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Abstract

This paper presents a robust face recognition method which
can work even when an insufficient number of images are
registered for each person. The method is composed of im-
age correction and image decomposition, both of which are
specified in the normalized image space (NIS). The image
correction[1, 2] is realized by iterative projections of an
image to an eigenspace in NIS. It works well for natural
images having various kinds of noise, including shadows,
reflections, and occlusions. We have proposed decompo-
sition of an eigenface into two orthogonal eigenspaces[3],
and have shown that the decomposition is effective for re-
alizing robust face recognition under various lighting con-
ditions. This paper shows that the decomposed eigenface
method can be refined by projection-based image correc-
tion.

1. Introduction
A human face changes in appearance with lighting condi-
tions, and difficulty is encountered in controlling lighting
conditions in natural environments where face images are
taken. These facts suggest that robust face recognition re-
quires construction of a face recognition algorithm that is
insensitive to lighting conditions. Meanwhile, appearance-
based face recognition can be resolved into the eigenface
method [4], which in many cases is identical with the sub-
space method [5, 6]. Eigenfaces are widely used for both
personal identification and detection of (unknown) faces in
an image. When intended for detection of faces in an image,
eigenfaces are constructed from many persons and when
intended for personal identification, each eigenface should
be constructed from face images of the individual. In the
present paper we focus on the second purpose, and as used
herein an eigenface (EF) always means an eigenspace con-
structed from face images of the individual for the purpose
of personal identification. If many face images can be col-

lected in the registration stage, the EF can be constructed by
Principal Component Analysis (PCA). However, an EF for
an individual cannot be stably constructed when an insuf-
ficient number of sample images are available or when the
sample images have been taken under very similar light-
ing conditions. In these situations, realizing illumination-
insensitive identification requires some refinements of the
eigenface method. In our previous paper [3], we analyzed
the eigenface approach and proposed concepts of virtual
eigenfaces and the decomposed eigenface for the forego-
ing purpose. In this paper, we combine these concepts with
a projection-based image correction method [2] in order to
refine the face recognition methodology.

2. Normalized Image Space and Nor-
malized Eigenspace

2.1. Normalized Image Space
In object recognition, eigenspaces are often constructed in
a least-squares sense, faithful to the original images [4, 6].
Eigenspaces are also effective for image-based rendering
under changing lighting conditions [7, 8]. They can also be
constructed from original images, by use of the photomet-
ric SVD (Singular Value Decomposition) algorithm [9, 10].
These methods are commonly discussed in the original im-
age space.

Although the original image space is effective for some
purposes, it often fails to work when illumination falls out
of range. In such a case, we empirically utilize some types
of image normalization.

In this paper, normalization is based on L1-norm. Let an
N -dimensional vector X denote an image whose elements
are all non-negative, and let 1 denote an N -dimensional
vector whose elements are all 1. The normalized image x of
an original image X is defined as x = X/(1TX). After the
normalization, x is normalized in the sense that 1Tx = 1.

By this normalization, any nonzero image X(�= 0) is
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mapped to a point in the Normalized Image Space (NIS).
The NIS is closed to any averaging operation, and the real
variance is encoded up to a scale factor.

2.2. Normalized Eigenspace
When an image class is given, a k-dimensional eigenspace
is constructed in NIS by the conventional PCA from the
mean vector x and covariance matrix Σ

x =
1
K

K∑
j=1

xj and Σ =
1
K

K∑
j=1

(xj − x)(xj − x)T ,

where K is the number of images in the class.
Let Λ denote a diagonal matrix in which diagonal terms

are eigenvalues of Σ in descending order, and Φ a matrix
in which the i-th column is the i-th eigenvector of Σ. Then
PCA implies Λ = ΦT ΣΦ. Using a submatrix Φk of Φ,
which consists of k principal eigenvectors, the projection,
x∗, of x onto the eigenspace and the residual, x�, of the
projection are given by

x∗ = ΦT
k (x− x), (1)

x� = x− x− Φkx∗. (2)

In our problems, k is a small number because human faces
are almost Lambertian.

