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Abstract 

In this paper, nonlinear identification is dealt with by 
using Gaussian sum distribution. Recently this model 
is called stochastic neural networks. By using the 
stochastic model, it is possible to estimate the out- 
put and also the missing elements in the input vector 
within the framework of conditional estimation. The 
model parameters can be estimated by using the EM 
algorithm. By interpolating the unknown elements, we 
don't have to discard the vectors including the missing 
elements. 

1 Introduction 

In the identification of dynamical systems, the num- 
ber of incomplete tuples of input-output data become 
huge even if only a small amount of missing data occur. 
Thus, we may lose a lot of information if we discard in- 
complete tuples. Here we take an approach to interpo- 
late the missing elements and use it for the parameter 
estimation of the system. 

Let the output of the system be y(k) and input vector 
~ ( k ) ]  both subject to missing data. A vector z ( k )  may 
include the past values of the output and the input vec- 
tors. Suppose y and I are jointly distributed random 
variables. Then with the minimum variance criterion 

we have 

(2) 

where p ( y J z )  is the conditional probability density func- 
tion. By using the joint density function, we have 

Hence 

(3) 

Therefore] it suffices to estimate the joint probability 
density function in case the data complete. 
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Streit and Luginbuhl [5] developed the EM algorithm 
for learning the parameters of Gaussian mixture distri- 
bution for pattern classification problem. Parzen win- 
dow [3] is a very simple method for estimating probabil- 
ity densities, but basically it has to have the same num- 
ber of kernel functions as the learning data. Although 
Gaussian mixture model has much smaller number of 
kernel functions than parzen window, it has some dif- 
ficulty in estimating the model parameters. EM algo- 
rithm is a promising approach for this problem. 

In this paper, the minimum variance estimator will be 
derived by Gaussian mixture model. The estimate of 
missing variable is also derived by the same framework. 
Finally we propose to use the interpolation and param- 
eter estimation alternatively for the system identifica- 
tion with missing elements. 

2 Model 

In the following, we use t = [yT The PDF of 
x E R" is defined by g(x). The Gaussian mixture 
model is described by 

exp [-(X - pi)*C-'(x - pL;)/2] 
1 

pi(xlpi,') = (2x)n/21c11/2 
(5) 

where ai is the weight coefficient and ai 2 0, xi ai = 
1. The learning elements in this model are {(ai, pi ) ,  i = 
1,. f .  , G }  and E. 

3 EM Algorithm 

If the vectors (t(l), 4 2 ) ,  e . .  , z (T)}  are known, it is 
possible to use the parameter estimation scheme that 
was given in [SI. The algorithm is as follows. The , 
estimation of wj(t(k))  corresponds to the E-Step and 



the rest correspond to M-Step. 

. G T  

A 

i=l h = l  

4 Estimation of Missing Data 

Substituting eqns. (4) and (5) into equation (3), we 

Suppose y is the output. Then equation (6) gives the 
output estimate. Suppose now y is the missing value. 
Then it gives the interpolation. Here we deal with both 
of them in the same manner. By some matrix manip- 
ulations, we have 

and 10% of missing data was assumed, which were 
generated randomly. G is 20. 

The estimate of the output was also subject to missing 
values. The missing values were supposed to be 15% of 
the input/output data. The number of training data 
instants whose missing elements are 0 N 6 are 

Table 1: Missing data instants in training data 

# of missing elements I 0 1 2 3 4- 5 6 
# of instants 152  31 14 3 0 0 0 

Without our estimation-identification scheme, we could 
use only 52 instants for identification which may yield 
a very poor result. 

2 

1 5  

where the parameters in the right hand side are the 
current estimates by the EM algorithm. 

In the missing data case, we estimate it by equation 
(6) where y is the vector of missing elements gathered 
to the top. The transformation matrix is expressed 
H ( k ) .  This expression is dependent on k because the 
transformation matrix H ( k )  is &dependent. 

5 Numerical example 

The plant model we use is given by ([2]) 

+u(k) + 0.8u(L - 1) 
where the input was given by the uniform distribution 
in (-0.5,O.S). The amount of training data is 100 tu- 
ples, where 

z(k) = [Y(k + 3) Y(k + 2) Y(k + 1) Y(k) u ( k  + 2) u ( k  + I)]’ 

Figure 1: Output(dashdot) and the estimate(so1id) 
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