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Abstract 

Stability of feature-based visual seruo controllers 
proposed so far is local.' The initial features far from 
the reference may converge to features diflemnt from 
the reference or even worse they may not converge. 
In this paper, stability of feature-based visual servo is 
considered by using potential. The stable region is vi- 
sualized and artificial potential switching is proposed 
to extend the stable -ion. 

1 Introduction 

With featurebased visual servo the position of the 
robot hand is controlled so that the image features of 
the robot hand converge to the reference image fea- 
tures [9]. It is well known that the stable region of 
the feature-based visual servo is local. However, the 
stability region is not well studied because it depends 
on the kinematic structure of the robot manipulator. 
As a related research Chaumette derived a condi- 

tion for the camera moving unpredictable direction [l]. 
It gives a sufficient condition and an example of unpre- 
dictable motion. Also some comments regarding this 
condition and selection of the control law are given. 
Cowan and Koditschek [3] proposed a globally stabi- 
lizing method using navigation function for a planar 
camera motion. The method is limited for a very sim- 
plied case, but it gives a complete solution for global 
Stabilization. On the other hand, Malis, Chaumette 
and Boudet recently proposed a 2-1/2 D visual ser- 
voing which incorporates both the image features and 
the camera orientation parameters into the controlled 
variables [7]. This method is not purely feature-based, 
but it also gives global stabilization for general setup. 

This paper considers the potential problems in 
feature-based visual servoing. The potential is the 
norm of the feature error and the task is the mini- 
mization of the potential. The reason of unpredictable 

except for some really recent ones [7, 31 

camera motion is visualized and some detailed exam- 
ples are given. Also an artificial potential switching 
controller is proposed and enlargement of stability re- 
gion is discussed. 

2 Featurebased Visual Servo 
We assume that the camera is mounted on the robot 

hand and the hand position is controlled on the basis 
of the image feature points on an stationary object. 

2.1 Formulation 

Let the genera l i i  coordinates of the camera be q 
and the position and orientation vector of the camera 
be p,. Let the position and orientation vector of the 
object be p ,  and the number of visible feature points 
be n. Let the ith feature point be poi and the relative 
position and orientation vector between the camera 
and the object be [Xt Y ,  &IT = 'pra = '&,(PO, - PC) 
where "R, is the rotation matrix from the world co- 
ordinate system to the camera coordinate system. Let 
the feature vector of the ith feature point in the im- 
age coordinates be [xa yJT = Q and define the feature 
vector as t = [ ,$ . .a  t3*. 

Feature-based visual servo works so that the current 
image features converge to the reference features. Let 
qd be the reference robot configuration and &j = t ( q d )  
be the reference features, then the visual servo prob- 
lem is formulated as a potential minimization problem 
with the potential function being 

v(q) = (6 - 6 ( q ) I T ( [ d  - <(q))  (1) 

2.2 Control Law 
A typical control law is the steepest decreasing law 

of (1) given by [9, 2, 8, 4, 61. 

d = J t  (kd - t )  (2) 

where J is defined by J = = Jfc&,J, 
and J, is the robot Jacobi matrix and j f  is the image 
Jacobian. 
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3 Global Minimization 
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Increasing the number of feature points increases 
the sensitivity of the visual servo system [5]. However, 
if the set of feature points is redundant, then there 
may exist undesired equilibria. 

3.1 Equilibrium Points 

The partial derivative of the potential V(q) is 

~ 

~ 

- 
- 

~ 

- - ’ 

Let the dimensions of q and f be m and 2n, respec- 
tively. Suppose 2n > m then J becomes tall. For 
all q in the neighborhood of qd, the necessary and 
sufficient condition for local stability (< + cd then 
q -+ q d )  is rankJ = m. Even if this condition is sat- 
isfied, there exists 2n - m linearly independent error 
vectors Q = [d - < that belong to K e r p .  For these 
error vectors, we have aV/aq = 0. Thus these features 
are equilibria of the potential. 

Since the mapping from q to Se depends on the 
robot kinematics and robot-ob ject configuration, it is 
not easy to discuss whether local minima exists or not 
without specifying the configuration. Thus we give 
some simple examples. 

3.2 Examples 

Let us consider one or two degree of freedom (DOF) 
camera motion and draw the potential plot. Assume 
that the camera motion is in X-2 plane and the object 
is a triangle whose vertexes are pol = [-B 0 O]*,p,z = 
[0 0 HlT,pO3 = [B 0 0IT. 

