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l ~ I ~ e n t s  with Divergence-Free Shape Function and the Application 
to o i n  ogen eo u sly - Loa d e d W a veg U i de An a1 y sis 

Zaheed Mahmocd and Yukio Kagawa 
Deparunent of Electrical and Electronic Engineering, Okayama University 

3-1-1 Tsushima naka, Okayama 700, Japan 

A b s t r a c t  - A simple mixed triangular edge element 
is proposed for the finite e lements ,  with which 
In b om ogen  e ous ly  - loa d e d a n d  a r b  i t  r a r I 1  y s h a p e d  
waveguides are analyzed. The shape functions used 
for  approximating the fields are found analytically 
to be divergence-free.  T h e  formulation h a s  been 
found to encounter spurious-free solutions.  As an 
evidence,  the non-physical  solutions that appeared 
in t h e  l o n g i t u d i n a l  c o m p o n e n t  f in i t e  e l e m e n t  
f o r m u l a ~ ~ o n  are sliown to be absent in the present 
formulat ion .  A compar i son  with another  mixed  
element 1s furnished here i n  order to demonstrate 
the advantages provided by the present element. 

I. INTRODUCTION 

The finite element method has been widely used for the 
analysis of waveguide components and is considered to bc one 
of the most powerful and versatile methods for the solution 
of a wide variety of waveguide problems. However, the finite 
element analysis of electromagnetic problems is well known 
to be plagued by the occurrence of non-physical or spurious 
solutions. One of the earliest rcports on these spurious 
solutions was by Daly [ 11, who used two components (axial) 
FEM for waveguide analysis. The origin of these spurious 
modes lies in the fact that they don't satisfy thc divergence- 
free condition implied by the Maxwell's equation. In this 
connection, merhods like Penalty [2] and Lagrange multiplier 
method [3] have been proposed which incorporate the 
constraint V . E  = 0 i n  the original formulation. This 
constraint has empirically been found to suppress the 
spurious modes, or at least push them out of thc region of 
interest. Another approach introduced by Kobclansky and 
Webb [4] is the use of basis functions in which the fields are 
exactly divergence-free. These divergence-free basis functions 
are obtained by solving an auxiliary eigenmatrix equation in 
which intensive computations are required since at least tens 
of basis functions are needed to be calculated. For triangular 
edge elernents, this paper proposes the use of shape functions 
which are analytically divergence-free. 

11. BASIC EQUATION AND VARIATIONAL FORMULATION 

Considering an inhomogeneously loaded waveguide with 
arbitrary cross-section a, the source-rree Maxwell's equations 
with time dependence of exp('jrot) being implied are givcn by 

V x E = - jw,uoy,fJ 
Manuscript received March 19, 1996. 

V x H = jwEoErE (2) 

where o is the angular frequency, ~ g a n d  p o  are the 
permittivity and permeability of free space, respectively, and 
E, and pr  are the corresponding relative material properties. 
By taking the curl of both sides of (1) and then substituting 
(2) into (I) ,  the following vectorial wave equation for E is  
dcrived: 

Corresponding to (3), the following functional (4) can 
easily be obtained wlicn thcrc is no energy flow across the 
boundary, and i t  has been proved that the functional is 
stationary about the correct solution : 

where the asterisk denotes the complex conjugate. 

111. FINITE ELEMENT FORMULATION 

The cross-section of a waveguide is divided into the finite 
elements of simplc gcometric shape to approximate the 
domain. For edge elements, the elemenls are connected to 
each-other by sharing the common edges Qn the boundaries of 
thc elerncnts. Wc hcre use triangular mixed edge elements 
where the shape functions chosen are very simple and 
analytically solenoidal. However, even though Koshiba's 
element [ 5 ]  is also analytically divergence-free, the present 
shape function can be presented by expression which are 
simpler compared (sce appendix) to Koshiba's. The finite 
elcmcnt discrctization is carricd out by approximating E for 
each element as 
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(7) 

In (7), the set of unknowns of tangential components @ [ I ,  

(Pt2 and @a and axial components Cpzl, QZ2 and $z3 are defined 
on the edges and the nodes respectively of the triangle as 
shown in Fig. 1. Besides, Afij and N Y i ,  the components of 
(F,) and (F,,) respectively, are x and y directed components 
of the vector shape function Nij, which are given by 

where 'a's are the unit vectors defined along the edges and ' n's 
are the unit normals defined on the corresponding edges of the 
triangle as shown in Fig. 1, and 'N ' s  are the area coordinates. 
It is easy to show V.[F] = 0 with present interpolation 
function for the element. This can be shown with Koshiba's 
element [5] too. Here, the electric field is assumed to have a z 
dependence as E(x,y) exp(-jpz), where p is the propagation 
constant. Substituting (5) - (8) in (4), and making the 
functional stationary for element e, we obtain 

with 

where 

T 

= [ K21] 

After carrying out some algebraic operations, (9) can be 
rewritten by a system of matrix equations for all the elements 
as follows : 

where ( @t) and ( QZ) are the global unknowns, and the system 
matrices are given by 

Fig. 1. Present triangular edge element showing the location of tangential 
and axial unknowns and unit vectors along the edges and normal to the 
edges. 

m ". 

T 
=[szt] 

a y  a y  
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By eliminating (&,) from the two matrix equations of (IO), 
the following eigenvalue equation can be obtained where the 
unknowns to be resolved are consist of tangential 
components only. 

Note that for simplicity, material properties are not shown in 
the above formulation. Material properties are properly 
incorporated while considering diclectric loaded waveguides. 

