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Abstract

A design method of multivariable model reference ad-
aptive control system (MRACS) using coprime fac-
torization approach is proposed. First, a relation be-
tween the coprime factorization over RH, and the
interactor matrix is derived. Using this relation, a
method for design of multivariable MRACS over the
ring of proper stable rational functions is obtained.
Since the proposed method is based on the coprime
factorization approach, the control structure in this
paper is more simple. It is shown that the control
structure of multivariable MRACS by other authors
is included in the structure proposed in this paper.
A robust MRAC scheme which achieves asymptoti-
cally rejection of unmeasurable disturbance is derived
also.

1. Introduction

The multivariable model reference adaptive control
systems have been extensively studied by many the-
orists and practitioners, and has been established as
one of the mostly used design methods in the field of
control. The solution of the MRACS problem con-
sists of two parts: the algebraic part deals with the
controller structure with which given plant matches
the reference model exactly. And, the other is the an-
alytic part which deals with the manner the control
parameters are to be adjusted, i.e. with the adap-
tive adjusting law. In the algebraic part the model
matching design problem is simply and straightfor-
wardly solved by the coprime factorization in the set
of proper stable rational functions. In the multivari-
able MRAC case the issue of the parametrization of
the controller becomes a dominant problem which is
solved by using the interactor matrix. In order to
apply the general solution, it is necessary to bridge
between coprime factorization and the interactor ma-
trix. The contributions of this paper are to give such
a relation and to apply the model matching scheme
based on the coprime factorization to a MRACS de-
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sign.

Since Wolovich and Falb [1] developed the concept
of interactor it has had an important role in multi-
variable adaptive control. Since then a considerable
amount of important contributions to the control lit-
erature has done. Elliott and Wolovich [9] proposed
a design method of multivariable MRACS based on
the exact model matching (EMM) approach, where
the prior knowledge of the interactor was explicit.
In their method factorization of the plant over po-
lynomial ring was used for the construction of EMM.
Later, they extended the method [10] to the case that
only the order of the interactor was e priori known.
In [3] the previous results on multivariable discrete-
time adaptive control were generalized for a linear
systems with a stable inverse. However, relations to
coprime factorization have not been stated explicitly.
In [15] is given an algorithm for a discrete-time robust
regulation system structure described in the ring of
proper stable rational functions, but the MRACS de-
sign problem was not discussed there. The problem
of designing robust multivariable control systems was
further examined in [6], but they considered only a
plant factored over polynomial ring.

The factorization approach allows to parametrize
all stabilizing compensators for given plant and, more-
over, the solution of model matching problem can be
made more straightforward. Therefore, by using the
factorization approach over a ring of proper stable
rational functions in the algebraic part of MRACS
design, the synthesis and analysis can be expected to
be more simple and clear.

In this paper, first, the a priori information about
the plant is specified. Then an EMM control struc-
ture based on factorization over proper stable rational
functions is proposed. The control parameters needed
to be identified in order to achieve the EMM control
law are established. Further relations between the in-
teractor matrix and the coprime factorization of the
plant are derived and solution of the Bezout identity
in the ring of rational functions is derived. Next, the
EMM control law, described in terms of the adjust-



ing parameters and the known interactor matrix, is
given. Finally, this paper shows that a design method
of robust multivariable MRACS in presence of deter-
ministic disturbances can be casily derived. Based
on the factorization approach, the structure is more
clear and simple than Elliot and Wolovich’s one [9}.

2. Preliminary Assumptions

The following notations from [12] are used. R" de-
notes an n dimensional Euclidean space. RH, rep-
resents the ring of proper stable rational functions in
indetermined variable s with coefficients in the ficld
of the real numbers (R). R(s) denotes the field of ra-
tional functions in s with real coefficients. The ring
of polynomials with real coefficients is given by R[s].
For the size of given matrix, the notations RH P>,
R(s)"!, and R[s]"! mean that the elements of the
(p x 1) matrix are from RH,, R(8), or R[s] respec-
tively. Further, 8ci[-] and 8,;[-] express the column
and raw degrees of given polynomial matrix, and [-]¢
(['|r) is for the highest column (raw) degree coeffi-
cient matrix notation.

