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Uncertainty Modeling and Model Selection
for Geometric Inference

Kenichi Kanatani, Fellow, IEEE

Abstract—We first investigate the meaning of “statistical methods” for geometric inference based on image feature points. Tracing

back the origin of feature uncertainty to image processing operations, we discuss the implications of asymptotic analysis in reference to

“geometric fitting” and “geometric model selection” and point out that a correspondence exists between the standard statistical analysis

and the geometric inference problem. Then, we derive the “geometric AIC” and the “geometric MDL” as counterparts of Akaike’s AIC

and Rissanen’s MDL. We show by experiments that the two criteria have contrasting characteristics in detecting degeneracy.

Index Terms—Statistical method, feature point extraction, asymptotic evaluation, geometric AIC, geometric MDL.
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1 INTRODUCTION

INFERRING the geometric structure of the scene from noisy
data is one of the central themes of computer vision. This

problem has been generalized in abstract terms as geometric
fitting, for which a general theory of statistical optimization
has been developed [10]. In the same framework, the
geometric AIC and the geometric MDL have been proposed
for model selection [11], [13] and applied to many problems
of computer vision [12], [14], [15], [18], [19], [22], [26], [39].

However, the crucial difference of these criteria from

other similar criteria [34], [35], [37], [38] have been over-

looked, often causing misunderstanding. The difference

stems from the interpretation of “statistical methods.” The

purpose of this paper is twofold:

1. We examine the origin of “uncertainty” in geometric
inference and point out that it has a different meaning
from that in the traditional statistical problems.

2. We derive the geometric AIC and the geometric
MDL in this new light and show by experiments that
they have very different characteristics.

In Sections 2 and 3, we focus on the question of why we

needastatisticalmethod for computervision, tracingback the

origin of feature uncertainty to image processing operations.

In Sections 4, we discuss the implications of asymptotic

analysis in reference to “geometric fitting” and “geometric

model selection” and point out that a correspondence exists

between the standard statistical analysis and geometric

inference. In Sections 5, 6, and 7, we derive the “geometric

AIC” and the “geometric MDL” as counterparts of Akaike’s

AIC and Rissanen’s MDL. In Section 8, we address related

issues. In Section 9, we show by experiments that the two

criteria have contrasting characteristics in detecting degen-

eracy. Section 10 presents our concluding remarks.

2 WHAT IS GEOMETRIC INFERENCE?

2.1 Ensembles for Geometric Inference

The goal of statistical methods is not to study the properties
of observed data themselves but to infer the properties of
the ensemble from which we regard the observed data as
sampled. The ensemble may be a collection of existing
entities (e.g., the entire population), but often it is a
hypothetical set of conceivable possibilities. When a
statistical method is employed, the underlying ensemble
is often taken for granted. However, this issue is very
crucial for geometric inference based on feature points.

Suppose, for example, we extract feature points, such as
corners of walls and windows, from an image of a building
and want to test if they are collinear. The reason why we
need a statistical method is that the extracted feature
positions have uncertainty. So, we have to judge the
extracted feature points as collinear if they are sufficiently
aligned. We can also evaluate the degree of uncertainty of
the fitted line by propagating the uncertainty of the
individual points. What is the ensemble that underlies this
type of inference? This question reduces to the question of
why the uncertainty of the feature points occurs at all. After
all, statistical methods are not necessary if the data are
exact. Using a statistical method means regarding the
current feature position as sampled from a set of its possible
positions. But, where else could it be if not in the current
position?

2.2 Uncertainty of Feature Extraction

Many algorithms have been proposed for extracting feature
points including the Harris operator [8] and SUSAN [32],
and their performance has been extensively compared [3],
[27], [31]. However, if we use, for example, the Harris
operator to extract a particular corner of a particular
building image, the output is unique (Fig. 1). No matter
how many times we repeat the extraction, we obtain the
same point because no external disturbances exist and the
internal parameters (e.g., thresholds for judgment) are
unchanged. It follows that the current position is the sole
possibility. How can we find it elsewhere?
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If we closely examine the situation, we are compelled to
conclude that other possibilities should exist because the
extracted position is not necessarily correct. But, if it is not
correct, why didn’t we extract the correct position in the
first place? The answer is: we cannot.

2.3 Image Processing for Computer Vision

The reason why there exist so many feature extraction
algorithms, none of them being definitive, is that they are
aiming at an intrinsically impossible task. If we were to
extract a point around which, say, the intensity varies to the
largest degree in such and such a measure, the algorithm
would be unique; variations may exist in intermediate
steps, but the final output should be the same.

However, what we want is not “image properties” but
“3D properties” such as corners of a building, but the way a
3D property is translated into an image property is
intrinsically heuristic. As a result, as many algorithms can
exist as the number of heuristics for its 2D interpretation.

If we specify a particular 3D feature to extract, say a
corner of a window, its appearance in the image is not
unique. It is affected by many properties of the scene
including the details of its 3D shape, the viewing orienta-
tion, the illumination condition, and the light reflectance
properties of the material. A slight variation of any of them
can result in a substantial difference in the image.

Theoretically, exact extraction would be possible if all the
properties of the scene were exactly known, but to infer
them from images is the very task of computer vision. It
follows that we must make a guess in the image processing
stage. For the current image, some guesses may be correct,
but others may be wrong. The exact feature position could
be found only by an (nonexisting) “ideal” algorithm that
could guess everything correctly.

This observation allows us to interpret the “possible
feature positions” to be the positions that would be located by
different (nonideal) algorithms based on different guesses. It
follows that the set of hypothetical positions should be
associated with the set of hypothetical algorithms. The current
position is regarded as produced by an algorithm sampled
from it. This explains why one always obtains the same
position no matter how many times one repeats extraction
using that algorithm. To obtain a different position, one has
to sample another algorithm.

Remark 1. We may view the statistical ensemble in the
following way. If we repeat the same experiment, the
result should always be the same. But, if we declare that
the experiment is the “same” if such and such are the

same while other things can vary, those variable
conditions define the ensemble. The conventional view
is to regard the experiment as the same if the 3D scene we
are viewing is the same while other properties, such as
the lighting condition, can vary. The resulting image
would be different for each (hypothetical) experiment, so
one would obtain a different output using the same

image processing algorithm. The expected spread of the
outputs measures the robustness of that algorithm.

In this paper, we view the experiment as the same if
the image is the same. Then, we could obtain different
results only by sampling other algorithms. The expected
spread of the outputs measures the uncertainty of feature
detection from that image. We take this view because we
want to analyze the reliability of geometric inference
from a particular image, while the conventional view is
suitable for assessing the robustness of a particular
algorithm.

3 STATISTICAL MODEL OF FEATURE LOCATION

3.1 Covariance Matrix of a Feature Point

The performance of feature point extraction depends on the
image properties around that point. If, for example, we
want to extract a point in a region with an almost
homogeneous intensity, the resulting position may be
ambiguous whatever algorithm is used. In other words,

the positions that potential algorithms would extract should
have a large spread. If, on the other hand, the intensity
greatly varies around that point, any algorithm could easily
locate it accurately, meaning that the positions that the
hypothetical algorithms would extract should have a strong
peak. It follows that we may introduce for each feature
point its covariance matrix that measures the spread of its
potential positions.

