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Abstract

In order to understand the behaviour of distributed
program environments, this paper describes a three-
dimensional visualization of communications. Most of pre-
vious visualizations presented communications by means of
two dimensions of time and process, however, three dimen-
sions are required to represent a message intermediary with
visualization functions. We make use of a semantic config-
uration of messages, which is constructed by the quantities
for three parametric factors: (i) time sequence, (ii) identifi-
cations of processors, and (iii) message exchanges.

1. Introduction

The behaviour of distributed programs is generally com-
plicated. Although the behaviour of each process of a dis-
tributed program is reduced to a sequential program, the
communications between processes make the whole be-
haviour complicated. The visualization of communications
in distributed programs may be one of the major approaches
to techniques of understanding the behaviour and of debug-
ging. Most visualizations present the communication by
two dimensions of time and process, where the visualiza-
tions are devoted to the display of the amount of messages
and the availability of processors.

In distributed program environments, there are complex-
ities in sending/receiving messages. To check if messages
are correctly sent/received, we consider a semantic config-
uration of messages. As a pattern of semantic configura-
tions, we deal with the visualization of communications in
distributed logic program environments.

To make stress on the communication environment, we
take a three-dimensional approach to the visualization:

1. The first dimension is to describe sequences of config-
urations, as time goes and processes are implemented.

2. The second dimension is concerned with the (spatial or
logical) extension of distributed programs

3. The third dimension is required for the communication
histories to form a configuration of communications in
distributed programs for some duration

As a distributed program environment, a distributed logic
program is examined for the following reason.

As discussed in Shepherdson [11], negation as failure
rule is well established in relation to 3-valued logic models:
If a proposition A cannot be proved by a theory P (P �� A),
then the negated predicate not A may be inferable. It is
applicable to the deductive database, to infer not A by ap-
plying finite searches of the predicate A and failing in its
detection. The acquisition of the negated predicate not A
is generally applicable to abduction (as in Kakas et al. [4]),
diagnosis, causal theory and so on.

On the assumption of distributed environments of pro-
grams and/or databases, negation as failure is revised for
the environments by the idea that the negation as failure is
performed at each site of the program or the database. As
well, the communications for the negation as failure appli-
cations are made clear to be visualized.

Such an idea motivates the formulation of a distributed
logic program with negation as failure, which is extended
from the distributed program without negation [9], and the
study on the visualization of communications for nega-
tion as failure in distributed program environments. A
distributed logic program is a network of logic programs,
where (1) the reasoning for each logic program is defined,
and (2) the negation as failure, evoked by each program, is
formulated in the whole network.

Under the above backgrounds, we present a three-
dimensional visualization of communications in a dis-
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tributed logic program, which is a network of logic pro-
grams. The communication is caused by negation as fail-
ure through the network, where each logic program makes
reasonings by using the negation as failure through the net-
work. It consists of the displays for: (1) a sequence of
configurations, (2) a network of logic programs, and (3) a
configuration of negation as failure through the network for
some duration.

2. A distributed logic program

We deal with a network of logic programs which con-
tain negation as failure, where negation as failure through
the network is formulated and the communications to im-
plement it are visualized.

A distributed general logic program (DGLP, for short) is
a tuple

< P1, . . . , Pn > (n ≥ 1),

where Pi is the general logic program.
A general logic program is a set of clauses of the form

A0 ← A1, . . . , Am, not Am+1, . . . , not An (n ≥ m ≥ 0),
where A0, A1, . . . , Am are atoms (positive literals) and
not Am+1, . . . , not An are negations of atoms (negative
literals). A0 is the head of the clause and A1, . . . , Am,
not Am+1, . . . , not An is its body. A literal is a positive
literal or a negative literal. The clause is also expressed
as A0 ← L1, . . . , Ln, where L1, . . . , Ln are literals. The
clause containing no “not” is a definite clause. The program
containing only definite clauses is a definite program.

The goal is an expression of the form ← L1, . . . , Ln,
where L1, . . . , Ln, where L1, . . . , Ln are literals. The
empty clause containing no head nor body is denoted by
�.