Consider an unknown linear, time-invariant, finite
dimensional, plant with m-inputs and m-outputs char-
acterized by a transfer matrix T'(s). It is assumed
that T'(s) is full rank and strictly proper, that is, the
relative degree of each transfer function component is
positive. T(s) can always be factored as:

y(t) = T(s)u(t), T(s) = R[s]P[s]™}
Ple]—1 R (1)
= Pls|*Rls,

where R[s], P[s] € R[s]™ "™ are relatively right prime,

and P[s] is column proper. Also R[s}], P[s] € R[s]™*™

are relatively left prime and P{s] is raw proper ma-

trix [8). u(t), y{t) € R™ are the plant input and
output vectors respectively.

The transfer matrix of the reference model, denoted

as Tyy(s), is strictly proper and asymptotically stable

(€)= Tu () Tute) = BulsPule
2)
where Rps[s], Py[s] € R[s]™™™ are relatively right
prime. v(t), yar(t) € R™, piecewise continuous and
uniformly bounded, are the model input and output
vectors respectively.
The next lemma gives an extension to the interac-
tor matrix definition.

Lemma 1 [11] One expression of the interactor ma-
triz of a nonsingular plant (1) is the nonsingular m x
m, lower left triangular polynomial matriz L[s] of the
form

L[s] = T[s]diag[ri(s)], (3)

t=1,...,m
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where r;(s) is a polynomial and

1 0 -0
E[S] _ 0'21:(3) j_ te 0

) 1

where 0;(s) is a polynomial (or is zero), such that

slgl;) Lis|IT(s) =G (4)

with G nonsingular.

The following three assumptions are made for the
plant {9]:

(A1) det(R[s]) is asymptotically stable polynomial;

(A2) The system maximum observability index is
known;

(A3) The interactor matrix L[s] of the form (3) is
known.

The control problem is to determine a differentiator
free controller which generates a bounded control in-
put signal vector, so that all the signals in the closed
loop system remain bounded and the following equa-
tion is satisfied:

lim e(t) = lim (y(¢) - yar(t)) = 0. (5)

t—oo

3. Multivariable MRACS based on the
coprime factorization over RH

Coprime factorization representation of EMM
system

Consider a coprime factorization of the plant (1) over
a ring of proper stable rational functions RH ..

T(s) = N(s)D(s)7L. (6)

The following theorem gives an expression for plant
factorization over RH, in terms of the known (as-
sumption (A3)) interactor matrix.

Theorem 1 Let the interactor matriz L[s] be such
that det[L[s]] is an asymptotically stable polynomial.
Then the coprime factorization of the plant transfer
matriz (6) expressed in terms of the interactor matriz
L[s] is given by:

N(s)=L[s]"'G, D(s)=T(s)"'L[s]'G (7)

Proof. From Lemma 1, taking the polynomials »;(s)
stable an interactor matrix such that det[L[s]] is sta-
ble can be chosen. From expression (3) it directly fol-
lows that N(s) € RH and D(oo) = I. Also, from
assumption (Al) and, again, from the above lemma
it is clear that D(s) does not have poles in C*. Also,



from the definition of N(s), it does not have unsta-
ble zeroes. Hence, it can be shown that N(s), D(s)
€ RH,, are coprime. From eq. (7) it is clear that
T(s) = N(s)D(s)™!.
|
Now using the above theorem a solution of the
EMM problem will be given. The EMM problem is
to find a stabilizing compensator for a given plant (1)
such that the closed loop transfer function matrix
T,.(s) of the system is equal to given model transfer
function matrix Ths(s). The next proposition gives a
generalized EMM control law based on two parameter
compensation scheme in RH .

Proposition 1 [{/ Consider a plant transfer matriz
T(s) factored as in (6) and let all notations are as in
equations (4) and (7). If the transfer matriz of the
reference model Ty (s) is given as

Thr(s) = N(s)(s) for some K(s) € RH,, (8)
then the control law which achieves the EMM is:
u(t) = Y U)K (s)v(t) = Y 1(s) X (s)y(t), (9)

where K (s) is a solution of (8) and X(s), Y(s), €
RH, ™™ satisfy the Bezout identity:

X(s)N(s)+Y(s)D(s)=1. (10)

Remark 1 Theorem 1 also allows to express the con-
dition for EMM eq. (8) in terms of the interactor ma-
triz L[s]:

Tam(s) = L[s]"'GLh(s) L(s) € RH. (11)

The description of the reference model here is same
as in, e.g. [9].

