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Abstract

Hepatic and pancreatic differentiation from ES cells is of great interest for the impact that this
knowledge could have on the treatment of hepatic and diabetic patients. The liver and pancreas
initially develop by budding from the embryonic endoderm. Thus, the development of the endo-
derm represents an important step and has an integral common role in initiating the early stages
of pancreatic and liver development. We know that the development of hepatocytes and insulin-
producing pancreatic beta-cells from ES cells represents the culmination of a complex develop-
mental program. However, there has been recent progress in directing ES cells to endoderm and
early-stage hepatic and pancreatic progenitor cells. We here discuss the role of the microenviron-
ment, transcriptional factors and cytokines, which have been recognized as important molecules
during the major steps of the development of the liver and pancreas. We also present the most
recent advances and efforts taken to produce definitive endoderm-committed ES cells for the fur-
ther differentiation of hepatocyte-like and insulinproducing cells. Recent progress in the search
for new sources of hepatocytes and beta-cells has opened up several possibilities for the future of
new perspectives for future of new prophylactic and therapeutic possibilities for liver diseases and
diabetes.

KEYWORDS: embryonic stem cells (ES cells), diff erentiation, hepatocyte like-cells, insulin-
producing cells, defi nitive endoderm
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ertain kinds of liver failure can motivate a 
lethal condition requiring treatment by liver 

transplantation or alternatively hepatocyte transplan-
tation [1].  The success of islet transplantation,  in 

between the laboratory and the clinic,  has proven that 
cell therapy can cure diabetes [2].  However,  given 
the current global donor shortage and the need for 
several infusions,  the use of hepatocyte and islet 
transplantation has been seriously restricted.
　 Facing an increasing worldwide population of 
hepatic and diabetic patients whose care requires 
extensive economic and health care resources,  several 
candidate cell types are being explored as sources for 

C

Hepatic and pancreatic diff erentiation from ES cells is of great interest for the impact that this knowl-
edge could have on the treatment of hepatic and diabetic patients.  The liver and pancreas initially 
develop by budding from the embryonic endoderm.  Thus,  the development of the endoderm repre-
sents an important step and has an integral common role in initiating the early stages of pancreatic 
and liver development.  We know that the development of hepatocytes and insulin-producing pancre-
atic ｹ-cells from ES cells represents the culmination of a complex developmental program.  However,  
there has been recent progress in directing ES cells to endoderm and early-stage hepatic and pancre-
atic progenitor cells.  We here discuss the role of the microenvironment,  transcriptional factors and 
cytokines,  which have been recognized as important molecules during the major steps of the develop-
ment of the liver and pancreas.  We also present the most recent advances and eff orts taken to produce 
defi nitive endoderm-committed ES cells for the further diff erentiation of hepatocyte-like and insulin-
producing cells.  Recent progress in the search for new sources of hepatocytes and ｹ-cells has opened 
up several possibilities for the future of new perspectives for future of new prophylactic and thera-
peutic possibilities for liver diseases and diabetes.
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generating unlimited amounts of hepatocytes and 
insulin-producing cells for transplantation.  Among 
them,  human embryonic stem cells are the most 
attractive,  due to their pluripotent nature and their 
suitability for cell-replacement therapy [3].  Thus,  an 
exact understanding of the developmental processes 
that lead to a specifi c cell fate might help us to reca-
pitulate the events in vitro and engineer artifi cial cells 
and tissues to combat liver diseases and diabetes.  
Important progress has been reported in inducing ES 
cells to the endoderm stage,  a common developmental 
stage for liver and pancreas cells.  The defi nitive 
endoderm gives rise to the major cell types of the 
digestive tract and associated organs,  including the 
liver and pancreas [4].  This short review focuses on 
the major steps of endoderm development,  which may 
contribute to a better understanding of the main fac-
tors involved in the hepatic and ｹ-cell diff erentiation 
process.  Moreover,  we discuss the role of the major 
transcriptional factors,  driving the hepatic and pan-
creatic development.  Finally,  we discuss recent 
eff orts to produce hepatocytes and ｹ-cells suitable for 
transplantation.

