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Abslrucf- An optimal finite-dimensional modeling technique 
is presented for a standard class of distributed parameter 
sj stems for heat and diffusion equations. A finite-dimensional 
nominal model with minimum error bounds in frequency 
domain is established for spectral sj stems with partially known 
eigenvalues and eigenfunctions. The result is derived from a 
completely characterized geometric figure upon complex plane, 
of all the frequency responses of the systems that have (i) a finite 
number of given time constants Tt’s and modal coefficients kt’s, 
(ii) an upper bound p to the infinite sum of the absolute values 
of all the modal coefficients b,’s, (iii) an upper bound T to 
the unknown Tz’s, and (iv) a given dc gain G(0). Discussions 
are made on how each parameter mentioned above makes 
contribution to bounding error or uncertainty, and we stress 
that steady state analysis for dc input is used effectively in 
reduced order modeling and bounding errors. The feasibility 
of the presented scheme is demonstrated by a simple example 
of heat conduction in ideal copper rod. 

I. INTRODUCTION 
For controller design synthesis in view of robust control 

theory, it is necessary to specify a nominal model describing 
essential plant dynamics and also bounds of magnitudes of 
the uncertainty [l]. A lot of efforts have been made to 
establish methodology of reduced order modeling and error 
bounding of spatially distributed systems [2]. A distributed 
parameter system described by a partial differential equation 
is of infinite-dimensional, and, in fact, an appropriate sort 
of finite-dimensional approximation is essential to achieve 
effective controller design synthesis. In most practical cases, 
just partial knowledge or incomplete data for a plant is 
available or can be made use of. How to obtain an effective 
model with error bound in such a situation is one of the 
fundamental issues on control of spatially distributed plant. 
An infinite number of parameters in the distributed parameter 
systems are hardly exactly known ; often at best, a few of 
relatively accurate parameters can be evaluated. 

Erickson et al. [3] proposed an error bounding scheme 
in such a situation and developed a technique for modal 
truncation of spectral systems including parabolic and hyper- 
bolic distributed parameter systems. Their results have been 
extended in [4] using dc gain, and new error bounds for a 
nominal model with feedthrough term have been developed. 
In view of relationship between error bound and information 
about the plant, a notion of feasible set of systems has been 
introduced for a class of hyperbolic distributed parameter 
systems, and least upper bounds of errors are established 
by evaluating the norm of the error as the size of a ball 

covering the set [5]. A feasible set of frequency responses has 
been explicitly characterized as a geometric figure in complex 
plane [6], trying to keep away from possible conservatisms 
caused by overestimating uncertainty. 

For heat conduction and diffusion systems, dc gain infor- 
mation seems to have much more advantages rather than for 
flexible vibrating systems. Many researchers have attacked 
to improve the precision of reduced order models using such 
dc gain information thus far [7], but few discussions have 
ever been focused on the effectiveness of using dc gain in 
high frequency range. In this paper, we will discuss, with 
the spirit in [6], how steady state analysis for dc input play 
important roles in modeling and error bounding. 

This paper is organized as follows. In section 2, systems 
are formulated as an infinite series of transfer functions, 
and a feasible set of systems is defined by using certain 
limited number of conditions. In the case where dc gain is 
not used, the feasible frequency responses are proved to be 
geometrically characterized by two arcs. Section 3 describes 
that the set for dc gain case is depicted as the convex hull 
of four arcs. A feature of the results is that it provides 
us the nominal model with the least additive error bound, 
and both of them are explicitly described by simple real 
rational form of transfer functions. In section 4, error bounds 
for three candidate nominal models are compared. Further 
bounds using another condition are discussed to diminish 
them to zero as frequency goes to infinity. For a spatially 
one-dimensional heat equation, we show in section 5 the 
way how the parameters necessary for error bounding are 
obtained using numerical integration. The feasibility of the 
presented scheme is demonstrated by a simple example of 
heat conduction of ideal copper rod. 
Notation: By ch(A) we denote a convex hull of a set A 
on a complex plane, that is, a minimum convex set which 
contains A. For a vector b E C and a set A c C ,  the set 
{c E Clc = a + b, a E A} is just denoted by A + b. 