The reasonings by SLD resolution and negation as fail-
ure for the goal are briefly given below. For the basic treat-
ments, see Lloyd [6].

(1) A goal ← A1θ, . . . , Ai−1θ, L1θ, . . . , Lkθ, Ai+1θ, . . . ,
Amθ, not Am+1θ, . . . , not Anθ is derived from a goal
← A1, . . . , Am, not Am+1, . . . , not An and a (pro-
gram) clause A ← L1, . . . , Lk, where θ is a most gen-
eral unifier of the atoms Ai (1 ≤ i ≤ m) and A. If a
goal reaches � by SLD resolution and negation as fail-
ure (recursively defined as below), we say that the goal
succeeds. If a goal cannot reach � by means of finite
applications of SLD resolution and negation as failure,
we say that the goal (finitely) fails. In this paper, we
deal with only finite failure.

(2) Negation as failure is a rule: A goal ← not A suc-
ceeds if a goal ← A fails, and a goal ← not A fails
if a goal ← A succeeds for a ground atom A (that is,
an atom containing no variables). We have a refined

negation as failure, originally presented in Eshghi and
Kowalski [3]:

(i) A goal ← not A succeeds if a goal ← A fails
with the atom A in memory,

(ii) A goal ← not A fails if a goal ← A succeeds,

where A is a ground atom, sometimes called an ab-
ducible.

The combination of SLD resolution with negation as fail-
ure is called to be SLDNF resolution (SLD resolution with
Negation as Failure). DGLP is supposed to have a network,
through which each general logic program (regarded as dis-
tributed at a site) can communicate with each other. We
now consider the case that we decide whether a goal ← A
fails with an atom A in memory, through the network of a
distributed general logic program. In this situation, we sup-
pose that a possible failure of the goal ← A is inquired to
each general logic program. If any trial for each program
fails, we infer that the goal ← not A succeeds.

EXAMPLE 1 Assume a DGLP P =< P1, P2 > such that

P1 = {p ← not q},
P2 = {q ← r},

where p, q and r are atoms (in propositional logic). Because
a goal ← q fails for both the programs P1 and P2, we can
have a succeeding derivation for a goal ← p in P1, which
requires the failing derivation for a goal ← q in both P 1 and
P2.

We thus take a rule of “negation as failure through a net-
work” as follows.

(i) A goal ← not A succeeds if a goal ← A fails for
each general logic program with the ground atom A
in memory.

(ii) A goal ← not A fails if a goal ← A succeeds.

Following the model theories as in You et al. [16] and Ya-
masaki et al. [13][14], we can have a sound distributed pro-
cedure with negation as failure through the network as well
as with SLD resolution, with respect to some 3-valued logic
model [15]. The distributed procedure is implemented, as
shown in what follows.

3. A communication environment of dis-
tributed logic programs

3.1. A communication environment

A distributed logic program environment is designed,
based on the following approaches. The procedural descrip-
tion of the environment will be shown in section 3.2.

Proceedings of the Seventh International Conference on Information Visualization (IV’03) 
1093-9547/03 $17.00 © 2003 IEEE 



• Each logic program Pi(1 ≤ i ≤ n), which is a part
of a distributed logic program is implemented as an
independent program. We call it an Independent Logic
Program (ILP, for short).

• We establish a procedure Session for the communica-
tion between ILPs. A Session knows which ILP par-
ticipates in this Session and controls messages to/from
other ILPs. A Session realizes a DGLP.

• There may be more than one ILP and Session in an
environment. An ILP can participate in more than one
Session. A Session can consist of more than one ILP.

• A process Reasoning is a sequence of derivations that
begin with a given goal.

• In a Session, more than one Reasoning can be executed
simultaneously.

• A Session can visualize a state of Reasonings by histo-
ries of messages.

3.2. Procedural description

In this section, we describe a behaviour of an ILP and a
Session in propositional logic. We also provide a protocol of
message on a Reasoning. (The procedure is formally given
in [15].)