Endoderm Formation and Induction

　 Heterotopic transplantation studies have demon-
strated that by mid-to-late gastrulation,  cells are 
determined to give rise to the endoderm [5].  Several 
early endodermal transcription factors,  including 
orthodenticle homologue (Otx2),  homeobox expressed 
in ES cells 1 (Hesx1),  homeobox (Hex),  and caudal-
related homeobox 2 (Cdx2),  are regionally expressed 
prior to the time that organ specifi c genes are acti-
vated [6].  Then,  within the PS,  the mesendoderm 
cells regulate the expression of several genes,  such as 
goosecoid (GSC) forkhead box A2,  (Foxa 2),  chemo-
kine C-X-C motif receptor 4 cxcr4,  sex determining 
region-Y box 17 (Sox17a/b),  Brachyury,  E-cadherin,  
vascular endothelial growth factor receptor-2,  
(VEGFR2),  VE-cadherin,  platelet-derived growth 
factor receptor-a (PDGFRa),  and GATA-binding pro-
tein 4,  (GATA-4) for the cell-fate diff erentiation of 
the defi nitive endoderm and mesoderm progenitors 
(see Fig.  1) [4ﾝ6].  Extraembryonic endoderm cells 
share the expression of many genes with the defi nitive 
endoderm,  including the often-analyzed transcription 
factors Sox17,  FoxA1 and FoxA2 [7].  The common 

transcriptional machinery in the defi nitive and visceral 
endoderm implies a similarity in the mechanism of 
specifi cation of the 2 tissues.
　 Thus,  it is tempting to consider that common sig-
naling events induce Sox17 and the FoxA genes [8].  
However a recent work suggested that 2 conditions are 
required to induce approximately 70ｵﾝ80ｵ of defi n-
itive endoderm from human ES cells: signaling by 
Activin/Nodal family members and release from 
inhibitory signals generated by PI3K through insulin/
IGF [9,  10].

From Hepatic Specifi cation to the 
Mature Hepatic Phenotype

　 Growth factor signaling from the cardiac meso-
derm and septum transversum mesenchyme specifi es 
the underlying endoderm to adopt a hepatic fate [11].  
The growth factors identifi ed were fi broblast growth 
factos (FGFs) and bone morphogenic proteins 
(BMPs).  Using a tissue explants assay,  it was demon-
strated that FGFs (acidic or basic) could be substi-
tuted for the cardiac mesoderm in inducing the ventral 
endoderm to elicit a hepatogenic response (see Fig.  
2) [11,  12].  Cocultures of chick cardiac mesoderm 
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Fig. 1　 Representation of defi nitive endoderm and its derivatives.
The fi gure shows how the defi nitive endoderm is responsible for 
deriving the entire gastrointestinal tract and lungs; in particular,  the 
portion in the midgut is capable of generating hepatic and 
pancreatic tissue.
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were shown recently to induce hepatic diff erentiation 
in mouse ES cells.  Recently,  some reports have 
proved the importance of FGFs and BMPs in mouse 
ES cells diff erentiation toward a hepatic phenotype.  
Furthermore,  interactions with endothelial cells,  a 
mesodermal derivative in this inductive sequence,  are 
crucial for this early budding phase in hepatic induc-
tion [13].
　 In the endoderm,  the onset of Foxa gene expres-
sion precedes the induction of the hepatic program by 
FGF signals.  Furthermore,  Foxa proteins are able to 
displace nucleosomes present in the regulatory region 
of the albumin gene before the gene becomes activated,  
but other transcription factors that bind to this region 
are unable to do so [14].  Foxa2 binding can reverse 
chromatin-mediated repression of alpha-fetoprotein 
(Afp) gene transcription in vitro [14,  15].
　 Hepatocyte growth factor (HGF) is critical to the 
signaling pathway that controls the proliferation of 
fetal liver cells [16].  Genetic studies in mouse 
embryos showed that the proliferation and outgrowth 
of the liver bud cells require the interaction of HGF 
[16].  Hematopoiesis plays an important role in 
hepatic maturation.  After the liver bud emerges from 

the gut tube,  hematopoietic cells migrate there and 
propagate.  The hematopoietic cells secrete oncostatin 
M (OSM),  a growth factor belonging to the interleu-
kin-6 (IL-6) family [17].  OSM stimulates the expres-
sion of hepatic diff erentiation markers and induces 
morphologic changes and multiple liver-specifi c func-
tions such as ammonia clearance,  lipid synthesis,  gly-
cogen synthesis,  detoxifi cation,  and cell adhesion 
[18].  Also glucocorticoids have been shown to be 
involved in hepatic maturation and were found to 
modulate the proliferation and function of adult hepa-
tocytes.  In the fetal liver,  physiological concentra-
tions of dexamethasone (Dex),  a synthetic glucocorti-
coid,  suppress AFP production and DNA synthesis 
and up-regulate albumin production [19].