11. SYSTEM FORMULATION A N D  PRELIMINARIES 

A. A feasible set of systems 

It is well known that a transfer function of a linear 
time-invariant system corresponding to heat conduction and 
diffusion, can be written as an infinite series of first order 
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lag modes: Theorem 1. For each frequcnecy w, the set ' P i 3 T ( j ~ )  is 
characterized as follows: 

i=l P i v T ( j ~ )  = ch [{*.Ho(jw)lO < 8 5 T}]  ( 8 )  

(9) 

00 

(1) ki 
G(s )  = c 

where where Ti > 0 and TI 2 T2 2 ... -t 0 and 
1 He(s)  = - 2 l k i l s  p (2) i + e i  

i= 1 

for some given p > 0. Here Ti is a time constant and ki is 
a modal coefficient for each i-th mode. We assume that the 
first C pairs of ( k i ,  Ti) for i = 1 , .  . . , C, are given but all the 
rest (for i = C + 1 , .  . . ,) unknown. 

Furthermore, let us assume it is verified that 

O < T i s T  for i > C  (3) 

for some given T 5 Te. 
Denote the e-th partial sum of G(s),  the known part, by 

e 
ki G ~ ( s )  := ~ 

i= 1 1 +Tis (4) 

and by Pi" the set of all the systems written as equation (1) 
that have (i) a finite number of given time constants Ti's and 
modal coefficients ki's, (ii) an upper bound p to the infinite 
sum of the absolute values of all the modal coefficients ki's 
as in (2), and (iii) an upper bound T to the unknown Ti's as 
in (3) ; that is, 

00 

Pi" := {G(s)  = E-l(ki ,Ti)  ki fixed fo r i  5 l 
1 +Tis i=l 

j=l 

which we call a feasible set. We denote the set of all the 
frequency responses corresponding to the elements in the 
feasible set PiaT by Pi9T(jw).  

B. Feasible frequency responses 

In this subsection, we will characterize ' P i > T ( j w ) ,  the set 
of all the possible frequency responses G ( j w )  as a geometric 
figure on the complex plane, at any specified frequency w. 

Since 

where e 
:= p - lk.jl, (7) 

j=1 

-(e),T 
the set Pi'T(jw) is a parallel translation of Pop 
Ge(jw), that is, 

p,">'(jw) = p ! ( V  ( 5 ~ )  + Ge(jw). 

( j w )  by 

So it is enough to investigate P:'(jw). 

This implies that the set Pf ' )3T( jw)  is depicted on the 
complex plane as the convex hull of the two arcs Al := 
{p(?Ho(jw),O < 8 5 T }  and A2 := {-p(')Ho(jw),O < 
8 5 T}. 

Xn other words, if the bound p to the infinite series of 
the absolute of ki and an upper bound T to unknown time 
constants T i s  are given, then the feasible set is depicted by 
just using two arcs. 
Based on the above results, the next corollary is immediate. 

Corollary 1. For each frequency w, a complex number 
Gn(jw) that minimizes 

SUP IG(jw) - Gn (U)  I (10) 
GEPf'T 

is no other than Ge(jw), and 

We can see that the least upper error bound under the 
information of p, T ,  and up to e-th eigenstructures, is proved 
to be a constant $e) that is independent of frequency w. 

111. MAIN RESULTS 

A. Dc gain informtion 

consider hereafter the case where also (iv) the dc gain 
In addition to condition (i)-(iii) in the previous section, we 

CO 

d : = G ( O ) = C k i  
i=l 

is given. We are to establish how this dc gain information 
shrinks the feasible set. 