Let V ½p�� be the covariance matrix of the �th feature

point p�. The above argument implies that we can estimate
the qualitative characteristics of uncertainty but not its
absolute magnitude. So, we write the covariance matrix
V ½p�� in the form

V ½p�� ¼ "2V0½p��; ð1Þ

where " is an unknown magnitude of uncertainty, which we
call the noise level. The matrix V0½p��, which we call the (scale)
normalized covariance matrix, describes the relative magni-
tude and the dependence on orientations.

Remark 2. The decomposition of V ½p�� into "2 and V0½p��
involves scale ambiguity. In practice, this scale is
implicitly determined by the image process operation

for estimating the feature uncertainty applied to all the
feature points in the same manner (see [20] for the
details). The subsequent analysis does not depend on
particular normalizations as long as they are done in
such a way that " is much smaller than the data
themselves.

3.2 Covariance Matrix Estimation

If the intensity variations around p� are almost the same in
all directions, we can think of the probability distribution as
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Fig. 1. (a) A feature point in an image of a building. (b) Its enlargement

and the uncertainty of the feature location.



isotropic, a typical equiprobability line, known as the
uncertainty ellipses, being a circle (Fig. 1b).

On the other hand, if p� is on an object boundary,
distinguishing it from nearby points should be difficult
whatever algorithm is used, so its covariance matrix should
have an elongated uncertainty ellipse along that boundary.

However, existing feature extraction algorithms are
usually designed to output those points that have large
image variations around them, so points in a region with an
almost homogeneous intensity or on object boundaries are
rarely chosen. As a result, the covariance matrix of a feature
point extracted by such an algorithm can be regarded as
nearly isotropic. This has also been confirmed by experi-
ments [20], justifying the use of the identity as the
normalized covariance matrix V0½p��.
Remark 3. The intensity variations around different feature

points are usually unrelated, so their uncertainty can be
regarded as statistically independent. However, if we
track feature points over consecutive video frames, it has
been observed that the uncertainty has strong correla-
tions over the frames [33].

Remark 4. Many interactive applications require humans to
extract featurepoints bymanipulating amouse. Extraction
by a human is also an “algorithm,” and it has been shown
by experiments that humans are likely to choose “easy-to-
see” points such as isolated points and intersections,
avoiding points in a region with an almost homogeneous
intensity or on object boundaries [20]. In this sense, the
statistical characteristics of human extraction are very
similar to machine extraction. This is no surprise if we
recall that image processing for computer vision is
essentially a heuristic that simulates human perception.
It has also been reported that strong microscopic correla-
tions exist when humans manually select corresponding
feature points over multiple images [25].

3.3 Image Quality and Uncertainty

In the past, the uncertainty of feature points has often been
identified with “image noise,” giving a misleading impres-
sion as if the feature locations were perturbed by random
intensity fluctuations. Of course, we may obtain better
results using higher-quality images whatever algorithm is
used. However, the task of computer vision is not to
analyze “image properties” but to study the “3D proper-
ties” of the scene. As long as the image properties and the
3D properties do not correspond one to one, any image
processing inevitably entails some degree of uncertainty,

however high the image quality may be, and the result must
be interpreted statistically. The underlying ensemble is the
set of hypothetical (inherently imperfect) algorithms of
image processing. Yet, it has been customary to evaluate the
performance of image processing algorithms by adding
independent Gaussian noise to individual pixels.

Remark 5. This also applies to edge detection, whose goal is
to find the boundaries of 3D objects in the scene. In
reality, all existing algorithms seek edges, i.e., lines and
curves across which the intensity changes discontinu-
ously. Yet, this is regarded by many as an objective
image processing task, and the detection performance is
often evaluated by adding independent Gaussian noise
to individual pixels. From the above considerations, we
conclude that edge detection is also a heuristic and,
hence, no definitive algorithm will ever be found.

4 ASYMPTOTIC ANALYSIS

4.1 What Is Asymptotic Analysis?

As stated earlier, statistical estimation refers to estimating the
properties of an ensemble from a finite number of samples,
assuming some knowledge, or a model, about the ensemble.

If the uncertainty originates from external conditions, as
in experiments in physics, the estimation accuracy can be
increased by controlling the measurement devices and
environments. For internal uncertainty, on the other hand,
there is no way of increasing the accuracy except by
repeating the experiment and doing statistical inference.
However, repeating experiments usually entails costs and,
in practice, the number of experiments is often limited.

Taking account of this, statisticians usually evaluate the
performance of estimation asymptotically, analyzing the
growth in accuracy as the numbern of experiments increases.
This is justified because a method whose accuracy increases
more rapidly as n! 1 can reach admissible accuracywith a
fewer number of experiments (Fig. 2a).

In contrast, the ensemble for geometric inference is, as
we have seen, the set of potential feature positions that
could be located if other (hypothetical) algorithms were
used. As noted earlier, however, we can choose only one
sample from the ensemble as long as we use a particular
image processing algorithm. In other words, the number n
of experiments is 1. Then, how can we evaluate the
performance of statistical estimation?

Evidently, we want a method whose accuracy is
sufficiently high even for large data uncertainty. This implies
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Fig. 2. (a) For the standard statistical analysis, it is desired that the accuracy increases rapidly as the number of experiments n ! 1, because

admissible accuracy can be reached with a smaller number of experiments. (b) For geometric inference, it is desired that the accuracy increases

rapidly as the noise level " ! 0, because larger data uncertainty can be tolerated for admissible accuracy.



that we should analyze the growth in accuracy as the noise
level " decreases, because a method whose accuracy
increases more rapidly as " ! 0 can tolerate larger data
uncertainty for admissible accuracy (Fig. 2b).

4.2 Geometric Fitting

We illustrate our assertion in more specific terms. Let fp�g,
� ¼ 1; . . . ; N be the extracted feature points. Suppose each
point should satisfy a parameterized constraint

F ðp�; uuÞ ¼ 0 ð2Þ

when no uncertainty exist. In the presence of uncertainty,
(2) may not hold exactly. Our task is to estimate the
parameter uu from observed positions fp�g in the presence of
uncertainty.

A typical problem of this form is to fit a line or a curve to
given N points in the image, but this can be straightfor-
wardly extended to multiple images. For example, if a point
ðx�; y�Þ in one image corresponds to a point ðx0

�; y
0
�Þ in

another, we can regard them as a single point p� in a
4-dimensional joint space with coordinates ðx�; y�; x

0
�; y

0
�Þ. If

the camera imaging geometry is modeled as perspective
projection, the constraint (2) corresponds to the epipolar
equation; the parameter uu is the fundamental matrix [9].

The problem can be stated in abstract terms as geometric
fitting as follows. We view a feature point in the image
plane or a set of feature points in the joint space as an
m-dimensional vector xx; we call it a “datum.” Let fxx�g;
� ¼ 1; . . . ; N , be the observed data. Their true values f�xxxx�g
are supposed to satisfy r constraint equations

F ðkÞð�xxxx�; uuÞ ¼ 0; k ¼ 1; . . . ; r ð3Þ

parameterized by a p-dimensional vector uu. We call (3) the
(geometric) model. The domain X of the data fxx�g is called
the data space; the domain U of the parameter uu is called the
parameter space. The number r of the constraint equations is
called the rank of the constraint. The r equations
F ðkÞðxx; uuÞ ¼ 0, k ¼ 1; . . . ; r are assumed to be mutually
independent, defining a manifold S of codimension r
parameterized by uu in the data space X . Equation 3 requires
that the true values f�xxxx�g be all in the manifold S. Our task is
to estimate the parameter uu from the noisy data fxx�g.