From the Primitive Pancreas to the 
Mature Endocrine Islet Phenotype

　 The endoderm can give rise to all pancreatic tis-
sues,  as demonstrated by tissue culture and in vivo 
transplantation [20].  To get to the mature hormone-
producing endocrine phenotype,  the primitive gut has 
to go through a few crucial steps: patterning of the 
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Fig. 2　 Liver and pancreas specifi c derivation.
The fi gure shows extracellular signals from neighboring tissues,  which regulate the tissue- and cell type-specifi c diff erentiation.
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endoderm,  inhibition of gut formation by hh suppres-
sion,  mesenchyme conditioning and fi nally epithelial 
expression of key transcription factors [21].  The 
pancreas follows a profi le of cytodiff erentiation in 
three phases depending on the amount of enzymes and 
hormones secreted,  with 2 main transitions: a pri-
mary regulatory transition,  defi ned by conversion of 
pre-diff erentiated cells to a proto-diff erentiated state 
where pancreas specifi c proteins are present,  and a 
secondary regulatory transition,  with the conversion 
of proto-diff erentiated tissue to diff erentiated cells 
with full protein synthesis and no proliferative capac-
ity [22].
　 With some diff erences,  the development of the 
ventral and dorsal buds follows the same diff erentia-
tion pathway to achieve the pancreatic phenotype:
repression of the hh genes and expression of critical 
homeobox gene products such us pancreas-duodenum 
homeobox 1 (pdx-1) and the homeobox transcription 
factor hlxb9.  In the dorsal pancreas,  a series of 
notochord-derived factors,  such as activin-ｹB and 
fi broblast growth factor (FGF) have been reported to 
participate in this process (see Fig.  2).  On the other 
hand,  development of the ventral pancreas seems to be 
a notochord-independent procedure,  which endodermal 
transcription factors such us the Hex homeobox gene 
controls indirectly by maintaining the proliferation 
rate and consequently the positioning of ventral fore-
gut endoderm cells relative to the mesoderm (see Fig.  
2) [23].
　 As endocrine cells emerge from the epithelium and 
migrate into the mesenchyme,  the lack of Notch sig-
nalling results in high levels of the bHLH transcrip-
tion factor neurogenin3 (Ngn3),  promoting the endo-
crine fate [24].  Further diff erentiation is achieved by 
a multipotent pancreatic progenitor coexpressing 
Pdx1,  Hlxb9,  Nkx6ﾝ1,  Nkx2ﾝ2,  Nkx6ﾝ2,  and Sox9 
[25ﾝ27],  by the primary regulatory transition.  The 
surrounding epithelium then gives rise to the commit-
ted cell types by the expression of several specifi c 
transcription factors,  among others,  Isl1,  Pax4,  Pax 
6,  and NeuroD/BETA2 [28ﾝ32] and others,  depend-
ing on their specifi c endocrine lineage,  namely ｸ (glu-
cagon),  ｹ (insulin),  PP or δ (pancreatic polypeptide) 
and ε cells (ghrelin).

