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Minimum Verification Test Set for Combinational Circuit

Hiroyuki Michinishi, Tokumi Yokohira and Takuji Okamoto

Faculty of Engineering
Okayama University
3-1-1, Tushima-naka, Okayama-shi, 700, Japan

Abstract

A sufficient condition under which a minimum verifica-
tion test set (MVTS) for a combinational circuit has 2* ele-
mentsis derived, where w is the maximum number of inpuls
on which any output depends, and an algorithm to find an
MVTS with 2¥ elements for any CUT with up to four out-
puts is described.

1 Introduction

Many built-in self test (BIST) techniques have been pro-
posed to reduce the cost of testing VLSI circuits 23], A
simple way to raise fault coverage in BIST is to test a com-
binational circuit under test (CUT) with n inputs exhaus-
tively, using 2™ test patterns. This way however raises a
problem that too many test patterns are necessary if the
CUT has many inputs.

In order to decrease the number of test patterns, retain-
ing the advantages of exhaustive testing, McCluskey has
proposed pseudoexhaustive test technique (verification test
141y, If an output f; depends on w; inputs, a test set for the
pseudoexhaustive test is generated so that 2+ patterns are
applied to them. Hiraishi et al.’’! and Akers[® have pro-
posed algorithms to obtain a test set with 2 test patterns (
w < r < n), where w is the maximum number of inputs on
which any output depends. The algorithms, however, do
not guarantee to obtain a minimum test set. On the other
hand, some researchers [7:39:1%:11] have derived such a test
set that can generate 2¥ patterns applied to any w inputs.
The test set is therefore applicable to all the CUT with up
to ,Cy, outputs. It is not however a minimum test set. In
particular, if w is large in a CUT with many inputs and few
outputs, the number of test patterns is much larger than that
of a minimum test set.

This paper investigates a minimum verification test set
(MVTS) for the verification testing. In general, an MVTS
has more than 2% elements. We first derive a sufficient con-
dition under which an MVTS has 2* elements. This condi-
tion is derived from the extended complete cyclic theorem
obtained by extending the complete cyclic theorem!'2].

Next, we propose a method to find an MVTS for any
CUT having an arbitrary number of inputs and up to four
outputs. The first step is to create a matrix RDPg (re-
duced partioned dependency matrix) by the use of an al-
gorithm obtained heuristically. The second step is to create
an MVTS with 2* elements by the use of the RDPc.

0-8186-2985-1/92 $03.00 © 1992 IEEE

2 Problem Statement

2.1 Definition of Minimum Verification Test Set
(MVTS)

Figure 1 shows a combinational circuit under test (CUT)
having n inputs z,,, zn_1, - -, €1, and m outputs frm, frm_1,
-+, fi. Letaset Sin be {Zp, Zn_1,- -, 21}, and letaset I;
be {zh,, 25,1+ 21} (C Sin) when f; depends on z;, ,
zh,_y, o 2 (1<i <m,and || = n). Itis assumed
that I, U I,y U -+ U I} = S;, and the CUT remains
combinational even if any fault occurs. A verification test
set, VTS briefly, for the CUT is defined as follows!).

[Definition-I] We call an n-dimensional vector (z,,,
To_1, -+, 21) atest vector. 1f a set T of test vectors satis-
fies the following condition for ¥i (1 <i< m), then the set
Tisa VTS.

Condition: The projection of T onto (i, , =%, _;, -+, })
subspace corresponding to I; contains all 2™* distinct
binary patterns. 0O

Thus, the VTS is a set of test vectors which can exhaus-
tively test each output of the CUT. If the number of test
vectors of the VTS is minimal, then the VTS is an MVTS.

If I, C I, for 34y, 34, in a CUT, then we call that f;,
is a covered owtput by f;,. An output which is not a cov-
ered output is called an essential output. Let T be a set
of test vectors whose projection satisfies the condition in
the definition of VTS for I; corresponding to each essen-
tial output. From the definition, it is trivial that the set T
is a VTS. Thus, in the discussions below, we assume thata
CUT has only essential outputs.

Xn Xn-1 Xj X2 X1

Y

Combinational Circuit
Under Test
(CUT)

R

frm fm-1 fi f2 fi

Figure 1  Structure of Combinational Circuit Under Test.



2.2 Redundancy of Universal Reduced Verifica-
tion Test Set

McCluskey has already presented an approach to obtain
a VTS, This approach is divided into the following five
steps.

The first step is to construct a dependence matrix D¢
for a CUT defined below.