Let us call the k-dimensional eigenspace the Normalized
Eigenspace (NES). We also use another notation, 〈x, Φk〉,
which explicitly specify x and Φk .

2.3. Canonical Space
In this paper, a face space is defined as a space composed
from a set of frontal faces, which includes images of nu-
merous persons taken under a wide variety of lighting con-
ditions. To simplify the problem, we assume that good
segmentation is readily accomplished as shown in Fig. 10.
Eigenspace analysis on the face space reduces the dimen-
sion of the face space, with little loss of representability
[6, 4].

Let 〈xc, Φc〉 denote a NES constructed over a canonical
set. We call this the canonical space (CS). In our experi-
ments, a 45d CS is constructed from a canonical image set
that consists of face images of 50 persons taken under 24
lighting conditions.

3. Noise Detection and Image Correc-
tion

3.1. Effect of Noise in NIS
Let us analyze the effect of noise on the projection onto
NES 〈x, Φk〉 and the residual. Suppose that an object view
is completely encoded to the NES by

x∗ = Φk
T (x− x).

Let n and y denote the normalized images of image N
and Y = X + N, where X is a signal, N is a noise and Y is
an input image. Let us define y = (1 − α)x + αn, where
α = 1TN/1TY. Then the projection, y∗, and the residual,
y�, are respectively represented by

y∗ = (1 − α)x∗ + αΦk
T (n − x) (3)

y� = αn� = α(n − x) − αΦkΦk
T (n − x). (4)

In Eq. (4), the first term indicates the existence of n it-
self. The second term indicates that the noise affects the
whole image with weight −αΦkΦk

T . Even if n is very
localized, the effect spreads to the whole image. Since
ΦkΦk

T is positive semidefinite, the second term yields a
counteraction to the noise. A negative reaction is generated
from a positive noise, whereas a positive reaction is gener-
ated from a negative noise. Refer to [1] on the estimations
of α and x∗ as well as a detection of noise region in image
correction.

3.2. Noise Detection by Relative Residual
Let us define a relative residual ri for the i-th pixel of x by

ri =
eT

i x�

eT
i (x + Φkx∗)

,

where x� is an absolute residual given by Eq.(2), and ei is a
unit vector which consists of 1 in the i-th element and 0 in
the other elements. We use the relative residual instead of
absolute residual for the i-th pixel, eT

i x�, because we would
like to suppress noise not in the absolute scale but in the rel-
ative scale. For example, low noise in a dark area should be
suppressed when the relative residual is sufficiently large.

Noise detection is basically performed by |ri|. However,
Eq. (4) suggests that when a considerable amount of noise
is included, the zero level of the relative residual may shift
in response to the amount of noise and Φk. In order to com-
pensate the possible shift, we use |ri − r̂| instead of |ri|,
where r̂ is the median of the whole ri. We don’t use the av-
erage, because we would like to neglect the direct noise fac-
tors in Eq. (4). Consequently, noise can be detected when
|ri − r̂| ≥ rθ , where rθ is a threshold.

3.3. Image Correction by Projection
The noise correction algorithm can be created on the basis
of the noise detection, as follows: When |ri − r̂| ≥ rθ , the
i-th pixel of x should be replaced to (1−α)eT

i (x+Φkx∗),
where x∗ and α are provided simultaneously by calculat-
ing a partial projection[1] when the partial region excludes
noise regions. The image correction makes an intensity
value consistent with the projection. For example, shad-
ows and reflection regions are corrected when the NES is

2
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Figure 1: Example of eigenplane for Lambertian surface:
Average and 2 principal bases.

Figure 2: Two examples of image correction: In each triplet
from left to right, original x, detected noise region, and final
result.

constructed over an image set including a small amount of
shadows and reflections.

Note that the normality of the image doesn’t hold after
the correction. Therefore, the corrected image should be re-
normalized when all the pixels are checked and corrected.