The distributed procedure consists of three derivations:
succeeding and failing derivations on an ILP and a network
failing derivation on a Session. The succeeding and failing
derivations consist of two module as in [3][15]: one is for
the case that a goal is a positive literal and another is for a
negative literals. The structure of the distributed procedure
are as follows:

1. The succeeding derivation (on an ILP)

• SPmodule (for a positive literal)

• SNmodule (for a negative literal)

2. The failing derivation (on an ILP)

• FPmodule (for a positive literal)

• FNmodule (for a negative literal)

3. The network failing derivation (on a Session)

The succeeding derivation
The succeeding derivation aims at a proof for the given

goal. The succeeding derivation from a goal G of length
h(h ≥ 0) is a sequence of pairs

(G0, ∆0), . . . , (Gh, ∆h),

where G0, . . . , Gh are goals, and ∆0, . . . , ∆h are sets of
atoms. This is denoted by (G0, ∆0) ⇒suc (Gh, ∆h).

(Gi+1, ∆i+1) is constructed from (Gi, ∆i) by selecting
a literal Mk in Gi and executing SPmodule or SNmodule if
Mk is a positive or negative literal, respectively.
SPmodule

SPmodule finds a clause whose head is the literal, and
replaces the literal in the goal to the body of the clause.

SPmodule
if there is a clause Mk ← N1, . . . ,Nm

then
begin
Gi+1 :=← M1, . . . ,Mk−1,N1, . . . ,Nm, Mk+1, . . . ,Mn;
∆i+1 := ∆i

end

SNmodule
SNmodule checks whether the literal is already exam-

ined at first. If the literal is already examined, SNmodule
uses the result. If the literal is not yet examined, SNmodule
invokes a network failing derivation for the corresponding
positive literal. Assume the focused literal Mk =∼ L.

SNmodule
if L ∈ ∆i

then
begin
Gi+1 :=← M1, . . . ,Mk−1,Mk+1, . . . ,Mn;
∆i+1 := ∆i

end
else

if there is a network failing derivation
(({← L}, ∆i ∪ {L})) ⇒nff (H ′,∆′)

then
begin
Gi+1 :=← M1, . . . ,Mk−1,Mk+1, . . . ,Mn;
∆i+1 := ∆′

end
The failing derivation

The failing derivation aims at no proof for the given goal.
For a set H of goals, a (finitely) failing derivation of length
k (k ≥ 0) is a sequence of pairs

(H0, ∆0), . . . , (Hk, ∆k),

where H0, . . . , Hk are goal sets, such that � �∈ Hj for 1 ≤
j ≤ k, and ∆0, . . . , ∆k are sets of atoms. This is denoted
by (H0, ∆0) ⇒ff (Hk, ∆k).

(Hj+1, ∆j+1) is constructed from (Hj, ∆j) by selecting
a literal Mk in Gi which is one of goals in Hj and execut-
ing FPmodule or FNmodule if Mk is a positive or nega-
tive literal, respectively. Assume Hj = H ′

j ∪ {Gi}, where
Gi :=← M1, . . . , Mk, . . . , Mn.
FPmodule

If a focused literal is a positive literal in a failing deriva-
tion, FPmodule is invoked. FPmodule finds clauses of
which head is the literal, and makes a list of goals, by re-
placing the literal in the goals to the body of the clauses.
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FPmodule
if all the clauses are Mk ← Nq

1 , . . . ,N q
nq (1 ≤ q ≤ p)

such that the head is Mk

then
begin
for (1 ≤ q ≤ p) do

Gq
i+1 :=← M1, . . . ,Mk−1,N

q
1 , . . . ,N q

nq
,

Mk+1, . . . ,Mn;
Hj+1 := H ′

j ∪ {G1
i+1, . . . ,G

p
i+1};

∆j+1 := ∆j

end
else

begin
Hj+1 := H ′

j ; ∆j+1 := ∆j

end
FNmodule

FNmodule checks whether the literal is already exam-
ined, at first. If the literal is already examined, FNmodule
uses the result. If the literal is not yet examined, FNmod-
ule invokes a succeeding derivation for the corresponding
positive literal. Assume the focused literal as Mk =∼ L.