Iv. COMPARISON OF PRESENT ELEMENT WITH KOSIIIBA'S 

In order to demonstrate the different distinct features the 
present element has, i t  is compared with Koshiba's elcment 
[ 5 ]  which has also been found to be analytically divergence- 
free. For comparison, in the appendix, the shape [unctions for 
both the elements are discretized down to their most 
simplified expression which are given in  terms of t h e  
coordinates. Comparing (A3) and (A6), it is obvious that the 
present element is simpler than Koshiba's. For example, as 
shown in (Al) ,  expression of F,1 for the present elcmcnt 
needs only the length A1 of the triangle-side along which Fxl 
is defined, y coordinate of the vertex opposite to A1 and the 
area of the triangle. In contrast, to get the expression for F,I 
for Koshiba's element, first, one needs to calculate the angles 
at the mid-points of the triangle-sides, then obtain A from 
(A5), and finally, insert the values of A and the coordinates of 
the corners and mid-points of the sides of h e  uiangle in (A6). 

Another advantages provided by the present shape function 
is that it facilitates the formulation rendering an easy 
approach for integrations and other algebraic opcrations. This 
is quite evident when one investigates the over all shape 
function employed to approximate the fields. As given in (6 ) ,  
the over all shape function is composed of vector shape 
function F and area coordinates N, which are used to 
approximate the transverse and axial components or the field 
respectively. But again, as shown in (8), the components of 
F comprise area coordinates N and some u n i t  vectors, leaving 
N as the variable part and the uni t  vectors (a, n) as a 
constant for an element. Therefore, the matrices of (11) 
involve inter-operations bctwecn area coordinatcs only, so 
that the integration scheme and algebraic operations provided 
by the area coordinate system is uscd in obtaining the system 
matrices very easily. We investigated and employed both 
present and Koshiba's element in  the same waveguiding 
formulation, and found that the degree of accuracy providcd by 
both the elements are of same order, only that, the clcmcnt 
malrices obtained with the present shape functions are much 

simpler compared to thc one obtained with Koshiba's. 

V. NUMERICAL EXAMPLES 

To justify the validity or the mixed edge element developed 
in the previous sections, the numerical analyses are carried 
out by employing the mixed elements for some sample 
problems. The first example, the structure of which is shown 
in Fig. 2, is a waveguide where the outer surface is a perfect 
conductor and a strip of zero thickness is placed in the center. 
The dispersion curve for the dominant (quasi-TEM) mode 
obtained by prescnt and Daly's [I] formulation is furnished in 
Fig. 3. For symmetry, half  of the structure is only 
considered. The dotted lines for Daly's solutions indicate the 
dcviation due to singularity. The spurious modes appeared in 
the Daly's solutions have been found to be eliminated 
completely in the present solutions. Next, a rectangular 
waveguidc, half of which is loaded with a dielectric slab as 
shown in  Fig. 4, is considcred. The dispersion curve obtained 
for the longitudinal section magnetic (LSM) mode by 
employing the prescnt element is compared in  Fig. 5 with 
the one obtained by Angkaew [6]. The present element oKers 
bctter accuracy than the Angkaew's for the same number of 
clement divisions (8x4). Finally, to test the applicability of 
the element to a waveguidc with curved boundaries, a hollow 
circular waveguide of radius 'a' is analyzed. The computation 
is carried out with thc mesh shown in Fig. 6, where a quarter 
of the waveguidc is considered with 32 triangular elements. 
The dispersion characteristics for TMol and TE21 modcs are 
compared in Fig. 7. Angkaew [6] employed 36 first ordcr 
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Fig. 2. Cross-section o l  the  closed microstrip waveguide 
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Fig. 3. Comparison of prcsctit and Daly's solu~ions. 
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Fig. 4. Cross-section of half loaded dielectric waveguide. 
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linear triangular elements. The present elements have been 
found to yield spurious-free solutions and exhibit better 
accuracy even for fewer number of elements. 

VI. CONCLUSIONS 

A simple mixed triangular edge element that provides 
divergence-free shape functions is proposed, and its capability 
is examined for inhomogeneously-loaded arbitrarily shaped 
waveguiding problem. The formulation has been found to 
encountcr spurious-frce solutions. Anothcr merit is that the 
shape functions facilitate the formulation by providing an 
easy approach for integration, algebraic computation and 
construction of the e l emen t  matrices.  The element also 
provide good accuracy and convergence characteristics. 
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Fig. 5. Comparison of present and Angkaew's solutions. 

Fig. 6. Finite element mesh of a quarter circular waveguide. 
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Fig. 7. Dispersion curves for a hollow circular waveguide. 

APPENDIX 
The vector shape functions employed to approximate the 

transverse field components can be presented by simple 
expression. For example, if (Fx) of (6) is expressed as (Fx) = 
[ F x l ,  Fx2, Fx3 I, then Fx l  is given by 

where A1 is the length of the triangle-side along which Fxl  is 
defined; y I is the y coordinate of the vertex corresponding to 
the base A1 and d equals twice the area of the triangle. The 
derivation of (Al) is obtained from (6) and (8) as follows : 

F x l = ( Y l - Y ) x A l / d  (A 1) 

n 3  . i  n2 . i 
a 1  * n 3  a l .  "2 

F x l  =- N 2  + ___ N 3  (A2) 
After several algebraic simplification Fx l  is finally derived as 

Fx1 = (Y1 - Y) r (x3 - x2)2 + (Y3 - Y 2 W 2  / d (A3) 
The other shape functions are also given by similar 
expression as (A3). For Koshiba's element, the edge shape 

2 2 112 2 2 112 
A [(x2-x3) -+ (YZ-Y3) 1 [(Xf-Xl) + (Y3-Yl) 1 

(A6) 
The other shape functions also arrive at similar expressions. 
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