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Abstract 

A multivariable model reference adaptive control system (MRACS) 
with a fixed compensator is proposed. First, a new two-degree- 
of-freedom ( 2  d.0.f.) compensator with disturbance estimator is 
derived. Using this structure, a multivariable MRACS with fixed 
compensator is constructed. Since the proposed method is based 
on the 2 d.0.f structure, the fixed compensator is chosen indepen- 
dently of specifications for reference commands. The  boundedness 
of all signals in the closed-loop system and the convergence of the 
output error are proved. A design method of the fixed compensator 
for MRACS with low sensitivity is also given. Finally, numerical 
examples are illustrated in order t o  show the effectiveness of the 
proposed method. 

1. Introduction 

The model reference adaptive control system (MRACS) is one of 
the main design schemes for adaptive systems. The  problem of 
constructing globally stable MRACS has been solved in the ideal 
case [lS] and in the presence of perturbations such as disturbances 
and unmodelled dynamics [1]-[3]. But even if the robust stabil- 
ity of MRACS is ensured, the system often results in undesirable 
performances. For example large transient oscillations often occur 
and the system is sensitive to  perturbations. Hence in recent years 
much concern has been given to improvement of the performances. 

Ohmori et al. [4], [5] proposed the MRACS which has a n  additional 
feedback loop with a fixed compensator. The fixed compensator is 
driven by the error signal between the plant and the reference model 
output, and it directly compensates tracking error caused by dis- 
turbances and parametric uncertainties. Further in [.5] the design 
scheme of the fixed compensator to get low sensitivity was given 
using the EI, sub-optimal design method. However, the fixed com- 
pensator should satisfy a certain existence conditions which depend 
on the reference model transfer matrix, and the fixed compensator 
cannot he designed independently of specifications for the reference 
model. These constraints cause a great complexity to the design 
scheme of the fixed compensator. Indeed, it was necessary to solve 
the problem of minimizing the H ,  norm of a unit which satisfies 
interpolation conditions for the design of the fixed compensator. 
On the other hand, Sun[6] proposed a modified MRACS with an 
additional feedback compensator which is driven by an estimated 
error and showed that this modification was effective for the im- 
provement of the transient response. In Sun’s method there is no 
constraints on the fixed compensator and it was shown that the 
stability of the modified MRACS was ensured if the fixed compen- 
sator was a stable transfer function. Hence the design of the fixed 
compensator is more straightforward than the one in the Ohmori‘s 
method. However the direct performance analysis of the output er- 
ror is difficult because the estimated error is included i n  additional 
feedback loop. This drawback becomes serious especially in the 
multivariable case because the analysis is still more indirect owing 
to complexity of t!ie controller structurc. 

Motivated from the result of S n n  [6], Dataet  al. [7] showed that an 
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extended system from the modified MRACS was able to provide an 
arbitrarily improved transient performance. Further Pappadakis et 
al. [8] proposed an alternative structure of the controller based on 
the modified output error method (MOEM). Later Datta et al. 191 
showed that  these modifications of MRACS could be derived as 
linear feedbacks from the tracking error, and the design problem 
for the auxiliary input was equivalent t o  the problem of choosing a 
proper stable rational function by using Youla parametrization [lo] 
which can parametrize the set of all stabilizing compensators. This 
approach is excellent because it is expected to  simplify the design 
scheme of the fixed compensator and unify other design schemes. 
However in designing the fixed compensator a parametrization of 
the reference model transfer functions is not utilized, and the set 
of achievable fixed compensators is limited to  some extent. 

These researches on the modification of MRACS essentially implies 
the investigation on the structure of the MRACS for the purpose of 
improving performances. Therefore in order t o  eliminate the draw- 
backs of the conventional methods we should a t  first invent a new 
controller structure which can throughly utilize the degree of free- 
dom of feedback systems and then should extend to the modified 
MRACS. This approach is especially effective and significant when 
we treat the multivariable plants because the structure of the con- 
troller is considerably more complex than the case of single-input 
single-output plants. 