FNmodule
if L ∈ ∆i

then
begin
Hj+1 := H ′

j ∪ {M1, . . . ,Mk−1,Mk+1, . . . ,Mn};
∆j+1 := ∆j

end
else

if there is ({← L},∆j) ⇒suc (�, ∆′)
then
begin
Hj+1 := H ′

j ; ∆j+1 := ∆′

end
The network failing derivation

A Session S consists of ILPs. Let S = {P0, . . . , Pn},
where P0, . . . , Pn are the ILPs. A network failing deriva-
tion

(H0, ∆0) ⇒nff (H ′, ∆′)

on S is implemented by the NetworkFailingModule:
NetworkFailingModule
begin
for (0 ≤ i ≤ n) do simultaneously

call a failing derivation of Pi;
if (H0,∆0) ⇒ff (Hi,∆i) for all Pi (0 ≤ i ≤ n)
then

begin
H ′ = ∅; ∆′ = ∆0 ∪ . . . ∪ ∆n

end
end

A network failing derivation is invoked by a message
from a succeeding derivation. A failing derivation is acti-
vated by a message from a network failing derivation. Ta-
ble 1 shows messages we define. They are sent at the start
and an end of the derivations.

We have the following properties.

Table 1. Messages
Message Sender Receiver Comments
SFAIL ILP Session The start of a network fail-

ing derivation. It is sent by
a succeeding derivation.

SFAILR Session ILP The end of a network fail-
ing derivation. It is received
by a succeeding derivation.

FAIL ILP Session The start of a failing deriva-
tion.

FAILR Session ILP The end of a failing deriva-
tion.

PROPERTY 1 Derivation calls are represented in a tree:
nodes are derivations (succeeding, failing and network fail-
ing) and arcs connect a calling derivation to a called
derivation.

PROPERTY 2 The end message ei is sent/received after
the end message ej in a path from the root node to a leaf
node in a derivation call tree.

4. A visualization method for communications
in distributed logic programs

4.1. Overview

A three-dimensional visualization is performed by a Ses-
sion. A Session uses a history of messages to visualize a
behaviour of distributed logic programs. The axes of the
visualization represent different parametric factors of mes-
sages.

A message has three parametric factors: a time at which
the message is sent, a path which the massage belongs to
and a hierarchical level in the derivation call tree. We map
time into x-axis, paths into z-axis and hierarchical levels
into y-axis. A Session records the history of messages, and
visualizes them at any time (usually by user’s instructions).

In a Session, more than one Reasoning can be executed
simultaneously. The visualization can display them in a fig-
ure. Our implemented system can highlight a Reasoning by
colouring the history of messages for the Reasoning.

The advantages of the visualization are as follows:

• We can show the state of a Session.

• We can know how derivation calls are evoked in a Rea-
soning.

• If there is a derivation that does not send an end mes-
sage, we can find it in a visualized figure.
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4.2. Implementation

The system we have implemented consists of two parts:
a Session and an ILP. A Session controls and records mes-
sages and knows which ILPs are participated in, when a
Reasoning is being performed. An ILP has a logic program
and it can perform derivations.

In our visualization, a message is represented as a
coloured cube. Its coordinates are defined by the time, by
the ILP which sends/receives the message, and by the hier-
archical level. The three parametric factors of messages are
given by a Session.

time: A Session has a global clock. The time is set by the
clock. The time of a message is determined when the
message is sent/received by the Session.

path: A path is calculated by the derivation call tree of the
Reasoning. In the visualization, to give the feeling of
a spatial extension of a network, messages that are ex-
ecuted on the same processor are placed in the neigh-
borhood. But the messages have different z-coordinate
if they belong to different paths.

hierarchical level: A hierarchical level is also calculated
by the derivation call tree. The hierarchical level of a
message is the depth of the corresponding derivation
in the derivation call tree.

