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INVESTIGATION OF EFFECTIVENESS OF EDGE ELEMENTS 

N.Takahashi, T.Nakata, K.Fujiwara and T.Imai 

Department of Electrical Engineering, 
Okayama University, Okayama 700, Japan 

Abstruct - The effectiveness of the edge element 1s 
Investigated by comparing systematically the 
number of unknown variables with that of the nodal 
element. It is shown that the edge element is 
superior to the nodal element from the standpoints 
of the computer storage and the CPU time. 

The 3-D periodic boundary condition for the edge 
element Is also derived In order to reduce the 
computer storage and the CPU time. 

L INTRODUCTION 

Recently, the edge element has drawn the attention of 
many researchers[ 1-51. The total number of unknown 
variables which affects the computer storage and the CPU 
time is changed by the kinds of the element (nodal or edge 
element) and the unknown variable (A-@ or T- R method) 
and the volume ratio of the conductor region. 

Though the 3-D periodic boundary condition for the nodal 
element has been examined[6], the periodic boundary 
condition for the edge element has not previously been 
investigated. 

In this paper, two kinds of element and two methods of 
analysis are compared in terms of the number of unknown 
variables and the number of non-zero entries in the coefficient 
matrix. The most suitable element and method of analysis for 
the respective problems are discussed. The periodic boundary 
condition for the edge element is also examined. 

IL COMPARISONOFNUMBEROFUNKNOWNVARIABLESFOR 
OR VARIOUS ELEMENTS AND MEIlIODS OF ANALYSIS 

Only brick elements are used for the comparison. It is 
assumed that the number of elements is so large that the 
decrease of unknown variables by applying boundary 
conditions can be neglected. The gauge condition is 
ignorcd[3]. 

A.  Number of Unknown Variables and Non-zero Entries 

1 )  Nodal element: Since the number of nodes in one nodal 
element is equal to 8 and the number of elements which share 
one node is equal to 8 as shown in Fig.l(a), the average 
number of nodes per element is equal to unity (=8/8) when 
the number of elements is extremely luge. Therefore, the 
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relationship between the total number, ne, of the elements 
and the total number, nt, of the nodes can be represented as 
follows: 

nt = ne (1) 

In the A-@ method using the nodal element, 4 kinds of 
unknown variables (@ and three components of A) are defined 
per node in the conductor region Rj and three kinds of 
unknown variables (three components of A) in the air region 
Ro as shown in Table I. Therefore, the total number, 
nu(noda1, A-@), of unknown variables can be expressed as 

nu(noda1,A-@) = 4 ant  + 3 ( 1 - a ) nt 

where a is the ratio of the number of elements in the 
conductor region Rj to that of the whole region (Rj+Ro). 
Since the number of nodes related to a node i is equal to 27 

= ( a  + 3 ) ne (2) 

( a )  nodalelement ( b edge element 

Fig. 1 Elements related io node i or edge i 

Table I Numbers of unknown variables and non-zero entries 

nodal 

I I 

( ) : number of variables defined on node or edge 
ne : number of total elements 
a : volume ratio of conductor region to whole region 
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as shown in Fig.l(a), the number of unknown variables 
related to the node i is 27x4 in Rj and 27x3 in Ro. As a 
result, the total number, nz(noda1. A-$), of non-zero entries 
can be given by 

nz(noda1,A-$) = 4 a n t X 27 X 4 
+ 3 ( 1  -a)ntX 27 X3  

= 27( 7 a + 9 )ne (3) 

In the T-R method, four kinds of unknown variables (R 
and three components of T) are defined per node in Rj and 
one unknown variable (R) in Ro as shown in Table I. 
Therefore, the total number, nu(noda1, T-R), of unknown 
variables and the total number, nz(nodal, T- a) of non-zero 
entries for the T-R method can be given by 

nu(noda1, T - IR) = 4  a n t + 27 + ( 1 - a )n tX27  

nz(nodal, T - R) = 4 a n tX27X4 + (1 - a)nt X27 
= ( 3 a + l ) n e  (4) 

= 27 ( 15 a + 1 )ne (5)  