Let

V ½xx�� ¼ "2V0½xx�� ð4Þ

be the covariance matrix of xx�, where " and V0½xx�� are the
noise level and the normalized covariance matrix, respec-
tively. If the distribution of uncertainty is Gaussian, which
we assume hereafter, the probability density of the data
fxx�g is given by

P ðfXX�gÞ ¼
YN
�¼1

e�ðXX���xxxx�;V0½xx���1ðXX���xxxx�ÞÞ=2"2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�"2ÞmjV0½xx��j

p : ð5Þ

Throughout this paper, we use uppercases for random
variables and lowercases for their instances; j � j denotes the
determinant. The inner product of vectors aa and bb is
denoted by ðaa; bbÞ.

Maximum likelihood (ML) estimation is to find the values of
f�xxxx�g and uu that maximize the likelihood, i.e., (3) into which

the data fxx�g are substituted, or equivalently minimize the
sum of the squared Mahalanobis distances in the form

J ¼
XN
�¼1

ðxx� � �xxxx�; V0½xx���1ðxx� � �xxxx�ÞÞ ð6Þ

subject to the constraint (3). The solution is called the
maximum likelihood (ML) estimator. If the uncertainty is
small, which we assume hereafter, the constraint (3) can be
eliminated by introducing Lagrange multipliers and apply-
ing first order approximation. After some manipulations,
we obtain the following form [10]:

J ¼
XN
�¼1

Xr
k;l¼1

W ðklÞ
� F ðkÞðxx�; uuÞF ðlÞðxx�; uuÞ: ð7Þ

Here, W ðklÞ
� is the ðklÞ element of the inverse of the r� r

matrix whose ðklÞ element is ðrxxF
ðkÞ
� ; V0½xx��rxxF

ðlÞ
� Þ; we

symbolically write

W ðklÞ
�

� �
¼ ðrxxF

ðkÞ
� ; V0½xx��rxxF

ðlÞ
� Þ

� ��1
; ð8Þ

whererxxF
ðkÞ is the gradient of the function F ðkÞ with respect

to xx. The subscript �means that xx ¼ xx� is substituted.
It can be shown [10] that the covariance matrix of the ML

estimator ûuuu has the form

V ½ûuuu� ¼ "2MMðûuuuÞ�1 þOð"4Þ; ð9Þ

where

MMðuuÞ ¼
XN
�¼1

Xr
k;l¼1

W ðklÞ
� ruuF

ðkÞ
� ruuF

ðkÞ>
� : ð10Þ

Here,ruuF
ðkÞ is the gradient of the function F ðkÞ with respect

to uu. The subscript �means that xx ¼ xx� is substituted.

Remark 6. The data fxx�g may be subject to some
constraints. For example, each xx� may be a unit vector.
The above formulation still holds if the inverse V0½xx���1

in (6) is replaced by the (Moore-Penrose) generalized (or
pseudo) inverse V0½xx��� and if the determinant jV0½xx��j is
replaced by the product of the positive eigenvalues of
V0½xx�� [10].

Similarly, the r constraints in (3) may be redundant,
say only r0 (< r) of them are independent. The above
formulation still holds if the inverse in (8) is replaced by
the generalized inverse of rank r0 with all but r0 largest
eigenvalues replaced by zero [10].

Remark 7. It can be proven that no other estimators could
reduce the covariance matrix further than (9) except for
the higher order term Oð"4Þ [10]. The ML estimator is
optimal in this sense. Recall that we are focusing on the
asymptotic analysis for " ! 0. Thus, what we call the
“ML estimator” should be understood to be a first
approximation to the true ML estimator for small ".

Remark 8. The p-dimensional parameter vector uu may be
constrained. For example, it may be a unit vector. If it has
only p0 (< p) degrees of freedom, the parameter space U
is a p0-dimensional manifold in Rp. In this case, the
matrix MMðuuÞ in (9) is replaced by PPuuMMðuuÞPPuu, where PPuu
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is the projection matrix onto the tangent space to U at uu
[10]. The inverse MMðûuuuÞ�1 in (9) is replaced by the
generalized inverse MMðûuuuÞ� of rank p0 [10].

4.3 Dual Interpretations of Asymptotic Analysis

The above analysis bears a strong resemblance to the
standard statistical estimation problem: After observing n

data xx1; xx2; . . . ; xxn, we want to estimate the parameter �� of
the probability density P ðxxj��Þ, according to which each

datum is assumed to be sampled independently. It is
known that the covariance matrix V ½�̂���� of the ML estimator �̂���
converges, under a mild condition, to OO as the number n of
experiments goes to infinity (consistency) and that it agrees
with the Cramer-Rao lower bound expect for Oð1=n2Þ
(asymptotic efficiency). If follows that 1=

ffiffiffi
n

p
plays the role of

" for geometric inference.
This correspondence can be interpreted as follows: Since

the underlying ensemble is hypothetical, we can actually
observe only one sample as long as a particular algorithm is
used. Suppose we hypothetically sample n different

algorithms to find n different positions. The optimal
estimate of the true position under the Gaussian model is
their sample mean. The covariance matrix of the sample
mean is 1=n times that of the individual samples. Hence,
this hypothetical estimation is equivalent to dividing the

noise level " in (1) by
ffiffiffi
n

p
.

In fact, there were attempts to generate a hypothetical
ensemble of algorithms by randomly varying the internal
parameters (e.g., the thresholds for judgments), not adding
random noise to the image [4], [5]. Then, one can compute
their means and covariance matrix. Such a process as a

whole can be regarded as one operation that effectively
achieves higher accuracy.

Thus, the asymptotic analysis for " ! 0 is equivalent to
the asymptotic analysis for n ! 1, where n is the number
of hypothetical observations. As a result, the expression
� � � þOð1=

ffiffiffiffiffi
nk

p
Þ in the standard statistical analysis turns into

� � � þOð"kÞ for geometric inference.

5 GEOMETRIC MODEL SELECTION

Geometric fitting is to estimate the parameter uu of a given
model. If we have multiple candidate models

F
ðkÞ
1 ð�xxxx�; uu1Þ ¼ 0; F

ðkÞ
2 ð�xxxx�; uu2Þ ¼ 0; . . . ; ð11Þ

from which we are to select an appropriate one for the
observed data fxx�g, the problem is (geometric) model

selection [10].
Suppose, for example, we want to fit a curve to given

points in two dimensions. If they are almost collinear, a
straight line may fit fairly well, but a quadratic curve may

fit better, and a cubic curve even better. Which curve should
we fit?

A naive idea is to compare the residual (sum of squares),
i.e., the minimum value ĴJ of J in (6); we select the one that
has the smallest residual ĴJ . This does not work, however,
because the ML estimator ûuuu is so determined as to minimize

the residual ĴJ , and the residual ĴJ can be made arbitrarily
smaller if the model is equipped with more parameters to

adjust. So, the only conclusion would be to fit a curve of a
sufficiently high order passing through all the points.

This observation leads to the idea of compensating for
the negative bias of the residual caused by substituting the
ML estimator. This is the principle of Akaike’s AIC (Akaike
information criterion) [1], which is derived from the
asymptotic analysis of the Kullback-Leibler distance (or
divergence) as the number n of experiments goes to infinity.