[Definition-II] The dependence matrix D¢ for a
CUT has m row vectors and n column vectors. Each row
corresponds to one of the essential outputs of the CUT and
each column corresponds to one of the inputs. An element
is 1 iff the corresponding essential output depends on the
corresponding input. All other elements are 0. 0

Figure 2(a) shows an example of Dc¢.

The second step is to obtain a partioned dependence ma-
trix (D Pc) defined below.

[Definition-III] The partioned dependence matrix
DPc corresponding to a D¢ is formed by partioning the
column vectors of the D¢ into sets such that: (i) each row
vector of a set has at most one 1-entry, and (ii) the number
of sets p is a minimum. @]

In this paper, each set mentioned above is referred to as
a partitioned set. Figure 2(b) shows a D P¢ obtained from
Figure 2(a). The D P has six partitioned set (p = 6), for
example, the set of only the first column vector, and the set
of the fourth and fifth column vectors.

The third step is to obtain a reduced partioned depen-
dency matrix (RD P¢) defined below.

[Definition-IV] The reduced partitioned depen-
dency matrix RDPc is obtained from DPc by merging
all column vectors of each partitioned set into a single col-
umn vector in which a row has a 1 iff either of columns in
the partioned set has a 1 in the corresponding row. Thus,
RDPc has m row vectors and p column vectors. O

In this paper, the single column vector as mentioned
above is referred to as a merged column vector. Figure 2(c)
shows an RD Pc obtained from Figure 2(b).

The fourth step is to obtain a VTS by regarding the
RDPc as anew Dc. In the paper(4], such a VTS is called
a reduced verification test set (RVTS).

The final step is to obtain a VTS for the original D¢
from an RVTS so that all columns of each partitioned set
in the VTS are equal to the corresponding column in the
RVTS.

Using these five steps, a VTS can be obtained. The sec-
ondstep is, however, a time consuming one due to the mini-
mization of p in the condition (ii), which is an NP-complete
problem®). On the other hand, it is desirable in the fourth
step to obtain a minimum RVTS (MRVTS) which has the
minimum number of row vectors. It is however difficult to
execute this step for Vp and Yw (p > w), where w is the max-
imum row weight of the RVTS, i.e., w = maz{nm, nm,_;,

-, nq }. Thus, in the paper(4], assuming that a D P¢ can
be obtained by some means, a universal RVTS (URVTS)
defined below is derived as an RVTS in the fourth step.

[Definition-V] A matrix with p column vectors is a
universal reduced verification test set matrix U (p, w) if all
submatrices of w columns of U(p, w) contain all possible
combination of w binary digits. A universal RVTS is a set
of all row vectors of a U(p, w). 0

Forp = worp = w+ 1, a URVTS becomes an
MRVTS™, and the number of clements of the MRVTS

(MVTS) is 2“. If p > w + 1, it is not however guaran-
teed that a URVTS becomes an MRVTS, and the number
of elements of a URVTS drastically increases as p becomes
larger.

Suppose that five steps mentioned above are executed
under the condition that the second condition (ii) of the sec-
ond step is omitted. In this case, a URVTS can be also
obtained. It may have, however, more elements than a
URVTS obtained with taking account of the condition (ii).
Thus, it is desirable that p is a minimum.

In this paper, we clarify that, if an R D P obtained with-
out taking account of the condition (ii) has a particular
property described later, then an MRVTS (an MVTS) with
2% elements can be constructed. In particular, we propose
an algorithm to obtain an MV TS for any CUT having an ar-
bitrary number of inputs n and up to four essential outputs,
and prove that the number of test vectors of the MVTS is
2¥. In the succeeding discussions, unless otherwise stated,
the terminologies DP¢ and RD P means ones derived
without considering the minimizing condition (ii).

X4

X7 X6 X5 X4 X3 X2 X X7 X6 X5 X4 X2 X3 X]

X7 X6 X5 X2 X3 X1

fifrooo 11 1] fififoloJo 1J1]1] fi]Tt 0 0 1 1 1
2101 1 0 01 1| fhjof{t|1fo 1]of1| fjo 1 1 1 01
f310 1 1 1.1 0 0f f3Jof1|{1{1 of1]|of f5]0 1 1 1 1 0
fafll 1.1 0 0 0 0| f,{1|t]1f0 ofofo] g1t 1 10 0 0

(a) Dc (b) DPc (c) RDPc

Figure 2 Steps to obtain a VTS

3 MVTS for a CUT with Covering Property

In this section, we show that, if an RD P has a partic-
ular property described later, an MRVTS (an MVTS) with
2% elements can be constructed. This is clarified by ex-
tending the complete cyclic theorem (CCT) described in our
previous paper[12].