2) Edge element: Since the number of edges in one element 
is equal to 12 and the number of elements which share one 
edge is equal to 4 as shown in Fig.l(b), the average number 
of edges per element is equal to 3(=12/4). Therefore, the 
relationship between the total number, ne, of the elements 
and the total number, nh, of the edges can be represented as 
follows: 

nh = 3ne (6) 
In the A-@ method using the edge element, @ can be set at 

zero[3]. The only one component of A is defined along each 
edge. For example, only the y-component Ayi is defined 
along the edge i as shown in Fig.l(b). Therefore, the total 
number, nu(edge, A), of unknown variables can be expressed 
as: 

(7) 
Since the number of edges related to an edge i is equal to 33 
as shown in Fig.l(b), the total number, nz(edge,A), of non- 
zero entries can be given by 

nu (edge, A) = nh = 3ne 

nz (edge , A) = nu (edge , A) X 33 = 99ne (8) 
In the T-R method, one component of T is defined along 

each edge in Rj, and R is defined on each node in (Rj+Ro). 
Therefore, the total number, nu(edge, T- R), of unknown 
variables is given by 

nu (edge, T - R) = a nh + a nt + (1 - a)  nt 
= (3 a + 1) ne (9) 

The numbers of edges and nodes relatcd to the edge i in Rj in 
Fig.l(b) are 33 and 18 respectively. The numbers of edges 
and nodes related to the node i in Rj in Fig.l(a) are equal to 
54 and 27 respectively. The number of nodes rclatcd to the 
node i in Ro in Fig.l(a) is equal to 27. Therefore, the total 
number, nz (edge, T-R), of non-zero entries for the T-R 
method can be given by 

nz(edge , T - R) = a nhX(33 + 18) 
+ a  ntX(54 + 27)+ (1 - a)ntX27 

= 9 (23 a + 3) ne (10) 

B .  Comparisons 

Fig.2(a) shows the effects of the ratio a on the total 
number, nu/ne. of unknown variables per element. The figure 
can be obtained from (2), (4), (7) and (9). When a is nearly 
equal to zero (the conductor region is very small in the 
analyzed region), nu/ne for the T-R method is about 1/3 of 
nu/ne for the A-$ method. When a is greater than 0.7, the A 
method using the edge element has the smallest value of 
nu/ne. Fig.2(b) shows the effects of the ratio a on the total 
number, nz/ne, of non-zero entries per element. The figure 
can be obtained from (3), (5), (8) and (10). ndne of the T-R 
method is smaller than that of the A-$ method using the 
nodal element. nz/ne for the edge element is smaller than that 
for the nodal element. When a is greater than 0.4, ndne for 
the A method using the edge element is the smallest of all. 

In ordcr to verify the features illustrated in Fig.2, the 
numbers of unknown variables and non-zero entries are 
examined using a real model. Fig.3 shows a model proposed 
by the IEE of Japan. The features of the model are described 
in the reference[7]. An ac current of which the effective value 
is lOOOAT (frequency: 50Hz) is applied. The ratio a for the 
model without hole is equal to 0.18 and that with hole is 

M 
‘G 

0 0.2 0.4 0 . 6  0 . 8  1.0 
ratio a 

(a) unknown variables 

ratio a 
(b) non-zero entries 

IEEJ modcl 
(Fig.3) 1 0 : nodal , A - @ 

A : cdgc , A 
0 :  nodal’,T- Q 
A : edge , T -  R 

Fig.2 Effects of ratio a on number of unknown variables 
and number of non-zero entries. 
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item 

number of elements 

ferrite core 4 

A - $  1 T - R  I A - $  I T - R  
nodal I edge ]nodal I edge Jnodal I edge lnodall edge 

14400 

X 

computer storage (MB) 
number of iterations 
of ICCG melhod 

aluminum plate Y 
(o= 3 . 2  15 x 1 O7 S /m ) I p  

I 

72.2 28.4 30.7 19.4 70.5 28.4 30.7 19.4 

1306 513 172 192 1264 582 1141 327 

hole 

Fig.3 Analyzed model 
(with hole). 

0.14. The A-$ and T-R methods with nodal and edge 
elements are applied. 1/8 region is analyzed. 

The computer storage, the CPU time, etc. are shown in 
Table 11. The number of non-zero entries for the T-R method 
is extremely decreased compared with that for the A-@ 
method. The CPU times for the A-$ and T-R methods using 
the edge element are about 1/6 and 1/2 of those using the 
nodal element in the case without hole. As an example, the 
number nu/ne, of unknown variables per element and the 
number, nz/ne, of non-zero entries per element for a=0.18 
(without hole) are illustrated in Fig.2. Numbers nu/ne and 
nz/ne for this model are not the same as the values described 
by (2)-(5) and (7)-(lo), because the boundary condition is 
applied, and the number of elements is not extremely large. 
However, the tendency of them is similar to Fig.2. From the 
standpoint of the CPU time, the T-R method with the edge 
element is favorable for this model (a=0.14,0.18). 