Another well-known criterion is Rissanen’s MDL (Mini-
mum description length) [28], [29], [30], which measures the
goodness of a model by the minimum information theoretic
code length of the data and the model. Its form is evaluated
asymptotically as the data length n grows to infinity.

In the next two sections, we follow the derivation of
Akaike’s AIC and Rissanen’s MDL and examine the
asymptotic behavior as the noise level " goes to zero. We will
show that this results in the geometric AIC and the geometric
MDL, which were previously obtained by somewhat an ad
hoc manner [10], [22].

6 Geometric AIC

6.1 Goodness of a Model

Akaike [1] adopted as the measure of the goodness of the
model given by (5) the Kullback-Leibler distance (or divergence)

D ¼
Z

� � �
Z

PT ðfXX�gÞ log
PT ðfXX�gÞ
P ðfXX�gÞ

dXX1 � � � dXXN

¼ E½logPT ðfXX�gÞ� � E½logP ðfXX�gÞ�;
ð12Þ

where E½ � � denotes expectation with respect to the true
(unknown) probability density PT ðfXX�gÞ. The assumed
model is regarded as good if D is small.

Substituting (5) and noting that E½logPT ðfXX�gÞ� does not
dependon individualmodels,we regard themodel as good if

�E½logP ðfXX�gÞ�

¼ 1

2"2
E
XN
�¼1

ðXX� � �xxxx�; V0½xx���1ðXX� � �xxxx�ÞÞ
" #

þmN

2
log 2�"2 þ 1

2

XN
�¼1

log jV0½xx��j

ð13Þ

is small. The last two terms on the right-hand side do not
depend on individual models. So, multiplying the first term
by 2"2, we seek a model that minimizes the expected residual

E ¼ E
XN
�¼1

ðXX� � �xxxx�; V0½xx���1ðXX� � �xxxx�ÞÞ
" #

: ð14Þ

6.2 Evaluation of Expectation

The difficulty of using (14) as a model selection criterion is
that the expectation E½ � � must be evaluated using the true
density, which we do not know. Here arises a sharp
distinction between the standard statistical analysis, in
which Akaike was interested, and the geometric inference
problem, in which we are interested, as to how to evaluate
the expectation.

For the standard statistical analysis, we assume that we
could, at least in principle, observe asmanydata as desired. If
weareallowed to sample independent instancesxx1,xx2, . . . ,xxn
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according to a density PT ðXXÞ, the expectation E½Y ðXXÞ� ¼R
Y ðXXÞPT ðXXÞdXX of a statistic Y ðXXÞ can be approximated by

the sample mean ð1=nÞ
Pn

i¼1 Y ðxxiÞ, which converges to the
true expectation in the limit n! 1 (the law of large numbers).
Akaike’s AIC is based on this principle.

In contrast, we can obtain only one instance fxx�g of fXX�g
for geometric inference, so we cannot replace expectation by
the sample mean. However, we are interested only in the
limit " ! 0. So, the expectation

E½Y ðfXX�gÞ� ¼
Z

� � �
Z

Y ðfXX�gÞPT ðfXX�gÞdXX1 � � � dXXN

can be approximated by Y ðfxx�gÞ because, as " ! 0, we have
PT ðfXX�gÞ !

QN
�¼1 �ðXX� � �xxxx�Þ, where �ð � Þ denotes the

Dirac delta function. It follows that we can approximate E

as follows (note that 1=N is not necessary):

J ¼
XN
�¼1

ðxx� � �xxxx�; V0½xx���1ðxx� � �xxxx�ÞÞ: ð15Þ

6.3 Bias Removal

There is still a difficulty using (15) as a criterion: The model
parameters f�xxxx�g and uu need to be estimated. If we view (15)
as a measure of the goodness of the model, we should
compute their ML estimators fx̂xxx�g and ûuuu, minimizing (15)
subject to the constraint (1). Substituting fx̂xxx�g and ûuuu for
f�xxxx�g and uu in (15), we obtain the residual (sum of squares):

ĴJ ¼
XN
�¼1

ðxx� � x̂xxx�; V0½xx���1ðxx� � x̂xxx�ÞÞ: ð16Þ

Here, a logical inconsistency arises. Equation 3 defines
not a particular model but a class of models parameterized
by f�xxxx�g and uu. If we choose particular values fx̂xxx�g and ûuuu
(i.e., the ML-estimators), we are given a particular model.
According to the logic in Section 6.1, its goodness should be
evaluated by E½

PN
�¼1ðXX� � x̂xxx�; V0½xx���1ðXX� � x̂xxx�ÞÞ�. Ac-

cording to the logic in Section 6.2, the expectation can be
approximated using a typical instance of fXX�g. However,
fx̂xxx�g and ûuuu were computed from fxx�g, so fxx�g cannot be a
typical instance of fXX�g. In fact, ĴJ is generally smaller than
E½
PN

�¼1ðXX� � x̂xxx�; V0½xx���1ðXX� � x̂xxx�ÞÞ� because fx̂xxx�g and ûuuu

were so determined as to minimize ĴJ .
This is the difficulty that Akaike encountered in the

derivation of his AIC. His strategy for resolving this can be
translated in our setting as follows.

Ideally, we should approximate the expectation using an
instance fxx�

�g of fXX�g generated independently of the current
data fxx�g. In other words, we should evaluate

J� ¼
XN
�¼1

ðxx�
� � x̂xxx�; V0½xx���1ðxx�

� � x̂xxx�ÞÞ: ð17Þ

Let us call fxx�
�g the future data; they are “another” instance

of fXX�g that might occur if we did a hypothetical
experiment. In reality, we have the current data fxx�g only.1

So, we try to compensate for the bias in the form

ĴJ� ¼ ĴJ þ b"2: ð18Þ

Both ĴJ� and ĴJ are Oð"2Þ, so b is Oð1Þ. Since ĴJ� and ĴJ are

random variables, so is b. It can be proven [10], [11] that

E�½E½b�� ¼ 2ðNdþ pÞ þOð"2Þ; ð19Þ

where E½ � � and E�½ � � denote expectations for fxx�g and

fxx�
�g, respectively, and d ¼ m� r is the dimension of the

manifold S defined the constraint F ðkÞðxx; uuÞ ¼ 0; k ¼ 1; . . . ; r

(recall that p is the dimension of the parameter vector uu).
Thus, we obtain an unbiased estimator of ĴJ� in the first

order in the form

G-AIC ¼ ĴJ þ 2ðNdþ pÞ"2; ð20Þ

which is the geometric AIC of Kanatani [10], [11], who

derived (19) directly. Here, we have given a new justifica-

tion by going back to the Kullback-Leibler distance (12).

7 GEOMETRIC MDL

We now turn to Rissanen’s MDL [28], [29] and derive the

geometric MDL by doing asymptotic analysis as the noise

level " goes to zero.

7.1 MDL Principle

Rissanen’s MDL measures the goodness of the model by the

information theoretic code length. The basic idea is simple,

but the following difficulties must be resolved for applying

it in practice:

. Encoding a problem involving real numbers requires
an infinitely long code length.

. The probability density, from which a minimum
length code can be obtained, involves unknown
parameters.

. The exact form of the minimum code length is very
difficult to compute.