Remark 2 Proposition 1 gives a generalized ezpres-

ston for the EMM control law for a multivariable plant.

This follows directly from the fact that eq.(10) is the
condition for stabilizing compensator, and ,also, from
the reference model transfer matriz equation (8).

Rewriting eq. (9) in observer-controller form yields

u(t) = (I - Y()u(t) — X(s)y(t) + K(s)o(2)
(12)

a general description of the control law in RH .

The structure of the system is shown in Fig. 1.

Identification model

Because the only @ priori information about the plant
is that, given by assumptions (A1)-(A3), there is a
need to identify the unknown parameters, included in
the control law (12). In this section the identification
model is derived.

3094

da

Figure 1: Exact Model Matching System

Multiplying eq. (10) from the left-hand side by' N(s)
and from the right-hand side by D(s)~!u(t) gives:

y(t) = N(9)[Y (s)u(t) + X(s)y(t)]

The following proposition gives the conditions for
the orders of X (s) and Y (s).

(13)

Proposition 2 Let the plant mazimal observability
indez is denoted by v, and let Z[s] = &(s)I for some
monic stable polynomial {(s) of order v—1+p (p > 0).
Then there ezists a solution X(s), Y(s) € RHs of
the Bezout identity (10) of the form:

X(s)=E[s]"1Z,[s], Y(s)=Z[s]'Z,[s] (14)

Proof. Since P[s] and R([s] are right coprime there
exist polynomial matrices Uls], V[s] € R[s]™*™ such
that

U[s]R[s] + V[s]P[s] = I (15)
is satisfied. Denote =;[s] = G~ 'L[s]R[s]. Multiply-
ing (15) from the left side by =[s] =;[s] gives:

E[s]=1[s)U[s])R[s} + E[s]Z1[s]V[s] P[s] = =[s]=:[s]
(16)

Performing polynomial matrix division [13] of

Z[s)E1[s]U[s]R]s] by Pls)

E[s]=alslUls] = Q[S]{BISHE[S]
O.lEls]] < Oai[P[s]],

where Q[s], E[s] € R[s]™ ™. Since the observability
indexes are coincident with the raw degrees of Pls],
for v we have v > 9,[P[s]], i = 1,---,m. Also,
because ¥ > 84[P[s]], i = 1,-+-,m, then v — 1 >
Oci[Els]], ¢ = 1,-- -, m. After substitution of eq. (18)
in (16) and rearrangement the following yields

E[s]R[s] + (Z[s]=1[s]V[s] + QIs] Rs]) P[s] = Z[s]=s[s].
(18)
Multiplying eq. (18) from left by Z[s]~! and from the
right side by Z;[s]~! gives

Els]71Z [s]N(s) + E[s] 1 Z,[s] D(s) = I,

(17)

(19)



where Z,[s] = E[s], Z,[s] = Z[s]Z1[s]V[s] + Q[s] R[s].
From the definition of =[s] and the fact that the order
of Z,[s] is less than v —1, it directly follows that X (s)
€ RH,,. Also, for eq. (19) when s — o0, Y (s) = I,
and noting the definition of Z[s], it can be concluded
that Y(s) € RH .
1
From Theorem 1 and Proposition 2 the identifica-
tion model (13) now can be rewritten as:

:[SI'IZ [sly(®)]

y(t) —L[s]‘lG[”[s]“IZy[s]v
t)+ Z, [s] t)]

= L[s]"'G z,,[s]

= L[s]7'G |(2, [s] f(s)l u(f)+u(t)

5
+2. s (t)]

(20)
From the proof of Prop. 2

[ ] f(S I Hu—2+ps’/ 2+p +-+ H() (21)
Zols) = Jyo1qps” P - 4 o
Form a state variable filter
su—2+p 1
wt) = ()T, =—u(t)T,
OF= g O rm@mt g,
i_l_+f,, (t)T . Ly(t)T}
&) 1T E)
and define the unknown parameters vector as
(¢) :{Hu—2+pa"'vH(],']u—l-i-pu"';JO]- (23)
Hence the output model (20) becomes:
y(t) = L[s] ' G[Ow(t) + u(t)]. (24)
Further, premultiplying (24) by L[s] gives
Llsly(¢) = Oa(t), (25)
where
6 = [Go, G)
)" = [, wt)T].