In the discussions below, the following notations are
used.

e For an arbitrary matrix M, let M([i, 7] denote the ij
element of M.

e Let M([4,7],p,q) denote a p x ¢ submatrix of M
such that the uppermost and leftmost element of
M ({3, 71, p, g) corresponds to M, j].

e When each of matrices My, My_y,---, M, has the
same number of row vectors, the concatenation of
these matrices in this order, which is called a concate-
nated matrix M , is represented as follows:

MEMkNMk_]M'-'NMl.
An example of the concatenation is shown in Figure 3.

3.1 Extended Complete Cyclic Theorem

The extented complete cyclic theorem, ECCT briefly, 1s
given as follows (see Figure 4).

[Extended Complete Cyclic Theorem (ECCT)]

For Yu(u > 2) and Yu(v >0), there exists a 2% x (u +v)
matrix M, thatsatisfics the following conditions (C1), (C2)
and (C3).
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1001000
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concatenated matrix M3 M MaXM,
Figure 3 Concatenation of matrices.
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Figure 4 Extended Complete Cyclic Theorem.
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(C1) The ith row vector of M,([1,1],2%,u)iss— 1 a<
i< 2%), when it is regarded as a binary number.

(C2) For ¥j (1< j<wv+ 1), if the submatrix M, is defined
as follows,

M} = M,((1,51,2%,v),

then, M has 2* distinct binary patterns (see Figure
4(a)).

(C3) ForVk(1<k<u—1)andVj(k+2<j<v+k+1),if
the submatrix M2 of M, is defined as follows,

MZ = M((1,1),2%, k) X My ({1, 51, 2%, u = k),
then, M2 has 2% distinct binary patterns (see Figure
4(b)). o

[Proof]
(i) If the value of j in the condition (C3) is restricted to

only v + k + 1, the ECCT is identical to CCT which
has been proved in our previous paper{12].

It is trivial from (i) and (ii) below.

(ii) For Yvy, Yv (v; < v), using the algorithm described
in the paper[12], we can construct such a 2* x (u +
v}) matrix M, and a 2* x (u + v) matrix M, so that
each of them satisfies the conditions (C1), (C2) and
the restricted condition (C3), under the constraint that
M, =M, ((1,11,2%, u+ n). a

3.2 Covering Property

Using the ECCT mentioned above, the following
MRVTS theorem holds.

[MRVTS theorem] When an RDP¢ for a CUT
has m row vectors and p column vectors, and its maxi-
mum row weight is equal to w, we represent the RDPg
by RDPc(m,p,w)

Assume that either of the following conditions (C4) and
(CS) is satisfied in a matrix M(= RDPc(m,p, w)) for Vi
(1 <1< m) (see Figure 5(a)).

(C4) There exists such j; (1 <ji <p— w+ 1) that all ele-
ments with 1 in the ith row vector (= M([¢, 1], 1, p))
are included in the row vector R; (= M([3, j:], 1, w)).

(C5) There exists such k; (1<k;<w — 1)and j; (k; +2<
Ji < p— w+ k; + 1) that all elements with 1 in the
tth row vector are included in the concatenated row
vector R; (= M([3, 1], 1, ks) M M([3, 5:), 1, w — ks)).

Then, a 2* x p matrix M’, which satisfies the conditions
(C1), (C2) and (C3) by regardingu =wand v =p— w, is
an RVTS (an MRVTS) for the CUT. a
[Proof]  The proof for case that (C5) is satisfied is as
follows. M" (= M'({1, 1], 2%, k) X M'((1, 5], 2%, w —
k)) has 2% distinct binary patterns from ECCT (see Figure
5(b)). If we define the submatrix M of M" as follows,

M M”([l,zn;],zw, 1) ™ M"([l,zm_l],zw, 1

LR M"(flyzl]:zwy 1)1



where R;[1,2,} = 1 (1 < ¢ < ny), then, M’ has 2™ dis-
tinct binary patterns. The proof for case that (C4) can be
performed in the similar way. [w}

When every row vector of an R D P¢ satisfies either (C4)
or (CS), we call that the RDPc has a covering property.
Figure 6 shows an example of RDPc with the covering
property. The shadow area with w elements in each row
vector means that it covers every element whose value is
1. Thus, if an RDPc fora CUT has the covering property,
thenan MVTS with 2* elements can be constructed using
the following algorithm.

B oo

00

B0 0[P AA A

fal oW AAA, 0

fs IO AA 0

s AAAL0 0
RDPc (6, 8, 6)

Figure 6 Example of RDPc with Covering Property.
[MVTS algorithm I]

(1) Create a matrix M which satisfies three conditions in
ECCT using the algorithm described in the paper{12],
and regard this matrix M as an MRVTS.