Rissanen [28], [29] avoided these difficulties by quantiz-

ing the real numbers in a way that does not depend on

individual models and substituting the ML estimators for

the parameters. They, too, are real numbers, so they are also

quantized. The quantization width is so chosen as to

minimize the total description length (the two-stage encod-

ing). The resulting code length is evaluated asymptotically

as the data length n goes to infinity. This idea is translated

for geometric inference as follows.
If the data fxx�g are sampled according to the probability

density (5), they can be encoded, after their domain is

quantized, in a shortest prefix code of length

� logP ¼ J

2"2
þmN

2
log 2�"2 þ 1

2

XN
�¼1

log jV0½xx��j; ð21Þ

up to a constant that depends only on the domain and the

width of the quantization. Here, J is the sum of the square

Mahalanobis distances in (6). Using the natural logarithm,

we take log2 e bits as the unit of length.
Note the similarity and contrast to the geometric AIC,

whichminimizes the expectation of (21) (see (13)), while, here,

(21) is directly minimized with a different interpretation.

1312 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004

1. If such data fxx��g actually exists, the test using them is called cross-
validation. We can also generate equivalent data by a computer. Such a
simulations is called bootstrap [6].



7.2 Two-Stage Encoding

In order to do encoding using (5), we need the true values
f�xxxx�g and the parameter uu. Since they are unknown, we use
their ML estimators that minimize (21) (specifically J). The
last two terms of (21) do not depend on individual models,
so the minimum code length is ĴJ=2"2 up to a constant,
where ĴJ is the residual in (16). For brevity, we hereafter call
“the code length determined up to a constant that does not
depend on individual models” simply the description length.

Since theML estimators fx̂xxx�g and ûuuu are real numbers, they
also need to be quantized. If we use a larger quantization
width, their code lengths become shorter, but the description
length ĴJ=2"2 will increase. So, we take the width that
minimizes the total description length. The starting point is
the fact that (7) can be written as follows [10]:

J ¼ĴJ þ
XN
�¼1

ðxx� � x̂xxx�; V0½x̂xxx���ðxx� � x̂xxx�ÞÞ

þ ðuu� ûuuu; V0½ûuuu��1ðuu� ûuuuÞÞ þOð"3Þ:
ð22Þ

Here, the superscript � denotes the (Moore-Penrose)
generalized inverse, and V0½x̂xxx�� and V0½ûuuu�� are, respectively,
the a posteriori covariance matrices of the ML estimators x̂xxx�

and ûuuu given as follows [10]:

V0½x̂xxx�� ¼ V0½xx��

�
Xr
k;l¼1

W ðklÞ
� ðV ½xx��rxF

ðkÞ
� ÞðV ½xx��rxF

ðkÞ
� Þ>;

V0½ûuuu� ¼
XN
�¼1

Xr
k;l¼1

W ðklÞ
� ðruF

ðkÞ
� ÞðruF

ðlÞ
� Þ>

 !�1

:

ð23Þ

The symbol W ðklÞ
� has the same meaning as in (7). It is easily

seen that V0½x̂xxx��� is a singular matrix of rank d whose
domain is the tangent space to the optimally fitted manifold
ŜS at x̂xxx�.

7.3 Encoding Parameters

In order to quantize ûuuu, we introduce appropriate (gen-
erally curvilinear) coordinates ðuiÞ; i ¼ 1; . . . ; p into the
p-dimensional parameter space U and quantize it into a
grid of width �ui. Suppose ûuuu is in a (curvilinear)
rectangular region of sides Li. There are

Qp
i¼1ðLi=�uiÞ grid

vertices inside, so specifying one from these requires the
code length

log
Yp
i¼1

Li

�ui
¼ logVu �

Xp
i¼1

log �ui; ð24Þ

where Vu =
Qp

i¼1 Li is the volume of the rectangular region.
We could reduce (24) using a largewidth �ui, but (22) implies
that replacing ûuuu by the nearest vertex would increase the
description length ĴJ=2"2 by ð�uu; V0½ûuuu��1�uuÞ=2"2 in the first
order in ", where we define �uu ¼ ð�uiÞ. So, we choose such �uu

that minimizes the sum of ð�uu; V0½ûuuu��1�uuÞ=2"2 and (24).
Differentiating this sum with respect to �ui and letting the
result be 0, we obtain

1

"2
V0½ûuuu��1�uu
� �

i
¼ 1

�ui
; ð25Þ

where ð � Þi designates the ith component. If the coordinate
system of U is so taken that V0½ûuuu��1 is diagonalized, (25)
reduces to

�ui ¼
"ffiffiffiffiffi
�i

p ; ð26Þ

where �i is the ith eigenvalue of V0½ûuuu��1. It follows that the
volume of one grid cell is

vu ¼
Yp
i¼1

�ui ¼
"pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jV0½ûuuu��1j
q : ð27Þ

Hence, the number of cells inside the region Vu is

Nu ¼
Z
Vu

duu

vu
¼ 1

"p

Z
Vu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½ûuuu��1j

q
duu: ð28Þ

Specifying one from these requires the code length

logNu ¼ log

Z
Vu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½ûuuu��1j

q
duu� p

2
log "2: ð29Þ

7.4 Encoding True Values

For quantizing the ML-estimators fx̂xxx�g, we need not
quantize the entire m-dimensional data space X because
they are constrained to be in the optimally fitted d-
dimensional manifold ŜS (� X ) specified by ûuuu, which we
have already encoded. So, we only need to quantize ŜS. To
this end, we introduce appropriate curvilinear coordinates
in it. Since each x̂xxx� has its own normalized covariance
matrix V0½x̂xxx�� (see (23)), we introduce different coordinates
ð�i�Þ; i ¼ 1; . . . ; d for each �. Then, they are quantized into a
(curvilinear) grid of width ��i�.

Suppose x̂xxx� is in a (curvilinear) rectangular region of
sides li�. There are

Qd
i¼1ðli�=��i�Þ grid vertices inside, so

specifying one from these requires the code length

log
Yd
i¼1

li�
��i�

¼ logVx� �
Xd
i¼1

log ��i�; ð30Þ

where Vx� =
Qd

i¼1 li� is the volume of the rectangular region.
We could reduce (30) using a large width ��i�, but replacing
x̂xxx� by its nearest vertexwould increase the description length
ĴJ=2"2. Let ��xxxx� be the m-dimensional vector that expresses
the displacement f��i�g on ŜS in the (original) coordinates of
X . Equation (22) implies that the increase in ĴJ=2"2 is
ð��xxxx�; V0½x̂xxx�����xxxx�Þ=2"2 in the first order in ", so we choose
such f��i�g that minimize the sum of ð��xxxx�; V0½x̂xxx�����xxxx�Þ=2"2
and (30). Differentiating this sum with respect to ��i� and
letting the result be 0, we obtain