To avoid the differentiation a standard filter argu-
ments can be used:

“H(s)Lsly(t) = ©5(t), (26)

where _
S(t) = fl(s)a(t).
F(s) is chosen to be a stable monic polynomial of

order same as the order of L[s]’s element of maximum
order. Equation (26) is a linear relation between the
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filtered input and output of the plant and the matrix
of unknown parameters ©.

In order to estimate @ and G a suitable method
can be chosen [9], [12].

For the control law (12), using equations (22) and
(23) we obtain

u(t) = —Quw(t) + G LL[s| T (s)v(t).

By using the identified parameters © and G the con-
trol law (9) becomes realizable.
Thus the structure of MRACS is established.

(27)

4. Relations to other methods

The relation to the structure given by Elliott and
Wolovich [9] is briefly shown here. The control law
in [9] is
u(t) = Klslgr (s)u(t) + Hlslgr (s)y(®
+G7 Lislyn(t) (28)
where ¢i1(s) is a stable monic polynomial of order

v—1, and L'[s] and H[s] satisfy the Diophantine equa-
tion:

K[s]P[s] + H|[s]R[s] = q1(s)[P[s] — G~ L[s] R[s]].
(29)

This control law is derived from the control law in the
previous section through the following substitutions:

Els] = —q(s)I (sl =-a(s) (30)
Z.[s] = H[s| (31)
Zl) = Klsl-a(o)! (52)

The above shows that the control structure pro-
posed in this paper is more general than the structure
given by Elliott and Wolovich {9].

5. Robust MRACS in presence of
Deterministic Disturbances

There exist several schemes for design of a MRACS
when the disturbance model is known [5][6][7). In
this section a MRACS including the model of exter-
nal disturbances is constructed by using the coprime
factorization over RH .

Let the disturbance d; (¢) applied to the plant input
is described as:

di(t) = Gp(s)do, (33)

where dp is a scalar constant vector, and Gp(s) is
an unstable disturbance signal generator having left
coprime factorization as

Gp(s) = Dp(s)™ Np(s). (34)

The solution to the problem of disturbance rejec-
tion is given next.



Theorem 2 [4] Let ¢(s) denote the largest invari-
ant factor of Dp(s). Then there exists a compensator
C(s) which achieves disturbance rejection asymptoti-
cally if N(s) and ¢p(s)I are left-coprime. Moreover,
the set of all C(s) which achieve disturbance rejection
is given by

{Ci(s)/¢p(s) : C1(s) € S(T(s)/dp(s))}  (35)

where S(T(s)) denotes the set of all compensators C
€ R(s)™™ that stabilize T(s).

Because the plant T'(s) is a minimum-phase (as-
sumption (A1)) it satisfies the condition of Theo-
rem 2.

Now, construct the following augmented system:

Te(s) =T(s)/ép(s) (36)

Theorem 2 shows that a compensator which stabilizes
the extended system Tg(s) can be found. First, con-
sider a factorization of Tg(s) and a Bezout identity
as follows:
Tg(s) = Ng(s)Dp(s)~' = Dg(s) ™' Ng(s)
XEg(s)Ng(s) + Yg(s)Dg(s)=1.
In {2] the relation between the factorization of the

original plant T(s) and the factorization of the aug-
mented system Tg(s) is given as

Ngp(s)=N(s),  Dg(s) = ¢p(s)D(s)
Ng(s) = N(s) Dg(s) = ¢p(s)D(s).

Then the EMM control law which achieves distur-
bance rejection, using eq. (12) can be written as:

(37)

(38)

i) = (- Ye(e)u(t)~ Xe(s)y(t) (39)
+LK(s)u(t)
1
u(t) = 350 (t),

where L'(s) € RH is the solution of eq. (8).
The next proposition considers the expressions for
Xg(s) and Yg(s).

Proposition 3 Let (np[s], dp[s]) be right coprime

factors of ¢ p(s) over algebraic polynomial ring, where
dpls] and npls] are monic Hurwitz polynomials of
order g, and dp|s] is stable. And let Zg[s] = £p(s)1,
where {g(s) i3 a monic stable polynomial of order v —
1+p+g(p >0). Then there exists a solution Xg(s),
‘2(s) € RH, of Eq. (37) given as

XE(S) = EE[Sl_lzzE[s], ’E(s) = EE[S]_IZVE[SI.
(40)

Proof. The proof is contained in the appendix.