The projection-based correction just changes outliers to
inliers. When more than a few pixels are corrected, x∗ also
changes to some extent. Therefore, a few iterations of cor-
rection should be performed for better noise suppression.
After iterations, x converges to an image having little noise.

3.4. Experiments of Noise Detec-
tion/Correction

(1) Eigenplane for Lambertian Object
A 2d eigenspace (an eigenplane) is constructed for a Lam-
bertian object. Figure 1 shows an example eigenplane
which is constructed in NIS from ten images of a Napoleon
statue made of plaster. In Fig. 1, the left image shows the
average image, and the other images show the orthonormal
bases of the eigenplane.

Figure 2 shows two examples of image correction. In
both examples, the corrections are made around the nose,
where the cast shadow regions are detected and corrected
by the projection.

(2) Image Correction with Individual Eigenface
For a non-Lambertian object, the image correction also
works well. Figure 3 shows an example eigenface which
is constructed in NIS from 6 individual faces. In Fig. 3, the
left image shows the average image and the others show the
3 principal bases of the eigenface.

Figure 4 shows 3 examples of image correction. In the
left and center pairs, the corrections are made around the
nose, where the cast shadow regions are detected and cor-
rected by the projection. In the right-most example, the cor-
rection is made for an artificial occlusion. These examples
show that the projection-based image correction is very ro-
bust to both shadows and occlusions.

Figure 3: Individual Eigenface: Average and 3 principal
bases.

Figure 4: Examples of image correction: In each pair, x is
shown on the left and the final result on the right.

(3) Image Correction with Universal Eigenface
For a class of human faces, the projection-based image cor-
rection still works. A universal eigenface, as shown in
Fig. 5, is constructed in NIS from images of 50 faces, each
taken under 20 lighting conditions. In Fig. 5, the left image
shows the average image and the others show 5 principal
bases of the eigenface.

In Fig. 6, we compare the results between 3d and 45d
eigenfaces. In these two examples, similar results are ob-
tained with 3d and with 45d eigenfaces, although x∗ is
less similar to x when the 3d eigenface is used. The right
example also shows that the image correction works for
the mirror reflection on his eyeglasses as well as for half-
transparency. In this case, his glasses are removed in the
results, because the universal eigenface doesn’t include per-
sons wearing glasses.

4. Decomposed Eigenface Method
4.1. Concept of Decomposed Eigenface
If numerous face images can be collected in the registration
stage, the EF can be constructed by PCA. Yuille et al. [9]
have shown that an EF can also be constructed by photomet-
ric SVD when a lot of images of an individual are taken un-
der various illumination conditions. However, an EF for an
individual cannot be stably constructed when an insufficient
number of sample images are available or when the sample
images have been taken under very similar lighting condi-
tions. In these situations, illumination-insensitive identifi-
cation requires some refinements to the eigenface method.
In this section, we introduce a decomposition of EF for the
foregoing purpose.

Figure 5: Universal eigenface constructed from images of
50 persons: Average and 5 principal bases.

3
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Figure 6: Two examples of image correction: In each triplet
from left to right, an original x, an image corrected with the
3d eigenface and an image corrected with the 45d eigenface.

xx

NIS

EF

CS

CS

ER

EP

#
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Figure 7: Decomposition of EF to EP and ER.

4.2. Eigen-Projection and Eigen-Residual
A projection of x to CS, 〈xc, Φc〉, and the residual are re-
spectively represented by

x∗ = Φc
T (x − xc),

x� = x − xc − Φcx∗.

Thus, a normalized image x can be decomposed into the
canonical component x∗ and the residual component x�.
Because of the above definitions, they are orthogonal.

The orthogonal components x∗ and x� enable us to de-
compose the eigenface (EF) in NIS. That is, as shown
in Fig. 7, two eigenspaces can be constructed indepen-
dently in CS and in the orthogonal complement CS⊥. The
first eigenspace, called an eigen-projection (EP), is con-
structed from the canonical components in CS. The second
eigenspace, called an eigen-residual (ER), is constructed
from the residual components in CS⊥. EP and ER are con-
structed by PCA in CS and CS⊥, respectively.