In this paper a t  first a new parametrization of two-degree-of- 
freedom ( 2  d.0.f.) compensation is proposed and then using this 
controller structure we construct a multivariable MRACS with a 
fixed compensator. The proposed parametrization of 2 d.0.f. com- 
pensation includes a freely designed compensator for feedback loop 
which is designed independently of the feedforward compensator 
for the model matching. .The compensator in the feedback loop is 
directly related with the free parameter of the Youla parametriza- 
tion and have the role of the disturbance estimator since it only 
works in the presence of disturbances or parameter uncertainties. 
And the compensator works as a fixed compensator in the MR- 
ACS proposed in this paper. Hence it follows that the fixed coni- 
pensator can be designed independently of specifications for the 
reference model and it can improve robustness to perturbations. 
Furthermore factorization approach [lo] over the ring of proper 
stable rational functions (RH,) is utilized in the proposed MR- 
ACS. It gives the efficient design method for MRACS[11]-[13] in 
the case of both single-input, single-output(SISO)[ll\ and multi- 
input, multi-output( MIMO) systems[l2][13]. Further factorization 
approach gives the unified scheme of designing controller structure 
of MRACS for both SISO and MIMO systems and the extension to 
multivariable systems can be easily done. Therefore the construc- 
tion of the structure hecomes simple and clear[ll] and the extension 
of multivariable case. where the structure is very complex, becomes 
easier[ 121 ,[ 131. 

This paper is organized as follows. Section 2 gives problem state- 
ments and a priori information. In section 3 a new parametrization 
of 2 d.0.f. compensator is derived and it is shown that the proposed 
parametrization have the controller structure with the disturbance 
estimator. I n  Section 4 a multivariable MRACS with fixed com- 
pensator is constructed based on the parametrization of 2 d.0.f. 
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compensator. Section 5 gives the  design scheme of the  fixed com- 
pensator with low sensitivity. In section 6 numerical examples of 
t he  proposed MRACS are  illustrated in order to  show the  effective- 
ness of the design scheme of the  fixed compensator in section 5. 
Section 7 concludes the  paper. In appendix A the boundedness 
of all signals in the  closed-loop system and the convergence of t he  
output  error are  proved. 

The  following notations are  used. C+ is the right half complex 
plane and C -  is the  left half complex plane. R" denotes an n 
dimensional Euclidean space. RH-represents t he  ring of proper 
stable rational functions of variable s with coefficients in the  field 
of the real numbers (R). T h e  ring of polynomials with real coefi- 
cients is given by R[s]. For t he  size of given matrix, t he  notations 
RHwPX', R(S)~" '  or R[S]~"' are  used. Further, a,,[.] and 
express the  column and raw degrees of a given polynomial matrix. 

2. Problem Statements 

Consider an unknown linear, time-invariant, finite dimensional, 
plant with m-inputs and m-outputs  with a transfer matrix P ( s ) :  

(2.1) Yp( t )  = P ( s ) ( u ( t )  f dl(t)) f dZ(t) 
where u ( t )  E R"', y p ( t )  E R" are  the  plant input and output  
vectors, respectively. d l ( t )  E R"' are  disturbances added t o  the  
plant input and d?( t )  E Rm are  noises in measuring the  plant 
outputs. I t  is assumed that  P ( s )  is full rank (rank P ( s )  = m) and 
strictly proper. Let t he  right coprime factorization of P(s) over 
RH,be ( N p ( s ) ,  D p ( s ) ) ,  t ha t  is, N p ( 8 )  E RH,""", D p ( s )  E 
RH," '" are  relatively right coprime over RH,and 

P ( s )  = N P ( s ) D p ( s ) - '  (2.2) 
is satisfied. In constructing MRACS this factorization of the given 
plant over RH,is not calculated. But these nbtations are  used 
to  parametrize reference model transfer matrices and derive the  
controller structure of MRACS. 