Table II Discretization data and CPU time 
I without hole I with hole 

number of nodes I 16275 
number of unknowns 1434 1714 10601228441224 1214288514 1060]22844122G2 

I I I I 

CPU time (s) 16242 I 947 I 533 I 290 15870 I 1069 12001 I 442 

Computer used : NEC supercomputer SX-1E 

convergence criterion of ICCG method : 10-7 
(maximum speed : 285 MFLOPS) 

DL PERIODIC BOUNDARY CONDJTION 

The periodic boundary condition for the edge element is 
investigated by examining the distributions of flux and 
magnetic vector potential of the model shown in Fig4 which 

is the problem 13 of the TEAM workshop[8]. The coil is 
excited by dc current of 1000AT. For simplicity, the 
magnetic characteristic of the steel is assumed to be linear 
(ps=lOOO). The model is subdivided into 847 first order brick 
edge elements or brick nodal elements. 

Fig.5 shows the flux density vectors BP and BQ and 
magnetic vector potentials AP and AQ at the corresponding 
points P and Q on the planes 0-p' and 0-q' (y-z plane) on 
which the periodic condition is satisfied. BP and BQ satisfy 
the following conditions [5]: 

!,center plate (steel) 

channtl  (steel) coil(dc 1OOOAT) 

(a) front view 

0 
2 

(b) plan view 

Fig. 4 3-D non-linear magnetostatic model. 

(a) front view 

Y 

X 

(b) plan view 

Fig.5 Relationship between flux density and 
potential vectors for periodic condition. 
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BPX = - BQX 
BPY = - BQY 
BPZ = - BQY 

The vector potential A is perpendicular to the flux density B 
on the periodic boundaries[5] as shown in FigS. Then, the 
relationship between AP and AQ is represented by the 
following equations: 

APx = - AQX 
APy = - AQY 
APZ = - AQY 

I )  Edge element: Since only components parallcl to the 
edges are defined in the edge element[ 11, (14) is ignored on 
the periodic boundaries in the case of Fig.4. 

Fig.6 shows the spatial distribution of average flux 
density in the steel plate. The result which is obtained by 
analyzing the 1/4 region with the periodic boundary condition 
coincides with the result which is obtained by analyzing the 
1/2 region without the periodic boundary condition. 
Therefore, we can conclude that one condition of (14)-( 16) 
can be ignored for the edge element. 

2 )  Nodal element: In the nodal element, all of threc 
conditions (( 14)-( 16)) mentioned above can be satisfied on the 
periodic boundaries[5]. Even in the nodal element, however, 
it can be proved that only the components parallel to the 
periodic boundaries are sufficient to satisfy the above- 
mentioned conditions. The comparison between the flux 
distribution which is obtained using all of three conditions 
and that which is obtained ignoring one condition is also 
shown in Fig.6. As both results using the nodal element are 
the same, we can conclude that one condition of (14)-(16) can 
be ignored even for the nodal element. It is better, howevcr, 

Z 

- I  

A B C D E F G H I  
position 

0 : with periodic boundary 
m : without periodic boundary } edge 
o : three components 

: only tangential components } nodal element 

Fig.6 Distributions of flux densities 
along stccl plates. 

to impose three conditions in order to reduce the number of 
unknown variables. 

The results of edge element are different from those of 
nodal element due to the difference of the accuracy of both 
types of element[9]. 

N. CONCLUSIONS 

The results obtained can be summarized as follows: 
(1) When the ratio a of the number of elements in the 

conductor region to that of the whole region is small, the 
number, nz. of non-zero entries, which affects the CPU 
time, for the T-SZ method using the edge element is the 
smallest of all. When a is large, nz for the A method 
using the edge element is the smallest. 

(2) The periodic boundary condition can also be used for the 
edge element in order to reduce the analyzed region. 
The reason why only two components of A parallcl to 

the periodic boundary are sufficient for both nodal and edge 
elcments should be examined in future. 
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