The feasible set corresponding to this case is denoted by 
piiTsd := P ~ P . ~  n ~d where v d  := {G(s)~G(o)  = d).  
Furthermore we define 

e 
$e) := d - ki = G(0) - Ge(O), (13) 

i=l 

and we can see it is enough to characterize P:'v'6(jw) for 

given T ,  U, and b since Pi>T7d(jw) = P; ' ' ( j w )  + 
Ge(jw) similarly as in the previous section. 

The next theorem is the main result of the paper and it 
provides a geometric characterization of possible frequency 
responses P:z116 ( j w )  on complex plane for any user-specified 
frequency. 
Theorem 2. For any frequency w, ' P i , T , d ( j ~ )  coincide with 

- ( E )  ;i(O 
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the convex hull of the union of the following four arcs of 
circle segments 

that is, P:3T .d ( j~ )  = ch [Al, n Alb n A2, n A26]. 
Proof See the next subsection. 

From Theorem 2, by considering two most distant points 
in P['T'd( jw) ,  we can easily see that a disk with minimum 
radius containing ( j w )  is characterized by 

the center: - 1 + v ) , and '( 2 l + j w T  

the radius: - 

The circle of the disk boundary is tangent to P:>T.d ( j~ ) ,  
and the tangent points are 

Then we can easily see a result for dc gain case corre- 
sponding to Theorem 1 is stated as follows: 
Corollary 2. For each frequency w,  a complex number 
G,(w) that minimizes supGEpf.~." IG(jw) - G,(w)I is 

and the minimum is given by 

B. A sketch of proof of Theorein 2 
The shape of the feasible frequency responses for fixed 

time constants Ti's becomes a polygon. It is enough to iden- 
tify the extreme points of possible polygons to characterize 
the feasible set. 

We can show the problem is reduced to the inclusion by 
two terms, as follows. 
Lemma 1. The following relation holds true. 

PL 'T 'd ( j~ )  = ch [ S [ ' T ' d ( j ~ ) ]  (16) 

where 

S [ ' T ' d ( j W )  := {kuHT, ( j w )  + kbHTb(jW)I 

0 < Tb I Tu I T ,  k ,  + kb = d ,  lkul + lkbl = p}(17) 

S p ' T ' d ( j ~ )  is a set of candidate extreme points for 

Our approach is to enumerate all the candidate extreme 
points that are on the interior or boundary of the set, and 
then the convex hull of the extreme points coincides with 
the feasible set. 

On the other hand, to evaluate the convex hull, we see 
that every candidate extreme points move along circles if 
time constants are moved in the interval. The convex hull in 
(8) is characterized by circle segments as shown next 
Lemma 2. S [ l T > d ( j ~ )  is met the following relations. 

p,",4q+J). 

s;,Td(jW> = U Sop,ed ( j w )  (18) 
O<e<T 

where 

S [ * e ' d ( j W )  := {k,He(jw) + kbHTb(jW)I 

0 < T b  I 0 ,  ku + kb = 4 /&I + lkbl =(H> 
Lemma 3. S:3e'd(jw) is given by the convex hull of the 
union of the following two arcs: 

Proof is straightforward using above preparation. 

Iv. APPLICATION TO MODEL SELECTION AND ERROR 
BOUNDING 

A. Addih've uncertainty model 

uncertainty model 
Corollary 2 in the previous section implies that the additive 

{G(s) = Gn(s) + w(s)A(s)l 
A(s) E RHm, llAllm I 1)  (20) 

with the nominal 

and uncertainty weight 

T s  
TY(s) = - (-) 

2 l + T s  

has the minimum magnitudes of weight IW(jw) l  for every 
frequency w,  over a class of all the additive uncertainty 
models containing the feasible set P p T ' d ( j ~ ) .  