T h e  transfer matrix of t he  reference model is denoted as P M ( s )  
which is strictly proper and asymptotically stable. And r ( t )  E 
R"' , piecewise continuous and uniformly bounded, are  the  reference 
input and y , ( t )  E R"' are  model output  vectors. &(s) is assumed 
t o  be  satisfied with the  necessary and sufficient condition for the  
model matching. This  condition is given as follows using the right 
coprime factorization of t he  plant. 

p A . l ( S ) =  Ng(3)I<(s ) ,  I<(s) E RHmmX" (2.3) 
T h e  following assumptions are  made for the plant[l4] 

(A . l )  T h e  stable interactor matrix L[s]  is known, that  is, a matrix 
L[s] E R[s]"'""' such tha t  

lim L [ s ] P ( s )  = G p  (2.4) 
s-00 

with G, nonsingular. In this paper it is assumed to  be  GP = 
I. 

(A.2) The  plant maximum observability index Y is known. 
(A.3) T h e  plant is minimum phase, that  is, N p ( s )  is of full rank 

for any s E C + .  

According t o  the results of [12], [13], N p ( s )  can be derived using 
an interactor matrix of the  plant, which is assumed t o  be known 
from the  assumption (A.1). Hence the rational function matrix I\' 
satisfying the  model matching condition (2.3) can be obtained. 

Based on the description above, the control prohlem is stated a s  
follows. Let a plant (2.1) be unknown except for the assumptions 
(A.l)-(A.3). Then determine a differentiator free controller which 
generates a bounded control input signal vector, so that  all the  
signals in the closed loop system remain bounded and the following 
equation is satisfied. 

lim Ile(t)ll = lim Ilvp(t) - ym(t)ll  = 0. (2.5) 
t-m t-m 

3. A Parametrization of 2 D.0.F Compensators 

In this section we introduce a new parametrization of 2 d.0.f. com- 
pensator and show that  t he  parametrization includes disturbance 
estimator. At first in addition to  the factorization of t he  plant P 
in eq.(2.2) we give a doubly coprime factorization of the  plant as 
follows. 

P = N,D;' = f ip- 'Gp,  

N i ,  D p , ~ , , ~ , , . Y p , Y , , ~ ~ , , ~ ~  E RH,"'". 
Using the  doubly coprime factorization, the set of all 2 d.0.f com- 
pensators C = [Cl, Cz] t ha t  stabilize P is given as follows[lO]. 

(3.2) 
U = Clr  - Czy, 
[Ci, Cz] = ( Y p  - Q s p ) - '  [ K ,  xp + Q b p l  

where I<,Q E RH,"''"' is arbitrary '. In the  next step we de- 
rive a new parametrization of 2 d.0.f. compensator by rewriting 
eq.(3.2). Multiplying eq.(3.2) by (Y, - QNp)- '  from the left hand 
side and rearranging the  expression, eq.(3.2) becomes 

(3.3) 

Since the  plant is strictly proper, pp is invertible. Hence Q can be  
substituted by Q?;'?,. Then eq.(3.3) can be rewritten as follows. 

u = (I - y P ) u  + K r  - x,y, + ~ b , ~ ,  + Q N ~ u .  

U = ( I  - Yp ) u  + K r  - X, y p  + Q?; ' ?, bp y, + Qf'Y1 ?, N,u. (3.4) 

Noting tha t  eq.(3.1) is commutable it is shown tha t  t he  following 
equations are  satisfied. 

N p X p +  ppbp = I ,  pPNp = N p Y p .  ( 3 5 )  . 
Applying eq.(3.5) t o  eq.(3.4) for elimination of YPBp and P,i?, 
the  next parametrization with fixed compensator is obtained. (see 
Fig.1) 

U = ( I - Y p ) u - . Y p y p + l i r - Q ? ~ '  { y ,  - Np(Ypu + X , y , ) } .  (3.6) 

T h e  derived control law (3.6) represents 2 d.0.f compensators t ha t  

- 

r - c - q q - 1  Y P  + +  

[Q?;' t 
t ha t  stabilize a plant 

stabilize the plant. In fact calculating transfer functions matrices 
from ( r , d l , d Z )  to  ( u , y p ) ,  we can get 

Fig.1 Parametrization of 2 d.0.f. compensators 

DpIc Dp(1b - Q N p )  - I - D P ( , ~ P  + Q ~ P )  , (3.7) 

Eq.(3.7) shows that the transfer matrix involve two independent 
parameters Q and I<, and I< determines the command response 
and Q determines the  feedback properties. As is shown in the 
discussion above, the the control law (3.6) is equivalent t o  (3.2). In 
fact t he  next theorem is satisfied. 