3.2.1 1 DOF Straight Motion 

Suppose that the camera has 1 DOF. Let the cam- 
era position be p ,  = [X, Y, &IT. The camera can 
translate in X, direction but it can not translate nor 
rotate in other directions (Figure 1). The generalized 
coordinate is taken as q = X,. Then “R, becomes 
unity and “R,Jr = [l 0 0 0 0 01. Let Y, = O,Z,  = 
d,f = -256,2B = 200,H = 20,d = 1000, and the 
reference position be xd = -1000. The potential plot 
is depicted in Figure 2. Since the depth Zi (i = 1,2,3) 
is constant, the error vector Je becomes a linear func- 
tion of X, and V(X,) becomes a quadratic function 
with v(&) = 0. Thus the only equilibrium is the 
global minimum. This is the case of trivially redun- 
dant features because the camera position is uniquely 
determined by only one feature point. For the trivially 

I 

Figure 1: Camera motion (X translation) 

Figure 2: Potential plot (X-translation) 

redundant features all the basis of K e r p  can not be 
generated by any camera motion2 . 

3.2.2 1 DOF Circular Motion 

Assume that the camera has 1 DOF; the distance from 
the origin is constant d; and the optical axis always go 
through the origin. This is the case of 1 DOF arm 
that rotates around Y axis with a camera attached on 
the tip looking at the rotational axis. Let the gen- 
eralized coordinate be q = 8 where 8 is the rotation 
angle of the arm and 0 = 0 when the arm is upright 
position. Then we have “R,,,Jr = [d 0 0 0 0 1 01. 
Suppose that the reference is the features obtained at 
ed = -1r/3. Assume that the parameters are as fol- 
lows: f = -256,2B = 200,H = 20,d = 1000, then 
the potential plot is given by Figure 4. A local min- 
imum exists because the image obtained at e = ed is 
similar to the reference but the image at e = 0 is not. 
This similarity reversal will be solved by setting H 
large. A sufficient condition for existing local minima 
will be given in the next section. 

The basis are [0 1 0  0 0 O],[O 0 0 10 0 O],[O 0 0 0 0 1) and 
[l 0 -1 0 0 01, [l 0 0 0 -1 01. The first group requires Yc motion 
and the second group requires 2, motion. 
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Figure 3: Camera motion (circular) 
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Figure 5:  Camera motion (X translation and rotation) 

Figure 4: Potential plot (circular) 

Figure 6: Potential plot (Close up 2D X and q )  

3.2.3 2 DOF Straight Motion 

Let us consider a 2 DOF case with constant height but 
the camera can rotate around the Y, axis, as shown in 
Figure 5. The generalized coordinates are q = [ X ,  elT, 
where 8 is the rotation angle. The Jacobi matrix be- 
comes 

] (4) , & J r = [ o  0 0 0 1 0  
1 0 0 0 0 0  

Let the parameters be Y, = O,Z,  = d, f = -256,2B = 
200, H = 20, d = 1000 and the reference position be 
x d  = -lO00,9, = n/4. At the reference, the object 
features are located near the image center. Thus it 
is easy to conclude that the potential surface has a 
valley along a curve 8 = arctanX,. To magnify the 
bottom of the potential surface, a transformation 9‘ = 
8 - arctan X ,  is carried out and the potential in the 
region -1500 5 X, 5 1500,-0.l~ 5 8’ I O.ln’is 
plotted in Figure 6. The contours on the base plane 
show the existence of a local minimum. The reason 
why the local minima exists is the same as the case of 
1 DOF circular motion and will be explained in the 
next section. 

3.2.4 2 DOF Rotation 

Let us consider another 2 DOF case, one DOF is trans- 
lation along the 2 axis and the other DOF is the ro- 
tation around the Z axis. The optical axis always co- 
incides with the Z axis. The generalized coordinates 
of the camera is q = [Z, elT where 2, is the camera 
height and 8 is the rotation angle. Then the Jacobi 
matrix becomes 

] (5) , & J r = [ o  0 0 0 0 1 
0 0 1 0 0 0  

Let the reference image be the one obtained at 
qd = [1000,OIT and assume the parameters are f = 
-256,2B = 200, H = 20. For the camera position in 
the range 700 5 Z, 5 2000, - 1 . 5 ~  5 8 5 0, the poten- 
tial is plotted in Figure 8. The plot of 9 > 0 is symmet- 
ric with respect to a plane 8 = 0. For the initial value 
qo = [lOOO, -7rIT, the initial image is symmetric to the 
reference with respect to the image center. This initial 
point is an unstable equilibrium for the change of 9 and 
the surface is monotonically decreasing for the change 
of 2,. Thus the camera goes back straightly without 
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4.1 Gradient of the Potential 

object 

Figure 7: Camera motion (2D rotation) 

Figure 8: Potential plot (2D rotation) 

rotation. This coincides with the Chaumette’s obser- 
vation [l] but our potential plot is more informative. 
If the initial point is not strictly point symmetric, the 
camera slowly rotates but it quickly goes away from 
the object. 