In the construction of EP, the mean vector x∗
p and the

covariance matrix Σ∗
p are respectively calculated by

x∗
p =

1
L

L∑
l=1

x∗
pl (5)

Σ∗
p =

1
L

L∑
l=1

(x∗
pl − x∗

p)(x∗
pl − x∗

p)
T , (6)

where L is the number of images for each person. Let Φ∗
p

and Λ∗
p denote the eigenvectors and the diagonal matrix, re-

spectively. Then PCA implies Λ∗
p = Φ∗

p
T Σ∗

pΦ
∗
p. Using a

submatrix Φ∗
pm of Φ∗

p, which consists of m principal eigen-
vectors, the projection of x∗ to the p-th EP is given by

x̃∗
p = Φ∗

pm
T (x∗ − x∗

p). (7)

ER can also be constructed in the same way as described

for EP. We can define x�
p, Σ�

p, Φ�
p, Λ�

p, and Φ�
pm in the same

way. Consequently, the projection of x� to the p-th ER is
given by

x̃�
p = Φ�

pm

T
(x� − x�

p).

4.3. Registration and Recognition Schemes
In the registration stage, EP and ER are created indepen-
dently in CS and in CS⊥. In CS⊥, statistical noise reduction
is effective for the construction of the Eigen-residual (ER)
because most of noise appears in residuals.

In the recognition stage, we can realize face identifica-
tion by combining the two eigenspaces. Given an unknown
face x, two similarity measures are defined by normalized
correlations in CS and CS⊥, where C(x,y) shows a nor-
malized correlation between x and y:
(1) Similarity between x∗ and EP 〈x∗

p, Φ∗
pm〉 in CS:

C1p(x) = C(Φ∗
pmx̃∗

p + x∗
p, x

∗).

(2) Similarity between x� and ER 〈x�
p, Φ�

pm〉 in CS⊥:

C2p(x) = C(Φ�
pmx̃�

p + x�
p, x�).

(3) Combined similarity of C1 and C2:
Because C1 and C2 are calculated independently in CS

and CS⊥, they can be combined as

C3p(x) =
C1p(x)
C1

p̂1
(x)

+
C2p(x)
C2

p̂2
(x)

,

where p̂i = arg max
1≤p≤P

Cip(x).

A simple discrimination is then made for Ci(i = 1, 2, 3),
by selecting a person

arg max
1≤p≤P

Cip(x).

5. Refinement of Decomposed Eigen-
face Method

5.1. Image Correction and Refinement of CS
In this section, we refine the original decomposed eigen-
face method by applying the image correction prior to the
CS construction. In the image correction, CS is used as a
universal eigenface in 3.4(3). Since the image correction
method described in 3.2 and 3.3 can be applied to any im-
age for any purpose, it is also applied to the canonical im-
ages when a preliminary CS is made up without use of the

4
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Figure 8: Example of iterative image correction: From left
to right, original x, and after first, second, and third correc-
tions.

Figure 9: Comparison of average faces and principal bases:
Upper and lower rows show them before and after the image
correction, respectively.

image correction. We can redefine the canonical space by
making an eigenspace over the canonical images after the
image correction on the preliminary CS.

Figure 8 shows an example of image correction. The
original image on the left is gradually corrected. Especially,
the corrections suppress reflections in her glasses.

Figure 9 shows the average faces and 5 principal bases of
CS before and after image correction. The image correction
refines the canonical spaces, because many reflections and
shadows are removed from the canonical image set.

5.2. Refined Registration and Recognition
Schemes

Both the registration and recognition schemes can be re-
fined. In the registration scheme, after the image correction,
EP is made up in the same manner as described in 4.3. Be-
cause both the CS and the registered image are corrected,
each EP includes much less noise than the original method.
Construction of ER does not require additional noise reduc-
tion, because the image correction sufficiently eliminates
the noise.