[ N p K  N p ( Y p  - Q N p )  -Np(LYp + Q D p )  + I  I 

' In general the constraint that det(l', - Q f i p )  # 0 is necessary But 
it can be removed since i t  is always satisfied when the plant is strictly 
proper. 
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Theorem 3.1 The system (3.6) i s  internally stable if and only 
if Q ,  I< E RH,"'" are satisfied. 

Proof: It is clear from the  derivation of eq.(3.7). 

Now we examine features of the parametrization of 2 d.0.f. Multiply 
the following Bezout identity 

(3.8) I;Dp + .Up Np = I 
by D i ' u  from the  right hand side, multiply by N p  from the  left 
hand side and use plant dynamics (2.1). Then 

N p ( l , ~ + , U P y p )  = y p  - NpYpdl +(Np,Yp -I)dz. (3.9) 
This equation represents plant dynamics in terms of .U, and Yp 
which are  solutions of Bezout identity. When there is neither de- 
viation of plant parameters from the  t rue values nor external dis- 
turbances, that  is dl  = d2 = 0 in (3.9), the input of QFF' is 
zero. Hence Q?F1 only works in the  presence of some perturba- 
tions or disturbances, and the  output  of Q?F1 can be  regarded as 
estimated disturbances. These facts show that  compensator Q?;' 
has the  role t o  improve robustness of the control system, and the 
proposed structure includes disturbance estimator. As shown in 
the subsequent section, the compensator QYF1 works a s  a fixed 
compensator in the MRACS proposed in this paper. Therefore we 
can see that  t he  fixed compensator has features which is similar t o  
the compensator Q?;'. 

4. MuItivariable MRACS with the Fixed 
Compensator Based on the Coprime 

Factorization over RH, 

In this section a multivariable MRACS with a fixed compensator 
is constructed based on the  parametrization of 2 d.0.f. compen- 
sator given in t he  previous section. First we construct a n  exact 
model matching (EMM) system. From the transfer function ma- 
trices (3.7), it is clear that  an EMM system can be constructed by 
selecting the  feedforward compensator I\- which satisfies eq.(2.3). 
T h e  compensa_tor Q can be chosen arbitrarily, but  here we substi- 
tute  Q by Q I Y p ,  where Q1 E RH, because it is difficult to derive 
a linear representation of control law including ?L1. Then the  
E M M  control law t o  follow P,w is given by 

U = ( I  - YP)u - X p y p  + lir - Q1 {up - NP(YPu + X,y , , ) }  (4.1) 

In the problem of constructing MRACS, the only a priori  informa- 
tion on the  plant is given in the  assumptions (A.I)-(A.3). Hence 
the identification model must be  derived in order t o  estimate un- 
known parameters, and control law (4.1) must b e  rewritten into the  
form with adjustable parameter. Then the following results have 
the important role with the  derivation (121. 

T h e o r e m  4.1 [I21 & o m  the assumption (A .1 )  the following 
equataon is satisfied. 

lim L[s]P(s) = f. (4.2) 
8 - 0 0  

Then the right coprime factorizatzon of the plant transfer function 
m a t n z  can be ezpnssed i n  terms of L[s]  as follows: 

N p ( 3 )  = L [ s ] - ' ,  D p ( s )  = P(s ) - 'L[ s ] - ' .  (4.3) 

Theorem 4.2 [12] Let the plant mazimal observability indez be 
denoted by v: and let a[s]  = <[sir l o r  some monic stable polynomial 
<[s] of o r d e r  v - 1 + p  (p  2 0). Then there ezists a solution ,Up(s), 
Yp(s) E RHmmXm of the Bezovt identity (3.8) in the form: 

.Y,(s) = E[S]-1Zz[s], Y p ( s )  = E[sl-'Z,[sl. (4.4) 

a,,[z,[s]]  I v - 1,  f9c,[z,[s]] 5 Y + p - 1,  (4.5) 

And the column degree  ofZr[s]  and Zy[s], i = l , . . . , m  aresatisfied 
with 

and the highest column degree coeficient matriz of Z , [ s ]  is I .  