A candidate for finite-dimensional approximating model 
with additive uncertainty under the conditions (i)-(iv), is 
immediate from Corollary 2. Other candidates and their 
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bounding results are presented in the next subsection, and 
based on the result we can select an uncertainty model and 
then proceed to design a controller by linear robust control 
theory. 

B. Nominal models and error bounds 

We have to often take into account the order and relative 
degree for choosing a nominal model. Since our result here 
characterizes the feasible set in frequency domain, the least 
upper bounds for the error between the system.and any 
specified nominal model is readily computable at any user- 
specified frequencies. 

For a nominal model Gc(s) + G(0) - Ge(O), we have had 
the following error bound [4]: 

wT 
J" IG( jw)  - (Ge(jw) + G(0) - Ge(0))l IF(') . 

(23) 
But, in fact, by utilizing the geometric shape from Theorem 2 
we have immediately the following: 
Corollary 3. For each frequency w, 

SUP 
GEP:.T.d 

IG(ju) - (Ge(jw) + G(O) - Ge(o)>l 

It is often required for a design model that, for example, the 
transfer function have no feedthrough term and therefore be 
strictly proper. Choosing a nominal model that meets such a 
condition yields a bounding result as in the following: 
Corollary 4. Let us take a nominal model as 

Then for each frequency w, 

A user may feel intuitively that something goes wrong 
because it is not along a postulate that the error should con- 
verge to zero as frequency tends to large. We can easily see 
that it is not possible unless other information is introduced. 
Suppose we consider an additional condition (v); for a given 
a>O 

M 

i=l 

is verified'. 

'For evaluating such a U, see the later sections. 

Then we define another feasible set e,"" as follows: 
00 

{ G ( s ) = E L l ( k i , T i )  i= l  1 + Tis f i x e d f o r i s l  

00 

~ l c j / ~ j l  5 a ; ~  < Tj <_ T (j > e> 
j = 1  

Theorem 3. For each frequency w, the feasible frequency 
responses for Qg is represented as 

-V),I. 

( j w )  = ch [{(k/e)lle(jw)lIkl I #),o < e 5 T}]  &(",T 

(29) 
where e 

j=1 

That is, 

0 5 T }  and their convex hull. 
Corollary 5. Let us take 

Qi(6)7T(ju) is depicted by two arcs (1) 
{(Tj(p)8)He(jw),0 < 8 I T }  and ( 2 )  { - (Tce )e )H~( ju>,O < 

v. REDUCED ORDER MODELING OF PARABOLIC 
DISTRIBUTED PARAMETER SYSTEMS 

A. One-dimensional heat conduction problem 
It may be beneficial to grasp some ideas by seeing a 

simple example as follows. Let us consider a temperature 
distribution v( t ,  e )  at time t > 0 on one-dimensional spatial 
coordinate 5 E [0,1], which is governed by a partial differ- 
ential equation 

with boundary conditions 

v(t, 1) = v(t,O) = 0 (34) 

and measurement output 
1 

P(t> = 1 c ( 5 ) 4 t ,  w 5  (35) 

where f (E)  and p ( [ )  are smooth nonnegative functions, 
and b(<) and c([) are smooth non-negative functions that 
describe spatial heating and temperature measurement effect, 
respectively. Here u(t)  represents the heater input power and 
y ( t )  the sensor output at time t. 
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A self-adjoint closed operator d is defined on L2(0, 1) as 1/e for 16 - p (  5 ~ / 2  
= { 0 otherwise 

d2V Table 1 Modal parameters and intermediate computed upper bounds to xi lki/TiI (see appendix) . U E D(d) = {U E L2(0, 1) : - E L2(0 ,  I), at2 
dV d V  
-(1) = -(0) = 0) 
a< % (37) 

and an eigenvalue X i  and a corresponding eigenfunction q5i 

are defined by the relation 

Adi = X i 4 t  (38) 

where 1x11 5 IX2J I-.. . Then wedef ineB:R-+L2(0 ,1 ) ,  
and C : L2(0, 1) + R as 