Current Status of Hepatocyte-like Cell 
Diff erentiation from Human ES Cells

　 Several approaches have been used to diff erentiate 
and to obtain enriched populations,  and human 
hepatic-like cells have been isolated and characterized 
for their phenotypes.  One study used gene manipula-
tion to select the cells through an albumin promoter.  
However,  the cells expressing a hepatic phenotype 
were isolated from EBs; thus few cells were pro-
duced,  and the functionality of the cells was not 
tested [33].  In one of the few reports on human ES 
cells,  combined treatment with insulin,  DEX and col-
lagen type I followed by sodium butyrate,  led to 
increased numbers of mature hepatic gene-expressing 
cells (10ﾝ15ｵ) [34].  The lack of success of these 
early attempts at diff erentiating human ES cells into 
functional hepatocytes has focused attention on the 
fundamentals of normal embryonic development,  
knowledge of which is essential to better understand 
the early stages of defi nitive endoderm formation.  A 
recent important contribution is a protocol in which 
the use of activin A in combination with serum-free 
conditions,  resulted in enrichment to defi nitive endo-
derm cells (up to 80ｵ) by human ES cells [9].  Using 
a modifi cation of this protocol and a combination of 
protocols previously reported using mouse ES cells,  
Cai et al.  reported that the addition of FGF,  BMP,  
and HGF can induce hepatic fate,  and that the later 
addition of OSM and Dex to the cell culture induced 
even more diff erentiated hepatocyte-like cells in a total 
time of 18 days [35].  We recently combined the tech-
niques of various eff orts to generate functional hepa-
tocytes from mouse ES cells.  The diff erentiation 
protocol was simple,  used defi ned reagents and yielded 
to date the most effi  ciently diff erentiated hepatocyte-
like cells.  Starting with a suspension culture system,  
where early endodermal development is initiated,  ES 
cells were subsequently transferred to plates and cul-
tured in the presence of fi broblast growth factor-2 and 
activin A.  The prediff erentiated cells were then fur-
ther developed toward hepatocytes in a defi ned cocul-
ture together with human nonparenchymal liver cells 
(endothelial cell line,  cholangiocyte cell line and stel-
late cell line) under the infl uence of the hepatocyte 
growth factor,  dimethyl sulfoxide,  and dexametha-
sone.  An improvement of hepatic maturation was 
observed when a coculture with liver nonparenchymal 
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cell lines was applied.  Several cytokines and growth 
factors important for liver regeneration and develop-
ment were identifi ed in the conditioned medium of the 
cell lines [36,  37].

Current Status of ｹ-cell Diff erentiation 
from Human ES Cells

　 Another possibility for specifying stem/progenitor 
cells is to use the appropriate sequence and combina-
tion of a permeable peptide,  the protein transduction 
domain from HIV-TAT fused with specifi c transcrip-
tion factors.  Transduction of PDX-1,  BETA 2/
NeuroD and TAT-Ngn3 has been able to enhance insu-
lin gene transcription and facilitate diff erentiation 
toward the ｹ-cell lineage [38].  With the help of 
transgenic mice expressing a tamoxifen-inducible form 
of Ngn3,  Grapin-Botton and colleagues have shown 
that endocrine progenitors change competence over 
time within an epithelium-intrinsic mechanism,  demon-
strating that pancreas endocrine progenitors are com-
mitted to generate diff erent endocrine cell types at 
diff erent stages [39].  To date the exact role for the 
mesenchyme in coordinating progenitor cell prolifera-
tion and diff erentiation is incompletely understood.  It 
has been previously shown that FGF10 is produced by 
embryonic pancreatic mesenchymal cells and is 
required for the proliferation of early pancreatic pro-
genitors [40].  However,  additional factors generated 
by the mesenchyme should be investigated,  as FGF10 
does not provide complete growth when compared with 
mesenchyme.
　 In diabetes mellitus,  even if ｹ-cells are the main 
cell type aff ected,  there is a general endocrine islet 
dysfunction,  which results in ineffi  cient blood glucose 
homeostasis.  The ultimate goal for cell therapy in 
diabetes would be to restore euglycemia.  This raises 
the question whether insulin-producing stem cells 
would be suffi  cient.  In an eff ort to mimic the normal 
pancreatic development,  D’Amour et al. recently pub-
lished a protocol to generate hormone-secreting islet-
like clusters [41].  Although immature in respect to 
the clusters’ secretory capacity,  their approach is the 
fi rst to succeed in generating a hormone-secreting 
cluster,  however it must be further improved to pro-
duce therapeutic ｹ-cells.  Furthermore,  another pro-
tocol generating the sametype of islet clusters has been 
recently reported,  where insulin-producing cells 

secreted human c-peptide in a glucose- dependent man-
ner [42].

Conclusions

　 Research to repopulate damaged livers and restore 
the ｹ-cell defi ciency of diabetes is being pursued 
aggressively.  There is optimism about disparate strat-
egies for generating supplies of hepatocytes and ｹ
-cells suffi  cient for transplantation in the near future.  
Exact understanding of the developmental processes 
that lead to a specifi c cell fate might help us to reca-
pitulate the events in vitro and engineer artifi cial liver 
and ｹ-cells to combat liver diseases and diabetes.
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