According t o  Theorem 4.1, it follows that  Np and li can be assumed 
to be known from the assumption (A.1). The  compensator Q1 can 
be utilized as a fixed compensator in the  adaptive system because it 
can be chosen arbitrarily irrespective of a pn'on' information on the 
plant. Therefore .Yp and Yp are unknown matrices in the  control 
law (4.1), and unknown parameters t o  be identified are  coefficients 
matrix of Z,[s] and Z,[s] from Theorem 4.2. 

In order t o  identify coefficients of Zz[s] and Z,[s] we shall derive 
an identification model described as a linear relation in terms of 
unknown parameters. T h e  identification model can be derived from 
eq.(3.9). From eq.(3.9) t he  following equation is given. 

~ p ( t )  = N P ( J ) [ ~ P ( S ) ~ ( ~ )  + dYp(s)~p(t)I + d t ) ,  

? ( t )  = -Np(S)Yp(S)dl(t) + ( N p ( s ) - ~ p Y P ( s )  - I ) d ? ( t )  

(4.6) 

where 

(4.7) 

Using above Theorem 4.1 and Theorem 4.2, eq.(4.6) can be rewrit- 

Using results of Theorem 4.2, we can get the next equations. 

Z,[S] - [[s]I = H u - 2 + p ~ u - - 2 + P  + .. .  + Ho, 
Z&] = Ju-ls"-'  + . . . + Jo. (4.9) 

Form a state  variable filter . 

4t)' = [WT(t ) ,WT(t ) ]  (4.10) 

3 1 
~ ( t ) ~ , . . . ,  -u(t)* (4.11) 

€[SI 

- ~ ~ ( t ) ~ ]  1 (4.12) 

tI.1 
and define the unknown parameters matrix as 

8 = [ H u - ~ + p r  '. ' 9  ffo, J u - 1 ,  . '  ~ J O ] .  (4.13) 

Using the above definitions equation (4.8) can be rewritten as 

YP(l) = L14--'1@4t) + u(i)l + d t ) .  (4.14) 

Here we define filtered output error e / ( t )  as follows: 

1 
(4.15) e f ( f )  = -LIS] { ~ p ( t )  - y m ( t ) )  9 

where f[s] is stable polynomial and is chosen in such a manner that  

-,E[.] belong to  RHmmXm, 

fbl 

1 
f I31 

Using eq.(4.14) the filtered output  error (4.15) can be rewritten by 

e , ( t )  = @C(t)  + 4 t )  - YWlf( t )  + V / ( t )  (4.16) 

where 
1 1 

~ m / ( t )  = a L [ s l y m ( t ) >  9 ~ ( t )  --L[sh(t) (4.17) f 1.1 
(4.18) 

Eq.(4.16) gives a linear relation in terms of the  unknown parame- 
ter matrix 0. Therefore we can estimate the  unknown parameter 
matrix 0 using eq.(4.16). In  the next step, we shall give a method 
for the estimation of 0. T h e  estimated parameter of 0 is denoted 
by 0. Then the estimated error model is given as 

P , ( i )  = 6 ( t ) C ( t )  + 4 t )  - Y,/(t). (4.19) 
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From eqs.(4.16),(4.19) an  estimated error is obtained by 

e ( t )  = t? f ( t )  - e f ( t )  
= @(t)C( t )  - t)f(t) (4.20) 

where 

@ ( t )  = e ( t )  - 0. (4.21) 

In order t o  estimate 6(t), t he  following gradient method is used in 
this paper 

(4.22) 

where y, K is positive constants. 