In the recognition scheme, the subspace method is ap-
plied to an image after the image correction. Because EP
and ER include less noise, the recognition scheme works
better than the original method.

6. Face Discrimination Experiments
6.1. Data Specification
Data specification is summarized in Table 1. Facial images
were taken from a fixed camera located in our laboratory.
Each of 100 persons were looking forward while sitting on
a chair located in a fixed distance from the camera. The

Table 1: Data specification
Canonical set Test images

# of persons 50 50
# of lighting
conditions 24 24
Image size 32×32 32×32

persons wearing glasses 9 15

Figure 10: Averages of canonical images taken under 24
lighting conditions.

chair was fixed in order to obtain a frontal facial image of
each person.

As shown in Section 2.3, CS is created from the canoni-
cal image set, which consists of 1200 images of 50 persons.
For each person, images are taken under 24 lighting con-
ditions, which are controlled by changing the position of
a light. In the canonical set, 9 persons wear glasses. Fig-
ure 10 shows averages of the canonical images taken under
the 24 lighting conditions. The remaining 50 persons are
used for the test data, and 15 of these persons wear glasses.
Figures 11 (a) and (b) show 4 examples of canonical images
and 4 examples of the test images, respectively, taken under
a fixed lighting condition.

6.2. Comparison
For personal registration, K images were randomly sam-
pled from 24 images of each person in the test data. There-

(a) canonical images (b) test images

Figure 11: Examples of canonical/test image sets.
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Table 2: Discrimination rates[%] for 50 persons

Number of samples(K)/person
Method 1 2 3 4 5

conventional NN 35.8 50.2 63.1 63.6 68.7
conventional EF 44.8 73.2 86.5 91.9 94.3

C1 81.2 88.3 91.1 91.8 93.3
C2 89.0 96.2 98.2 99.1 99.3
C3 92.1 97.3 98.6 99.3 99.3

C1′ 83.1 91.4 93.1 94.9 94.6
C2′ 91.0 97.0 98.9 99.6 99.8
C3′ 95.1 98.5 99.4 99.8 99.9

fore, the discrimination experiment was carried out from the
remaining 24 − K images of each registered person. This
process was repeated one hundred times while registered
images for each person were varied.

Table 2 shows average discrimination rates. Eight meth-
ods are compared for the same canonical and test sets. The
first 2 rows show the results of conventional NN (nearest-
neighbor) and EF (eigenface) methods. The second 3 rows
(C1, C2, C3) show the results of the decomposed eigenface
method without prior image correction, and the remaining 3
rows (C1′, C2′, C3′) show the results of the refined method.
In all the methods, face symmetry is used in the registration
stage. The dimension of EP is K + 3, and the dimension of
ER is min(2K − 1, K + 2).

The table shows that the image correction improves the
discrimination rates for all K and for all similarity mea-
sures. The best result is provided with C3′, with recogni-
tion reaching 95.1% when only one image is registered for
each person. This shows an improvement of 3 points over
the C3. When five images are registered for each person,
the result obtained with C3′ reaches 99.9%.

6.3. Experiments in Public Databases
In order to confirm the effectiveness of the refinement, we
also conducted experiments in Yale Face Database B[11]
and AR Database[12]. These experiments employ the same
CS as used in the above experiments.
(1) Experiments in Yale Face Database B[11]
The database includes 10 individuals taken under 64 dif-
ferent lighting conditions. Images were classified to five
subsets(SS1-SS5) by angle between the light source direc-
tion and the camera axis. Each image was segmented and
converted to 32 by 32 pixels so that all of the faces have
eyes in the same coordinates. Our discrimination experi-
ments were carried out over the segmented data set. SS1
which includes seven images was used as a registered set
and the other subsets were used as test sets. Table 3 shows
the experimental results.