1

"2
V0½x̂xxx�����xxxx�ð Þi¼

1

��i�
: ð31Þ

Let the coordinates ð�i�Þ be such that the d basis vectors at x̂xxx�

forman orthonormal system.Also, let the coordinates ofX be
such that at x̂xxx� 2 ŜS the m basis vectors consist of the d basis
vectors of ŜS plusm� d additional basis vectors orthogonal to
ŜS. Then, the first d components of ��xxxx� coincide with
f��i�g; i ¼ 1; . . . ; d; the remaining components are 0. If,
furthermore, the coordinates ð�i�Þ are so defined that
V0½x̂xxx��� is diagonalized, the solution ��i� of (31) is given by
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��i� ¼ "ffiffiffiffiffiffiffi
�i�

p ; ð32Þ

where �1�; . . . ; �d� are the d positive eigenvalues of V0½x̂xxx���.
It follows that the volume of one grid cell is

vx� ¼
Yd
i¼1

��i� ¼ "dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½x̂xxx���jd

p ; ð33Þ

where jV0½x̂xxx���jd denotes the product of its d positive

eigenvalues. Hence, the number of cells inside the region

Vx� is

N� ¼
Z
Vx�

dxx

vx�
¼ 1

"d

Z
Vx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½x̂xxx���jd

q
dxx: ð34Þ

Specifying one from these requires the code length

logN� ¼ log

Z
Vx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½x̂xxx���jd

q
dxx� d

2
log "2: ð35Þ

7.5 Geometric MDL

From (29) and (35), the total code length for fx̂xxx�g and ûuuu

becomes

XN
�¼1

log

Z
Vx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½x̂xxx���jd

q
dxxþ log

Z
Vu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½ûuuu��1j

q
duu

�Ndþ p

2
log "2:

ð36Þ

The accompanying increase in the description length ĴJ=2"2 is

ð��xxxx�; V0½x̂xxx�����xxxx�Þ=2"2 þ ð�uu; V0½ûuuu��1�uuÞ=2"2

in the first order in ". If we substitute (26) and (32) together

with V0½x̂xxx��� ¼ diagð1=�1�; . . . ; 1=�d�; 0; . . . ; 0Þ and V0½ûuuu��1 ¼
diagð1=�1; . . . ; 1=�pÞ, this increase is

ð��xxxx�; V0½x̂xxx�����xxxx�Þ
2"2

þ ð�uu; V0½ûuuu��1�uuÞ
2"2

¼ Ndþ p

2
: ð37Þ

Since (26) and (32) are obtained by omitting terms of oð"Þ,
the omitted terms in (37) are oð1Þ. It follows that the total

description length is

ĴJ

2"2
�Ndþ p

2
log "2 þ

XN
�¼1

log

Z
Vx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½x̂xxx���jd

q
dxx

þ log

Z
Vu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½ûuuu��1j

q
duuþNdþ p

2
þ oð1Þ:

ð38Þ

Multiplying this by 2"2, which does not affect model

selection, we obtain

ĴJ � ðNdþ pÞ"2 log "2 þ 2"2

 XN
�¼1

log

Z
Vx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½x̂xxx���jd

q
dxx

þ log

Z
Vu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0½ûuuu��1j

q
duu

!
þ ðNdþ pÞ"2 þ oð"2Þ:

ð39Þ

7.6 Scale Choice

In practice, it is difficult to use (39) as a criterion because of

the difficulty in evaluating the third term. If we note that

� log "2 � 1 as " ! 0, we may omit terms of Oð"2Þ and
define

G-MDL ¼ ĴJ � ðNdþ pÞ"2 log "2: ð40Þ

This is the form suggested by Matsunaga and Kanatani [22].
However, the problem of scale arises. If we multiply the
unit of length by, say, 10, both "2 and ĴJ are multiplied by 1/
100. Since N , d, and p are nondimensional constants,
G-MDL should also be multiplied by 1/100. But, log "2

reduces by log 100, which could affect model selection.2 In
(39), in contrast, the influence of scale is canceled between
the second and third terms.

To begin with, the logarithm can be defined only for a
nondimensional quantity, so (40) should have the form

G-MDL ¼ ĴJ � ðNdþ pÞ"2 log "

L

� �2
; ð41Þ

where L is a reference length. In theory, it can be
determined from the third term of (39), but its evaluation
is difficult. So, we adopt a practical compromise, choosing a
scale L such that xx�=L is Oð1Þ. We may interpret this as
introducing a prior distribution in a region of volume Lm in
the data space X . For example, if fxx�g are image coordinate
data, we can take L to be the image size. We call (41) the
geometric MDL.

Remark 9. Recall that, for asymptotic analysis as " ! 0, it is
essential to fix the scale of the normalized covariance
matrix V0½xx�� in (4) in such a way that the noise level " is
much smaller than the data themselves (Remark 2). So,
we have � logð"=LÞ2 � 1. If we use a different scale
L0 ¼ �L, we have � logð"=L0Þ2 ¼ � logð"=LÞ2 þ log �2 �
� logð"=LÞ2 as long as the scale is of the same order of
magnitude. It has been confirmed that the scale choice
does not practically affect model selection in most
applications. Nonetheless, the introduction of the scale
is a heuristic compromise, and more studies about this
will be necessary.

8 SOME ISSUES OF THE GEOMETRIC AIC/MDL

8.1 Dual Interpretations of Model Selection

We have observed in Section 4.3 that the standard statistical
analysis and the geometric inference problem have a
duality in the sense that 1=

ffiffiffi
n

p
for the former plays the role

of " for geometric inference. The same holds for model
selection, too. Akaike’s AIC is

AIC ¼ �2 log
Yn
i¼1

P ðxxij�̂���Þ þ 2k; ð42Þ

where xx1; xx2; . . . ; xxn are n samples from the density P ðxxj��Þ
parameterized by a k-dimensional vector ��, and �̂��� is its ML
estimator.

For the geometric fitting problem, on the other hand, the
unknowns are the p parameters of the constraint plus the
N true positions specified by the d coordinates of the
d-dimensional manifold S. If (20) is divided by "2, we have
ĴJ="2 þ 2ðNdþ pÞ, which is (�2 times the logarithmic
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likelihood)+2(the number of unknowns), the same form as
(42). The same holds for (41), which corresponds to
Rissanen’s MDL (see (43) and (44) to be explained below)
if " is replaced by 1=

ffiffiffi
n

p
.

This correspondence can be understood if we recall our
observation that the limit " ! 0 is mathematically equiva-
lent to sampling a large number n of potential algorithms
(Section 4.3).

8.2 Priors for the Geometric MDL

For the geometric MDL, one can notice that the coding
scheme described in Section 7 cannot apply if the manifold
S has a complicated shape. In fact, our derivation went as if
the manifold S were flat and compact. This is justified only
when the data fxxig and the parameter uu are found in fairly
small regions.

Take (39) for example. The regions Vxi and Vu must be
compact for the integrations to exist. If the data space X and
the parameter space U are unbounded, we must specify in
them finite regions in which the true values are likely to
exist. This is nothing but the Bayesian standpoint that
requires prior distributions for parameters to be estimated.

After all, reducingmodel selection to code length requires
the Bayesian standpoint because if the parameters can be
anywhere in unbounded regions, it is impossible to obtain a
finite length code unless some information about their likely
locations is given. The expedient for deriving (41) is in a sense
reducing the Bayesian prior to a single scale L.

This type of implicit reduction is also present in
Rissanen’s MDL, for which the data length n is the
asymptotic variable. Originally, Rissanen presented his
MDL in the following form [28]:

MDL ¼ � log
Yn
i¼1

P ðxxij�̂���Þ þ
k

2
logn: ð43Þ

As in the case of Akaike’s AIC, xx1; xx2; . . . ; xxn are n samples
from the density P ðxxj��Þ parameterized by a k-dimensional
vector ��, and �̂��� is its ML estimator.