Now we introduce the  control law including the  adjustable param- 
eter 6(t). Using eqs.(4.9),(4.10),(4.13), t he  control law (4.1) can 
be  rewritten into the  following equation. 

u ( t )  = -@w(t) + K ( s ) r ( t )  

- Q i ( s )  { ~ p ( t )  - L[31-' ( 4 t )  + W t ) ) }  . (4.23) 

Replacing unknown parameter 0 by the  adjustable parameter 6(t), 
t he  control law of MRACS can be  obtained as follows: 

(4.24) 
u ( t )  = - 6 ( t ) w ( t )  + IC(s)r(t) 

- ~ 1 ( 3 )  { yp(t) - ~ [ 3 1 - '  ( ~ ( t )  + b( t )w( t ) )}  . 

Thus  MRACS proposed in this paper is established. T h e  next 
theorem shows tha t  t he  proposed multivariable MRACS assures 
the  global stability of t he  system. 

Theorem 4.3 It is assumed that dl(t) and d?(t) belqng to L? r l  
Lm and d?( t )  belong to Loo. ?hen all internal signals i n  
t e m  which consists of the plant (2.1), the reference model (2.3), 
the control law (4.24), the estimation e m r  (4.20) and the adap- 
tive adjusttng law (4.22) are uniformly bounded, and the control 
objective (2.5) a3 achieved f o r  any Q l ( s )  E RHmmX". 

Proof: See Appendix A. 

5. Robust Design of the Fixed Compensator 

I n  this section we obtain a design scheme of the fixed compensator 
t o  reduce the effect of disturbances on the output .  First, we derive 
the  following error equation. 

e ( t )  = YP(t) - Y m ( t )  
= 
+ - N p ( 3 )  ( I  - Ql(S)Np(S) )  @(t)w(l) 

Np(s) ( I  - Q1(s)Np(s)) 1b(3)di(t)_ 
+ {I - N~(s) (-Y,(S) + Q~(S)~;(SP~(S))} d ~ t ) .  

(5.1) 
T h e  second term and the third term of the right hand in eq.(5.1) 
represent t he  effect of the disturbances a t  the control input and 
the effect of measurement noises. This  equation shows that  the 
effect of disturbances on t he  output  can be improved by choosing 
the  fixed compensator. 

Now we consider a way t o  design the  fixed compensator Qi(s )  so 
tha t  the influence of dl(t) and parameter uncertainties could be 
reduced when measurement noises d?(t) is small enough. 

Both the first term and second term of the right hand side in  
eq.( . j . l )  have the following filter 

Np(s)(I - Ql(S)Np(S)). (5.2) 

Hence if the  gain of Np(s)(I - Q1(s)Np(s)) could be reduced, t he  
influence of disturbance d l ( t )  and parametric uncertainties would 
be reduced. 

T h e  design just mentioned can be easily done because N p ( s )  is 
known and it doesn't have zeros in C+. we may design Qi(s) 

(5.3) 

where L is chosen so as t o  be Ql(s) E RHWmXm. 

T h e  H ,  norm of the filter (5.2) is obtained by the  next theorem. 
T h e  theorem is derived by extending Sun's approach [6] to  the 
multivariable case. 

Theorem 
nezt equation i s  satisfied. 

5.1 There e z i s b  a positive constant a such that the 

(5.4) 

From this theorem the H, norm of N p ( s ) ( I  - Q1(s)Np(s)) can 
be  reduced arbitrarily. Therefore it follows tha t  we can reduce the  
influence of disturbances and parametric uncertainties by choosing 
a small 6 in eq.(5.3). 

6. Numerical Examples 

In this section numerical examples of the proposed MRACS are  
shown in order t o  illustrate effectiveness of the proposed method. 
Two-input two-output plant with transfer function 

r s + 1  -2 1 

L - S(3 -  i ) ( 3 + 1 )  J 
. is studied. The  plant is assumed t o  be unknown except for the 

following a priori information. 

1 )  The  highest frequency gain G, is known(Gp = I). 
2) The  maximal observability index v is known(v = 2). 

3 )  The  interactor matrix L [ s ]  is known. 
(L[ s ]  = diag ( 3  + 3,s + 3)). 