We connect messages with lines according to the seman-
tic configuration of messages. Lines are drawn by applying
the following rules:

• In the case of an SFAIL message, connect it to all FAIL
messages caused by the SFAIL message.

• In the case of an FAILR message, connect it to an
SFAILR message that pairs off with the SFAIL mes-
sage which called the FAILR message.

• In other cases, connect a message to the next message
which has the successive value time on the same values
of the path and the hierarchical level.

In the visualization, we add extra cubes that represent the
start and the end of a Reasoning. The cubes are drawn by a
different colour from cubes that represent messages.

EXAMPLE 2 Figure 1 shows the status of a Session with
a Reasoning. The Reasoning has been performed on two
ILPs: P1 = {A ← not B, C, not D}, P2 = {B ←
E, E ← �}. The given goal is ← A to P1. In this figure,
time goes left to right, paths are placed front to back, and hi-
erarchical level represents top to bottom. We can know this
Reasoning already finished because the node for the end of
the reasoning is represented.

Figure 1. Communications in a Reasoning with
two ILPs.

Figure 2. Communications in two Reasonings
with five ILPs.

EXAMPLE 3 Figure 2 shows the status of a Session with
two Reasonings. The Reasonings have been performed on
five ILPs:P1 = {A ← not B}, P2 = {B ← C}, P3 =
{B ← not D}, P4 = {D ← not E}, P5 = {E ← �}
with a given goal ← A to P1 and a given goal ← B to
P3. The former Reasoning finished but the latter have not
finished. The latter Reasoning is focused in the figure. The
start messages are represented as a special colour if the
corresponding end messages are not sent to.

5. Related works

There are many related works in visualization of the be-
haviour of parallel or concurrent programs. Most of them
visualize messages in two-dimension [7][8]. One axis rep-
resents time and another is for processors. This type of vi-
sualization is simple and general.

Carr et al. [1] implemented a communication library
with a visualization for some use in undergraduate courses.
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The visualization shows the synchronization among the
threads in two-dimension to help students understand com-
plex communications.

Visper [12] presented a graph based on a software visu-
alization tool for some parallel message-passing program-
ming. They provide a two-dimensional graph which ex-
tends the time axis as a control axis, and adds the concept
of process groups to the process axis.

Is the three-dimensional visualization generally supe-
rior to the two-dimensional visualization? Cuckburn and
Mckenzie [2] compare the effect of the three-dimensional
visualization with the two-dimensional visualization in a
document system. They report that the two-dimensional vi-
sualization is slightly superior in efficiency, but the three-
dimensional visualization is significantly superior in prefer-
ence. Therefore, an approach to a three-dimensional visual-
ization of communications in distributed program environ-
ments is taken.

VisuaLinda [5] visualizes parallel Linda programs. The
system is similar to ours. The visualization function is im-
plemented in a server. The system visualizes the behaviour
of parallel programs in three-dimensions. However, since
VisuaLinda covers general programs, its visualization con-
sists of two parametric factors: time and processors.

Because our visualization specializes in distributed logic
programs, it makes use of three parametric factors: time
sequence, identification of processors (procedures) and hi-
erarchical level. Therefore it naturally demonstrates the be-
haviour of distributed logic programs in three-dimensions.

6. Concluding remarks

We propose a three-dimensional visualization of com-
munications in distributed logic programs. The visualiza-
tion makes use of a semantic configuration of messages of
which three parametric factors are mapped to the three axes
respectively. The visualization function is included in the
constructed procedure Session which realizes the reasoning
caused by a DGLP. It can demonstrate messages communi-
cated through several sequences Reasonings which are exe-
cuted simultaneously in the Session. We implement a visu-
alization system, where we can select a sequence Reasoning
from its output figure, and focus on the messages of the Rea-
soning. We could also see the status of active Reasonings
waiting for messages. The visualization may be useful to
show dynamic changes of a distributed logic program: that
is, increments/decrements of ILPs.

While we deal with the visualization of communications
in distributed logic program environments, the visualization
is applicable to other parallel/distributed program environ-
ments, as we have visualized a program structure of a par-
allel program [10].
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