4 Existence of Local Minima 

For the example of Figure 1, the image obtained at 
8 = -8d is similar to the reference because the posi- 
tions in the image plane of the two zero-height feature 
points are close to the reference. On the other hand, 
the image at 8 = 0 is not very similar to the reference 
because all of three points are not close to the refer- 
ence. Thus there exists a local minimum near 8 = -8d 
and a local maximum near 0 = 0. However, the local 
minima will disappear by increasing the object height 
H because at 8 = -8d the difference of the feature 
point with height becomes dominant by increasing the 
height. This section gives an analysis for existence of 
local minima for the case of 1 DOF circular motion. 

Since the optical axis pieces the object center, 
camera motion is equivalent to the object rotation 
around the object center. For simplicity we assume 
B, H << d and the weak perspective projection. Then 
the object position with respect to the camera be- 
comes X 1  = - B c , X 2  = - H s , X 3  = B c , Y l  = Y2 = 
Y3 = 0,Zl = 2 2  = Z3 = -d, where abbreviations 
c = cos(e), s = sin(0) are used. Then (3) becomes 

a 2  
where U = &, b = w , c d  = cos(8d), sd = Sh(8d). 
The existence of local minima can be found by eval- 
uating the number of solution of f(e) = S(Cd - c )  - 
UC(Sd - s) = 0 in the range 8 E (-n/2,n/2). After 
some calculations, we have 

6 d + 8  6 d - e  
f(8) = cos(8) cos(-) s i n ( F ) ( g ( 8 )  + a )  2 

8d -k 8 
g(8)  = tan(8) tan(-) 

2 (7) 

Thus f(8) = 0 has a solution 8 = 8d and the other 
solutions are, if any, the solutions of g(8) = -a. It is 
straightforward to see that g(0)  = -a is equivalent to 

h(t) = -k ( 2  - U ) t 2  -k t d ( 2  - U ) t  -t a = 0 (8) 

where t = tan(q2) and t d  = tan(&#). Thus the 
number of real solutions of h(t) = 0 in the range t E 
(-1,l) determines the existence of local minima. If 
t d  = 0, no solution is in this range. Since h(t) is 
symmetric about t d ,  we consider only for td  < 0. 

4.2 Object Height and Local Minima 

To find a condition on t d  and a for which equation 
(8) has solution in range -1 < t < 1, one can differ- 
entiate h(t) and it is easy to check the followings: for 
2/(1 + 3t i )  < a < 2, h‘(t) = 0 has no real solution 
(h(t)  is monotonically decreasing); for a < 2/( 1 + 3t;) 
or 2 < a ,  h’(t) = 0 has two real solutions PI, Pz where 

< ,&; if h’(t) = 0 has real solutions and h(,&) < 0, 
h(t)  = 0 has two solutions in -1 < t < 1. However the 
equation h(P1) = 0 becomes a quartic equation and 
the analytical solution is not useful. Thus we solve it 
numerically. 

= 0.2950 and a = 0.1559. Then 
for a > 0.1559, that is for H > 0.5584B, no local 
minimum exists. 

From the numerical computations we found that 
the upper limit ij of a for which local minima exist 

Let 8d = -n/3,  
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decreases if 8 d  increases to 0,  and on the other hand, 
if e d  decreases to -n/2, ii increases. This fact cor- 
responds to following intuitive: when we look at the 
object from above, then we can recognize the object 
orientation easily even if the object do not have fea, 
tures with height. However if we look at the object 
from very low angle and if the object has no features 
with height, then it is difficult to recognize whether 
we are looking from right side or from left side. Thus 
when we need global stabilization, the object must 
have considerably high feature point. 

In fact, for our 1 DOF circular motion case, the 
global stability is achieved if a > 2/(1 + 3t;). If t d  
is unknown, a conservative evaluation is a > 2, that 
is H > 4B. Thus, if the object height is larger than 
twice of base length, global stability is achieved for 
any reference position. 