T h e  control objective is t o  follow the reference model 
P M ( s )  = L[s]-' and the  boundedness of a l l t h e  signals is assured. 
The  reference signal is rectangular wave with period of 4 and am- 
plitude of 0.5. The  simulation condition in Fig.:! and Fig.3 is given 
in table 1. The  simulation results of MRACS both without and 

dl(t) 2.0sin (O.lt),8 5 t I 13 

s + 2  
-- 

K I 0.001 

Table 1: Simulation conditions 

with fixed compensator are  given in F i g 2  and Fig.3. The  only first 
output  is illustrated in these figures. In Fig.3 the design parameters 
of the fixed compensator is chosen as I; = 1 and 6 = 0.1. 

Fig.3 shows that  the influence of disturbances and parameter UII- 

certainties o n  the plant output  is reduced by the fixed compensator 
in both transient response and steady s t a t e  comparing the results 
of Fig.2 without a fixed compensator. We can see that  the proposed 
method is more robust to  disturbances and parameter uncertainties 
than one without a fix compensator. 
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7. Conclusion 
A. The proof of theorem 4.3 

In this paper we propose a new structure of model reference ad- 
aptive control system with a fixed compensator for a multi-input 
multi-output linear t ime invariant system. T h e  boundedness of 
all signals of the system is proved. T h e  structure is based on  a 
parametrization of stabilizing compensator obtained from 2 d.0.f. 
compensator scheme, and t h e  fixed compensator corresponds t o  
a free parameter specifying feedback properties which can be de- 
signed independently of tracking properties. T h e  development of a 
optimal design method of the  fixed compensator Q1 remains as a 
future research. 
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In order t o  prove Theorem 4.3, the following lemma and corollary 
are necessary. These results are the  extension of the single-input 
single-output case shown in [17] to the  multi-input multi-output 
case. Since the proof of these results can be done in a similar way 
as in the  single-input single-output case, it is omitted. 

L e m m a  A.l Let 0 : R+ + RmX" be deflerentiable, and [et 
w : R+ - R". Let W ( s )  E RH, with a minimal realization 
( A , b , c , d ) ,  i .e.  

Then the following equation is satisfied. 

W ( S )  = cT(,Z - A)- 'b  + d. ('4.1) 

W ( s )  [ @ ( t M t ) l  = @(t )W(s )  [44l + WJS) [ww) [ 4 ) l ]  
( A 4  

where 

bVc(s) = -c*(sI - A)- ' ,  W ~ ( S )  = (SI - A)- 'b .  (A.3) 

Corollary A.l In Lemma A.1 i f & ( t )  E L z ,  i = l , , , . , m ,  then 

Proof of Theorem 4.3: 

Step 1 From eq.(4.21) eq.(4.22) can be rewritten into - 

If a Lyapunov function candidate V ( t )  is chosen as 

V ( t )  = Tr (a  --y-'@(t)*@(t)) 

where Tr(.) represents the trace of matrix. Here noting that the 
second term of t h e  right hand side in eq.(A.7) can be assured to  be 
finite because q, ( t )  belongs to  Lz rl Lm owing t o  d l ,  dz E Lz  n Lm 
in  the assumptions of Theorem 4.3 
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T h e  time derivative V along the  trajectories of eq.(A.6) is given by it follows from eq.(4.20) and Lemma A.l  that  

Hence V ( t )  5 0 and @ ( t )  is uniformly bounded for all t 2 0. There- 
fore we can get 

& ( t ) , & ( t )  E Loo, i = l , . . . , m  (A.9) 

where O i ( t )  and & ( t ) ,  i = 1 , .  . . , m  represent row vectors of o(t) 
and @ ( t )  respectively. 

Further, since 

- l m V ( t )  dt = -V(m) + V ( 0 )  < 00 

it follows tha t  ~ ( t ) / ( h :  + C ( t ) T C ( t ) ) " 2  E Z' or equivalently 

(A.lO) 

r ( t )  = m(t)d-, m( t )  E L'. ( A . l l )  

From eqs.(A.8),(A.lO),(A.11) it can be  concluded that  

i i ( t ) , & ( t )  E L', i = 1,S.s.m. (A.12) 

- Step 2 Since the controller parameter matrix 6(t) is bounded, 
the signals of the system can grow a t  most exponentially. Hence 
they can be assumed t o  belong t o  the  class PCI,,, ,)[15], and we 
can compare the growth rate  of unbounded signals. Let t he  sig- 
nals of t he  system grow in an  unbounded fashion. Now comparing 
the  growth rate  in the signals of t he  system, we can consequently 
conclude tha t  

r 1 

(A.14) 
The  derivation of eqs.(A.13),(A.14) is omitted because it can be  
done in a similar way as one in the  SISO system. 