From this proposition It is seen that for the case of
presence of deterministic disturbance, the MRACS is
constructed in a similar fashion as it was done in the
previous section.
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6. Conclusion

In this paper a relation between the coprime factor-
ization over RH, and the interactor matrix was de-
rived. Using this relation, a method for design of
multivariable MRACS over the ring of proper stable
rational functions was derived. The prior information
necded for the realization of the control law, given in
the first section, is almost the same as in [9] where
the proposed MRACS algorithm is based on presen-
tation over polynomial rings. It is shown that the
control structure of MRACS in [9] is included in the
structure proposed in this paper. The condition for
the a priori knowledge of the interactor matrix is a
key for the developing the proposed scheme. A robust
MRAC scheme which achieves asymptotically rejec-
tion of unmeasurable disturbance was derived also.
The proposed scheme is an extention to the results
given in [5] and it is hoped that it will lead to utilizing
the recent results of the area of linear multivariable
control systems using factorization approach.
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Appendix A

Proof of Theorem 3. Let the factorization of the
augmented system over the ring of polynomial matri-
ces is

Te(s) T(s)/ap(s)
(Blsldols])(Plslnofsl)
(Pls]npls]) ™" (Rs]dpls]).
Note that the factorization may not be coprime. De-
note Rp(s] = R[s|dp|s], Pe[s] = P[s|npls], Rels] =
Rlsldpls], Pe|s] = P[s]np[s]. Now the augmented
system can be rewritten as

Tg(s) = Rels)Pg'[s] = Pg'[s|Rels],

(41)

(42)

and the column and raw degrees of Pg are given by
next relations

ari[l:)E['gns
Ocil Pe(sll,

(43)
(44)

v+gq i=1...,m

>
v+gq > i=1,...,m.
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Since Pg[s]) and R[s] are right prime (because detR[s]
is asymptotically stable polynomial) then there exist

polynomial matrices Ug[s], Vig[s] € R[s]™ ™ satisfy-
ing the Bezout identity
Ug[s]|R[s) + VE[s]|Pg[s] = 1. (45)

Let Z;[s] be the same as in the proof of Proposi-
tion 2, that is, Zi[s] = G~ !L{s|R[s]. After multi-
plying the last equation from the left-hand side by
dp[s]Ee[s]=1[s] and rearrangement the following yields

Eg(s]=1[s)Us[s]Re[s]+ (46)
dp[s|=e[s]Z1[s|Ve[s]| Pe[s] = dp[s]=g[s]Z1[s].

Now a polynomial matrix division gives
Ee(s]=1[s)Us(s] = Qrls])Pels] + Exls]
0ailEgls]) < Oeil Pels]],

(47)

i=1,...,m  (48)
and v ~ 14 ¢ > 0,[Eg[s]] (49

)
for some Qg|s], Eg[s] € R[s]™ ™. Substituting (47)
in (46) and after some rearrangements it can be writ-
ten

Eg[s|Rels] + Qrls] Pe[s|RE|s)
+dp[s|=g[s|=1[s]Ve[s| Pels]

= dp[s|Z p[s]Ea [s]. (50)

From eq. (42) Pgls|Rg[s] = Rg[s)Pz|s]. Using this,

from (50) the following equation can be derived

Ep[s|Rels] (51)
+Qe(s]Relslnpls] + dpls|Ee[s]=1[s]VE|s]| Pels]

= Eg[s]=1s]dp]s].

Now, substitute

erlsl = EE[sls

Zyels) Qels|Relslnpls] + dp[s|Z£[s]=1 [s]VE(s],

and multiply eq. (51) from left-hand side by Zg[s]™!,

and from right-hand side by (Z[s]dp[s])~!. This
gives as a result the following

Z5' 81 2. o [sIVE[s] + Z5' (8} 2, [s] Dels) = I, (52)

where the relation Ng(s) = N(s) = L[s]~1G is used.
Now applying eq. (40) yields (37).

What remains is to show that Xg|s], Yz[s] € RH.
Xgls] € RH, follows directly from the definition of
Eg[s] and the order of Z,.[s]. From cq. (52), when
8 — 00, Yg(oo) becomes equal to I, and from the
definition of Eg[s] it can be concluded that Yg(s) €
RH. 1