This form evoked the problem of the “unit.” If we regard
a pair of data as one datum, viewing ðxx1; xx2Þ; ðxx3; xx4Þ; . . . as
samples from P ðxx; yyj��Þ ¼ P ðxxj��ÞP ðyyj��Þ, the data length is
halved, though the problem is the same. Later, Rissanen
presented the following form [30]:

MDL ¼ � log
Yn
i¼1

P ðxxij�̂���Þ þ
k

2
log

n

2�
þ log

Z
V�

ffiffiffiffiffiffiffiffiffiffiffiffi
jIIð��Þj

p
d��: ð44Þ

Here, IIð��Þ is the Fisher information of P ðxxj��Þ. In this form,
the unit change is canceled by the corresponding change in
the Fisher information. However, the problem of integration
arises if the domain V� is unbounded, so an appropriate
prior is necessary.

Thus, Rissanen’s MDL and the geometric MDL share the
same properties whether we focus on the limit n! 1 or the
limit " ! 0, confirming our previous observation about the
dual interpretation.

8.3 Noise-Level Estimation

In order to use the geometric AIC or the geometric MDL, we
need to know the noise level ". If not known, it must be

estimated. Here arises a sharp contrast between the
standard statistical analysis and our geometric inference.

For the standard statistical analysis, the noise magnitude
is a model parameter because “noise” is defined to be the
random effects that cannot be accounted for by the assumed model.
Hence, the noise magnitude should be estimated, if not
known, according to the assumed model. For geometric
inference, on the other hand, the noise level " is a constant
that reflects the uncertainty of feature detection. So, it should be
estimated independently of individual models.

If we know the true model, it can be estimated from the
residual ĴJ using the knowledge that ĴJ="2 is subject to a �2

distribution with rN � p degrees of freedom in the first
order [10]. Specifically, we obtain an unbiased estimator of
"2 in the form

"̂"2 ¼ ĴJ

rN � p
: ð45Þ

The validity of this formula has been confirmed by many
simulations.

One may wonder if model selection is necessary at all
when the true model is known. In practice, however, a
typical situation where model selection is called for is
degeneracy detection. In 3D analysis from images, for
example, the constraint (3) corresponds to our knowledge
about the scene such as rigidity of motion. However, the
computation fails if degeneracy occurs (e.g., the motion is
zero). Even if exact degeneracy does not occur, the
computation may become numerically unstable in near
degeneracy conditions. In such a case, the computation can
be stabilized by switching to a model that describes the
degeneracy [18], [19], [22], [26], [39].

Degeneracy means addition of new constraints, such as
some quantity being zero. It follows that the manifold S
degenerates into a submanifold S0 of it. Since the general
model still holds irrespective of the degeneracy, i.e., S0 � S,
we can estimate the noise level " from the residual ĴJ of the
general model S, which we know is true, using (45).

Remark 10. Equation (45) can be intuitively understood as
follows. Recall that ĴJ is the sum of the square distances
from fxx�g to the manifold ŜS defined by the constraint
F ðkÞðxx; uuÞ ¼ 0; k ¼ 1; . . . ; r. Since ŜS has codimension r
(the dimension of the orthogonal directions to it), the
residual ĴJ should have expectation rN"2. However, ŜS is
fitted by adjusting its p-dimensional parameter uu, so the
expectation of ĴJ reduces to ðrN � pÞ"2.

Note that we need more than bp=rc data for this
estimation. For example, if we know that the true model
is a planar surface, we need to observe more than three
points for degeneracy detection.

Remark 11. It may appear that the residual ĴJ of the general
model cannot be stably computed in the presence of
degeneracy. However, what is unstable is model specifica-
tion, not the residual. For example, if we fit a planar
surface to almost collinear points in 3D, it is difficult to
specify the fitted plane stably; the solution is very
susceptible to noise. Yet, the residual is stably computed
since unique specification of the fit is difficult because all
the candidates have almost the same residual.
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Note that the noise-level estimation from the general
model S by (45) is still valid even if degeneracy occurs,
because degeneracy means shrinkage of the model
manifold S0 within S, which does not affect the data
deviations in the “orthogonal” directions (in the Maha-
lanobis sense) to S that account for the residual ĴJ .

9 DENERACY DETECTION EXPERIMENTS

We now illustrate the different characteristics of the
geometric AIC and the geometric MDL for degeneracy
detection.

9.1 Detection of Circles and Lines

Consider an ellipse that is tangent to the x-axis at the origin
O with the minor radius 50 in the y direction and
eccentricity 1=	. On it, we take 11 points with equally
spaced x coordinates. Adding Gaussian noise of mean 0 and
variance "2 to the x and y coordinates of each point
independently, we fit an ellipse, a circle, and a line in a
statistically optimal manner3 [16], [17]. Fig. 3 shows one
instance for 	 ¼ 2:5 and " ¼ 0:1. Note that a line and a circle
are degeneracies of an ellipse.

Lines, circles, and ellipses define 1-dimensional (geo-
metric) models with 2, 3, and 5 degrees of freedom,
respectively. Their geometric AIC and the geometric MDL
for N points are

G-AICl ¼ ĴJl þ 2ðN þ 2Þ"2;
G-AICc ¼ ĴJc þ 2ðN þ 3Þ"2;
G-AICe ¼ ĴJe þ 2ðN þ 5Þ"2;

G-MDLl ¼ ĴJl � ðN þ 2Þ"2 log "

L

� �2
;

G-MDLc ¼ ĴJc � ðN þ 3Þ"2 log "

L

� �2
;

G-MDLe ¼ ĴJe � ðN þ 5Þ"2 log "

L

� �2
;

ð46Þ

where the subscripts l, c, and e refer to lines, circles, and
ellipses, respectively. For each 	, we compute the geometric
AIC and the geometric MDL of the fitted line, circle, and
ellipse and choose the one that has the smallest value. We
used the reference length L ¼ 1.

Fig. 4a shows the percentage of choosing a line for " ¼ 0:01

after 1,000 independent trials for each 	. If therewas no noise,
it should be 0 percent for 	 6¼ 0 and 100 percent for 	 ¼ 0. In
the presence of noise, the geometric AIC produces a sharp
peak, indicating a high capability of distinguishing a line

from an ellipse. However, it judges a line to be an ellipsewith
someprobability.ThegeometricMDL judgesa line tobea line
almost 100 percent, but it judges an ellipse to be a line over a
wide range of 	.

In Fig. 4a, we used the true value of "2. If it is unknown, it
can be estimated from the residual of the general ellipse
model by (45). Fig. 4b shows the result using its estimate.
Although the sharpness is somewhat lost, similar perfor-
mance characteristics are observed.

Fig. 5 shows the percentage of choosing a circle for
" ¼ 0:01. If there were no noise, it should be 0 percent for 	
6¼ 1 and 100 percent for 	 ¼ 1. In the presence of noise, as we
see, it is difficult to distinguish a circular arc from an elliptic
arc for 	 < 1. Yet, the geometric AIC can detect a circle very
sharply, although it judges a circle to be an ellipse with some
probability. In contrast, the geometric MDL almost always
judges an ellipse to be a circle for 	 < 1:1.