C3 and C3′ worked well for test sets SS2 and SS3 even

Table 3: Discrimination rates[%] for Yale Database B
Number of samples(K)/person

1 2 3 4 5 6 7

SS2 C3 98.0 99.7 100 100 100 100 100
C3′ 98.0 99.7 100 100 100 100 100

SS3 C3 89.3 95.3 99.0 100 100 100 100
C3′ 88.3 95.8 99.7 100 100 100 100

SS4 C3 59.7 78.9 87.5 92.9 94.6 95.1 95.7
C3′ 56.2 75.3 83.3 88.0 90.8 91.6 91.3

SS5 C3 23.2 36.0 42.0 46.3 48.7 49.4 53.5
C3′ 23.9 29.8 33.1 33.9 34.6 35.2 34.4

Table 4: Comparison of discrimination rates: C3 and C3′

are proposed in this paper, PPP indicates a linear sub-
space method using parallel partial projections[13], Cones-
attached indicates the basic illumination cone[14], Cones-
cast indicates the illumination cone with cast shadow
representation[14], 9PL indicates the nine points light
method[15], Segm. LS indicates the segmented linear
subspace method[16], and PA indicates the photometric
alignment[17].

method SS2 SS3 SS4 SS5

C3 100 100 95.7 50.8
C3′ 100 100 91.3 34.4

PPP[13] 100 100 100 100
Cones-attached[14] 100 100 91.4 -

Cones-cast[14] 100 100 100 -
9PL[15] 100 100 97.2 -

Segm. LS[16] 100 100 100 -
PA[17] 100 100 100 81.5

if too few images were registered. For test sets SS4 and
SS5, C3′ resulted in slightly worse results than C3. This is
because the image correction in C3′ could not work when
input images include excessive noise. You also should know
that the CS was constructed from only Japanese facial im-
ages. They look very different from images in the Yale
Database. If a CS is constructed from international data set,
the image correction works much better and C3′ is expected
to provide better results.

In Table 4, we compare results on Yale Face Database B
reported in [14, 15, 16, 17, 13]. In the experiments, seven
images in SS1 are registered. The results for SS5 are not
reported in three papers. We should note that we cannot
simply compare the results since the cropped regions and
image resolutions are different. Although our method works
slightly worse than the other methods, it can be improved if
an appropriate CS is used. Furthermore, the comparison re-
sult indicates the parallel partial projections (PPP) provides
the best scores. This suggests that a better method may be
constructed by a combination of the parallel partial projec-
tions and the decomposed eigenface.

6
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Table 5: Results for 2 databases [%]
Method C3 C3′

Database P K=1 K=2 K=1 K=2
Ours 50 92.1 97.3 95.1 98.5
AR 50 91.6 98.1 92.3 99.4

(2) Experiments in AR Database[12]
The database contains images of 126 persons taken under
3 lighting conditions for each person. In order to compare
with the results in our database, 50 persons were randomly
selected from the database, and the discrimination experi-
ment was carried out using C3 and C3′. In the experiment,
one or two images were registered for each person and the
remaining image(s) were used for the test. Table 5 shows
that the refinement can stably discriminate persons in the
AR database, as well as persons in our database.

7. Conclusions
We have integrated several concepts on the normalized
eigenspaces for realizing a robust face recognition system
which can work even when an insufficient number of im-
ages can be registered for each person. The normalized
image space (NIS) is very useful when combined with
eigenspaces. Normalized Eigenspaces (NES) enable us to
realize object recognition, photometric analysis, and im-
age correction in the same domain. The projection-based
image correction on NIS is very effective for a variety of
eigenspaces. The image correction method has wide ap-
plications, including recognition of face and object images
including shadows, reflections, and occlusions. The de-
composed eigenface provides a high capacity of face dis-
crimination, which is realized simply by the projection of
an image onto the canonical space. Projection-based im-
age correction is employed to refine the decomposed eigen-
face method. Experimental results show that the integrated
method improves the discrimination rates on our own and
the AR databases as well as on the Yale database. The pro-
posed method can be applied to face recognition under nat-
ural lighting conditions, even if the lighting condition is un-
known or changes with time.
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