'. And from
Assumption-3, ¢,, is assigned to z,,. Thus, (i) if b; = 1,
then t,, is included in L}"*”'. Using (i) and (ii), the proof is
done as follows:

If (b2, b3,b4) = (0,0,0) or (1,0,0), then t,, never ap-
pears in the expression of any linear function of L3*”* and
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L7, Onthe other hand, both L*"* and L"*"" are (w—1)-
independent. Therefore, F(LY*") = F(LE¥*™). This is
contradictory to the assumption that F(L;Hj D # F(Ll”j M.

If (b, b3, bs) = (1, 1,0), then both L¥** and L¥*/* con-

tain t,,, and consequently, both F(L¥*#") and F(Ly*")
contain ¢,,. On the other hand, ¢,, never appears in the

expression of any linear function of L;”*j‘, and conse-

quently, t,, never appears in the expression of any linear
function of F(LZ’*".). Therefore, FLy™yn FLy™) o
FLYMNFIY™)N F(L;"*"). Therefore, from Theo-
rem 2,2¥72 — 1= |[F(Ly"") N F(LY™)| > |FLY™) n
F(LY™y 0 F(LS™")|. On the other hand, it is trivial that
an equation which is obtained by replacing (w+1) in (15)
with (w+j;) holds. Thus, the following relation holds.
|§wH] = 2% 4201
HFLYHyn FEEYyn PEEY)
207l 42w 42wl o
2¥ — 1= |F(T¥).

A
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4 Conclusion

In this paper, we showed that a hardware MLTS gen-
erator for every CUT with up to four outputs can be con-
structed using a maximum sequence generator with w
stages and EXOR gates, by giving proof that Akers’ algo-
rithm gives an MLTS for such CUT.

We can easily prove that there does not exist such a gen-
erator for some CUT with more than five outputs. It is how-
ever an open problem whether there exists such a generator
for every CUT with five outputs or not.
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