9.2 Detection of Space Lines

Consider a rectangular region ½0; 10� � ½�1; 1� on the xy plane
in thexyz space.Werandomly take11points in it andmagnify
the region A times in the y direction. Adding Gaussian noise
ofmean 0 and variance "2 to the x, y, and z coordinates of each
point independently, we fit a space line and a plane in a
statistically optimal manner (Fig. 6a). The rectangular region
degenerates into a line segment as A! 0.

A space line is a 1-dimensional model with four degrees
of freedom; a plane is a 2-dimensional model with three
degrees of freedom. Their geometric AIC and geometric
MDL are

G-AICl ¼ ĴJl þ 2ðN þ 4Þ"2;
G-AICp ¼ ĴJp þ 2ð2N þ 3Þ"2;

G-MDLl ¼ ĴJl � ðN þ 4Þ"2 log "

L

� �2
;

G-MDLp ¼ ĴJp � ð2N þ 3Þ"2 log "

L

� �2
;

ð47Þ

where the subscripts l and p refer to lines and planes,
respectively. For each A, we compare the geometric AIC
and the geometric MDL of the fitted line and plane and
choose the one that has the smaller value. We used the
reference length L ¼ 1.

Fig. 6b shows the percentage of choosing a line for " ¼
0:01 after 1,000 independent trials for each A. If there were
no noise, it should be 0 percent for A 6¼ 0 and 100 percent
for A ¼ 0. In the presence of noise, the geometric AIC has a
high capability of distinguishing a line from a plane, but it
judges a line to be a plane with some probability. In
contrast, the geometric MDL judges a line to be a line almost
100 percent, but it judges a plane to be a line over a wide
range of A.

In Fig. 6b, we used the true value of "2. Fig. 6c shows the
corresponding result using its estimate obtained from the
general plane model by (45). We observe somewhat
degraded but similar performance characteristics.

9.3 Observations

We have observed that the geometric AIC has a higher
capability for detecting degeneracy than the geometric
MDL, but the general model is chosen with some
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Fig. 3. Fitting a line, a circle, and an ellipse.

3. We used by a technique called renormalization [10].



probability when the true model is degenerate. In contrast,

the percentage for the geometric MDL to detect degeneracy

when the true model is really degenerate approaches

100 percent as the noise decreases. This is exactly the dual

statement to the well known fact, called the consistency of the

MDL, that the percentage for Rissanen’s MDL to identify

the true model converges to 100 percent in the limit of an

infinite number of observations. Rissanen’s MDL is

regarded by many as superior to Akaike’s AIC because

the latter lacks this property.
At the cost of this consistency, however, the geometric

MDL regards a wide range of nondegenerate models as

degenerate. This is no surprise, since the penalty �ðNdþ
pÞ"2 logð"=LÞ2 for the geometric MDL in (41) is heavier than

the penalty 2ðNdþ pÞ"2 for the geometric AIC in (20). As a

result, the geometric AIC is more faithful to the data than

the geometric MDL, which is more likely to choose a

degenerate model. This contrast has also been observed in
many applications [15], [22].

Remark 12. Despite the fundamental difference of geo-
metric model selection from the standard (stochastic)
model selection, many attempts have been made in the
past to apply Akaike’s AIC and their variants to
computer vision problems based on the asymptotic
analysis of n ! 1, where the interpretation of n is
different from problem to problem [34], [35], [36], [37],
[38]. Rissanen’s MDL is also used in computer vision
applications. Its use may be justified if the problem has
the standard form of linear/nonlinear regression [2],
[23]. Often, however, the solution having a shorter
description length was chosen with a rather arbitrary
definition of the complexity [7], [21], [24].

Remark 13. One may wonder why we are forced to choose
one from the two asymptotic analyses, n ! 1 or " ! 0.
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Fig. 4. The ratio (%) of detecting a line by the geometric AIC (solid lines with þ) and the geometric MDL (dotted lines with �) using (a) the true noise

level and (b) the estimated noise level.

Fig. 5. The ratio (%) of detecting a circle by the geometric AIC (solid lines with þ) and the geometric MDL (dotted lines with �) using (a) the true noise

level and (b) the estimated noise level.

Fig. 6. (a) Fitting a space line and a plane to points in space. (b) The rate (%) of detecting a space line by the geometric AIC (solid lines with þ) and

the geometric MDL (dotted lines with �) with the true noise level. (c) The corresponding results using the estimated noise level.



Why don’t we use the general form of the AIC or the

MDL rather than worrying about their asymptotic

expressions? The answer is that we cannot.
The starting principle of the AIC is the Kullback-

Leibler distance of the assumed probability distribution
from the true distribution (Section 6.1). We cannot
compute it exactly because we do not know the true
distribution. So, Akaike approximated it, invoking the
law of large numbers and the central limit theorem,
thereby estimating the true distribution from a large
number of observations, while the geometric AIC is
obtained by assuming that the noise is very small,
thereby identifying the data as their true values to a first
approximation (Section 6.2).

Similarly, the exactly shortest code length is difficult
to compute if real numbers are involved, so Rissanen
approximated it by omitting higher order terms in the
data length n. The geometric MDL is obtained by
omitting higher order terms in the noise level "
(Section 7).

Thus, analysis of asymptotic expressions in one form
or another is inevitable if the principle of the AIC or the
MDL is to be applied in practice.

Remark 14. Note that one cannot say one model selection

criteria is superior to another, because each is based on

its own logic. Also, if we want to compare the

performance of two criteria in practice, we must

formulate them in such a way that they conform to a

common assumption. In this sense, one cannot compare

Akaike’s AIC with the geometric AIC or Rissanen’s MDL

with the geometric MDL, because the underlying

asymptotic limits are different. Similarly, if we want to

compare the geometric AIC or the geometric MDL with

other existing criteria, e.g., Schwarz’ BIC, derived in the

asymptotic limit n ! 1, they must be formulated in the

asymptotic limit " ! 0.
Note also that one cannot prove that a particular

criterion works at all. In fact, although Akaike’s AIC and
Rissanen’sMDL are based on rigorousmathematics, there
is no guarantee that they work well in practice. The
mathematical rigor is in their reduction from their starting
principles (the Kullback-Leibler distance and the mini-
mum description length principle), which are beyond
proof.What one can tell is which criterion is more suitable
for a particular application when used in a particular
manner. The geometric AIC and the geometric MDL have
shown to be effective in many computer vision applica-
tions [12], [14], [15], [18], [19], [22], [26], [39], but other
criteria may be better in other applications.

10 CONCLUSIONS

We have investigated the meaning of “statistical methods”

for geometric inference based on image feature points.

Tracing back the origin of feature uncertainty to image

processing operations, we discussed the implications of

asymptotic analysis in reference to “geometric fitting” and

“geometric model selection.” Then, we derived the “geo-

metric AIC” and the “geometric MDL” in this new light. We

showed by experiments that the two criteria have contrast-

ing characteristics for degeneracy detection.
The main emphasis of this paper is on the correspon-

dence between the asymptotic analysis for " ! 0 for

geometric inference and the asymptotic analysis for n !
1 for the standard statistical analysis, based on our

interpretation of the uncertainty of feature detection.
However, there are many issues yet to be resolved, in

particular, the choice of the scale length L for the geometric

MDL and the effect of using the estimate "̂" given by (45) for

its true value ". The results in this paper are only a first

attempt, and further analysis is expected in the future.
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