5 Potential Switching 
If the potential has local minima and if the initial 

position qo is near a local minimum, then to converge 
to the global minimum the camera must cross over the 
local maximum at qa . To climb up the local maximum 
we generate an artificial potential VI which has the 
minimum at qa and control the camera position based 
on V’. If the camera comes sufficiently close to qa, 
then we switch the potential to the original V. If there 
is no local minimum between qa and the reference Qd, 
then the camera will converge to Qd. If there is another 
local minimum then we repeat the same procedure. 
We call this control scheme as potential switching. 

5.1 Interpolation 
The initial and the reference images are used to 

generate the artificial potential. The image used to 
generate the artificial potential is called the relay im- 
age. An example of image interpolation is presented 
for the 1 DOF circular motion case. However this 
method can be extended to general 6 DOF case be- 
cause the method is independent of the number of 
feature points. 

For simplicity, assume that the imaging model is 
weak perspective projection and let 00 = -ed  and e d  < 
0. For the first example let us adopt the averaged 
image & = (& + <0)/2 as a relay image. Then we 
have 

cd (Xi s d  30 f(8) = -s(- + - - c )  + a c ( -  + - -s) ,  
2 2  2 2  

(9) 
By substituting Bo = -0d into the above equation, we 
can see that the potential has equilibria for 0 = 0 and 

c = cd/(l -a ) .  Thus for a < 1, the averaged image is 
not adequate for relay image. 

Next, we magnify the interpolated image around 
the object center. Since the object center is always 
projected to the image center, the interpolated image 
is cr = (1 - r)&~ + r e d  (0 5 T 5 1). k t  the magnifica- 
tion ratio be y then the magnified image becomes 

6 = 76- = $1 - T ) t O  + r r e d  (10) 

When r = 1/2, the solutions of f(e) = 0 are f3 = 0 and 
c = &cd. Thus if y > (1 - a ) / C d ,  then the artificial 
potential V,  with relay image does not have local 
minima and the camera will converge to the minimum 
of V,. Since the minimum of V,  is the local maxima of 
V ,  the camera ‘climbs up’ to the local maxima. 

To investigate the characteristics of the potential 
for r # 1/2, we compute f’(8) and we have f’(0) < 0 
for r < 1/2 and f’(0) > 0 for T > 1/2. Thus the 
global minimum of the potential exists in the region 
8 > 0 for T < 1/2. Also for r > 1/2, it is in 8 < 0. If 
we change T from 1/2 - E to 1/2 + E ,  then the global 
minimum of the potential changes from negative to 
positive. Thus using these images, the camera goes 
across the local maxima and falls down to the global 
minimum by using &. To carry out the visual servo 
task, the final image should be 6, thus y may be a 
continuous function of r that satisfies $0) = 1, y(1) = 
1,7(1/2) > (1 - a)/cd. 

6 Simulation 

6.1 1 DOF circular motion 

For 8, = -n/3,80 = n/4, a simulation result is 
given in Figure 9. The magnification ratio is y(r) = 
1 + sin(rn), r = 1/4,1/2,3/4. The coordinate system 
at the center of the figure is the world coordinates and 
at the origin of the world coordinates the object is 
placed. The arrows above the object show the camera 
coordinate system. Since the motion is in X - 2  plane, 
only X and 2 axes are plotted (the optical axis is 
-2 direction). The camera position converges to the 
desired position. The potentials V, for the interpolated 
images Et are plotted in Figure 10. The positions on 
which the arrows are crowded in Figure 9 correspond 
to the positions of potential minima for interpolated 
images. The potentials work effectively to pull the 
camera up to the local maxima of V. 

6.2 2 DOF Straight Motion 

For 2 DOF straight motion with X d  = lOOO,0d = 
-w/4, XO = 1000, eo = n/3 ,  simulation result is shown 
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Figure 9: Camera position 

Figure 10: Potentials for interpolated images 

in Figure 11. The magnification ratio is the same as 
the previous example. The camera converges to the 
desired position and orientation. 

7 Conclusion 

This paper considers the potential and stable region 
problems of the visual servo. Some examples have ex- 
hibited that local minima exist and the stable region is 
not large even for very simple camera motion. We also 
have shown that the object height is quite essential to 
enlarge the stable region. Moreover, by using switch- 
ing control with interpolated-magnified relay images, 
the stable region can be extended to almost global that 
is practically sufficient. The interpolation method pre- 
sented here is limited, but by combining the interpo- 
lation with &e transformation the switching control 
can be generalized to 6 DOF visual servoing. . 

1200 I 

X 

Figure 11: Camera position 
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