Step 3 From eqs.(4.18),(4.24) v( t )  becomes - 

where 
X ( t )  = yp(t) - L[s]-'  (6(t)  + u ( t ) )  . (A.16) 

Substituting eq.(A.1.5) into eq.(4.19) we can get 

1 
Here noting that  6(t) is differentiable and - E RH,, we can 

apply Lemma A.l t o  get 
f [SI 

(A.18) 

1 
where (cT, A f , b f )  is a minimal realization of -. 

Since O ; ( t )  E L?, i = 1 , .  . . ,m, we can get from Corollary A.l  

f [SI 

I l 6A t ) l l  5 0 (%; II4r)l l) + IIQ1(3)7i; jWt)ll .  1 (A.19) 

Fit r t he r since 

X ( t )  = - L [ s ] - ' @ ( ! ) w ( t )  + q ( t ) ,  (A.20) 

1 1 
- -Y(t )  - -q( t )  
f ($1 f [SI 

= -L[s]-'s(t) - L[s l - 'q , ( t )  

From (A. l I ) ,  (A.13), (A.14). Corollary A.l, Lemma 2.9 in [15] it 
follows tha t  

Finally from eqs.(A.17), (A.19), (A.21), it follows tha t  

(A.21) 

(A.22) 

1 
Let y,f(t) be  defined by y , ~ ( t )  = -L[s]y,(f). From the  filtered 

output  error (4.15) and estimated error (4.20) it follows tha t  
f [SI 

IlYF.f(t)ll = I I P A f )  - 4 t )  +Ytnf(t)lj 

Noting that  y m ( t )  is bounded, and I,[.]-' is strictly proper, rj(.t) is 
bounded due t o  that  d l ( t )  and d z ( t )  belong t o  L2 n Lm and d 2 ( t )  
belong t o  Loo in eq.(4.14), we can derive that  t he  next relation. 

Therefore since f [ ~ ] - ~ L [ s ]  has no zeros in C+, it follows that  from 
Lemma 3.G.2 in [16] 

And since it is assumed tha t  all signals in the  system grow in un- 
bounded fashion and Ilym/(t)li is bounded, t he  following relation 
is satisfied. 

SUP I lymf(r) l l  =  SUP I l ~p1( r ) l l ) .  (A.26) 
rst r<i 

Finally from (A.13), (A.14), (A.23), (A.25), (A.26). m(t)  E L', 
Lemma 2.9 in [15] it follows that  

(A.27) 

This contradicts eq.(A.13) according t o  which yp(t) and w?(t) grow 
a t  t he  same rate  if they grow in an unbounded fashion. Hence, it 
is concluded that  all signals in the feedback loop are  bounded. 

SUP r_<i Ilw2(.)11 = 0 L t  SUP IlYP(.)ll ) . 

Step 4 
Step 3, 

Since all signals in the feedback loop are  bounded from 

lim IIPr(t)ll = 0 (A.28) 

- 
i-CO 

is derived from (A.22).. The  derivative of m ( t )  in eq.(A.11) is 
bounded noting that  C ( t )  and i ( t )  is bounded from the bound- 
edness of all the signal in the system. Therefore from m(t)  € L' 
and Corollary 2.9 in [15] it follows that  lim Ilm(f)ll = 0. Since 

C ( t )  is bounded, from eq(A.11.) it follows tha t  
1-m 

(A.29)  

Hence from eqs.(4.20),(A.28),(A.29) t he  following equation is ob- 
tained. 

lim I l e j ( t ) l l  = 0. (A.30) 

Since &,(f) is bounded and - L [ s ]  has no zeros in C+, it follows 

1-m 

1 
f [SI 

that  from Lemma 3.6.2 in [IS] eq.(2.5) is satisfied. 
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