Bu(t) = b(<)u(t), CV = 6' c(S)dE)dE 

I' 

(39) 

and an adjoint operator B* : L2(0, 1) -+ R of B is 
represented as 

B*v = b(E)v(<)dJ. (40) 

If we define bi := B*di,  ci := C&, then the transfer function 
of the system from U to y is written as follows: 

M 

(41) 
ci bi - 

s - xi 
G(s) = C ( s 1 -  d)-lB = 

i = l  

Note that the system is of infinite-dimensional. For spa- 
tially varying case it requires numerical analysis such as 
finite element methods to evaluate G, bi, and Xi. Generally, 
highly accurate values are hardly computable for higher 
order i. It is well-known that for a self-adjoint operator 
A, eigenparameter bounds are numerically available utilizing 
variational principles [8,9]. 

In such a situation, our task is to develop a modeling 
technique to yield a finite-dimensional approximating model 
and also error bounds that serve efficient controller design. 

B. Example 

We consider an example for modeling of heat conduc- 
tion of a copper rod. Dynamics of temperature distribution 
u(f ,  E )  [K] is described as 

vt(t, E )  = a2v& 0 - P 4 t ,  E )  + b(E)u(t) 

(0 < e < I ) ,  

v(t,O) = v( t ,  1) = 0, 

(42.a) 

(42.b) 

(42.c) 

Furthermore 
r )  for E E [0,4 
0 otherwise, 

. . . . .~ 

0 . 2  ('1 . . . . 

Fig. I .  
( w : IO-" - 10" radsec). 

ne feasible sets (solid) with and without (dashed) dc information 

We suppose C = 6 and just six eigenstructures are known: 

p = 0.591, p(6 )  = 0.541, d6) = 4.448 x lo-'. The shape of 
feasible set at frequency w = 1.0 x radsec is depicted 
in Figure 2. The frequency characteristic of the radii of 
the feasible set with and without dc gain are compared in 
Figure 3. Error bounds of the proposed nominal model in 
Corollary 1 through 5 are also plotted in the same figure. 

VI. CONCLUSION 
In this paper we presented a reduced order modeling 

of uncertainty for heat and diffusion equations. Here we 
presented a method to characterize uncertainty as a feasible 
set in the frequency domain. We showed that the shape of 
the bounded set of all the complex numbers of frequency 
responses of the systems that satisfy the condition is depicted 
by several circle segments. 

Theoretical limitation was clarified about the minimum 
additive uncertainty of any nominal models under the in- 
formation given. The set theoretic characterization enables 
us to develop new results that the information of dc gain of 
the system will effectively shrink the size of the feasible set. 

Ti = 319.9~, T = T2 = 272.2~, 51 = 0.04974, d = 0.0945, 
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APPENDIX 
We mentioned p > 0 such that E, lkzl I p and (T > 0 

such that lkz/T21 5 U. Let us see here to evaluate upper 
bounds to E, lkzT8-Yl (y = 0,1/2,1) just using b,b, c , l  
where -d8 = b,and -dz = c. Since for 0 5 b 5 1 - 7, 

,~‘”T++ld‘~bl .,U n 

\ (7,s E [O,  11) 

I 0“ 

v according to the Holder’s inequality. On the other hand, The 1 Parsival’s equality says: 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

10.’ 10-1 IO“ 101 
10-31 ‘“.a 

10.’ 

Z -xi 

r m r r  IW,I 

Fig. 2. Comparison between sizes of feasible sets and the bound The right hand sides are computationally tractable. A possible 
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choice is to take 

p = min{uo,6Ib = O,1/2,1} 

0 = 01,o 
6 

Upper bounds are derived as in Table A. 
Note that d = G(0) can be evaluated as follows: 

Table A bounds to xi Iki’Tr’I (y = 0,1/2,1). 

upper bound 1 I r I s I I  
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