(2) Set all column vectors of each partitioned set in the
MVTS with the corresponding column vector in the
MRVTS. 0

Note that RDP¢ (m,p,p — 1) and RDP¢g (m,p,p)
have the covering properties for Y and Yp. From
MRVTS theorem, the numbers of elements of MRVTSs for
RDPc(m,p,p — 1) and RDPc(m, p, p) are 2°~! and 2°,
respectively.

4 MVTS for a CUT with up to Four Outputs
If m = 1, the MVTS has 2" test vectors, and is easily ob-
tained. Thus, we present the algorithms to obtain MRVTSs
(MVTSs)incases form =2, m =3 and m = 4.
Principal idea of the algorithms is based on the fact that
an RDP¢ has the covering property for Vp and Yw. To
show this, we introduce the foliowing notations.

o Let S(ki, ky, - - -, k) denote a set of all z;s such that
the corresponding column vector in the dependence
matrix D¢ is (ky, ka, - -, k)T, where vT represents
the ranspose of vector v. For example, in the depen-
dence matrix D¢ shown in Figure 2(a), S(0,1,1,1) =
{36) ES}: S(l, 0: 11 0) = {13}’ 5(1) ]) 01 O) = {221 zl}-

o S(k1,kz,-- -, k) may be represented with S, briefly,
m
where ¢ = E k; - 2™, Using this notation, the re-
i=1
lation between S;,, and S, is represented as follows:

(i) For¥g(1<q<2™ — 1), 5, C Sin.

() S1 DS, ®--- @ Sym_y = Sin, i€, Sin can be
partitioned into Sy, S,, ..., Sym_,.

* Letry be the number of elements of Sy, i.e., 7y = |S,|.

e For Yz;(€ Si,), let cv(z,) be the corresponding col-
umn vectorin a Dg.

e Forz;,,zj, ., -, zj, (€ Sin), and a column vector
(k1, k2, -+ -, km)T, if (i) a partitioned set can be con-
structed with cv(z;, ), cv(z;, _,), - -, cv(z;,), and (ii)
the merged column vector created from the partitioned
set is equal to (ky, ky, - - -, k,,)T, then we call that the
set {z;,, Tj._,, "+, ;, } is mergeable with respect to
(k1, k2, - -, km)T. For example, in Figure 2(a) {z7}
is mergeable with respect to (1,0, 0, 1)T, and {z4, z,}
is mergeable with respect to (1, 1, 1,0)7.

First, we describe an RD P¢ for a CUT with two essen-
tial outputs (m = 2). Figure 7 shows an RDP¢(2, n, w)
(p = n). Each arrow shows that the corresponding col-
umn vector in the Dc is copied into the RD P¢ along it.
The RD Pc can be obtained using the following algorithm,
which is called CA(2).

[Algorithm CA(2)]
(1) Construct the D¢ for the CUT.

(2) Setatemporary variable j with 1, and execute the fol-
lowing procedure (2.1) and (2.2) for ¢ = 3,2, 1 in this
order until S, becomes empty.

(2.1) Select an arbitrary element z;, from S,, and set
the jth column vector of the }iDPc with cu(z;,)

(2.2) Remove the element z;, from S,, and increase
the value of j by 1. 0

Note that, in the procedure (2.1), if the binary represen-
tation of g is k; ky, then cv(z;,) is equal to (k;, k)7 .

In the algorithm CA(2), as seen in (2.1), a set of only
the column vector cv(z;, ) is a partitioned set. Thus, CA(2)
creates an RDP¢ by rearranging column vectors of D¢
corresponding to the elements of Ss, S,, S, in this order.

The followings (i) and (ii) are seen from the RD P¢ (2,
n, w) shown in Figure 7.

(i) The shadow areas corresponding to f; and f, have
(r3 + r2) and (r3 + r;) elements, respectively.

(ii) Allelements of the shadow area corresponding to each
of f; and f; are 1, and all elements of the other areas
are 0.

From (i), (i) and (iii) w = maz{rs + r, 73 + r;}, the
RDPc(2,n, w) has the covering property for Yn and Yw.

Xn€ Sy XjE€ Sy Xj)€ S3 XjE Sy X1€ 82
NN To T1]
Y S e e 10 o

Figure 7 RDPc (2, n, w) for CUT with two essential outputs.

An RD Pc for a CUT with three essential outputs (m =
3) can be obtained with the following algorithm CA(3) (see
Figure 8).



[Algorithm CA(3)]  This is the same algorithm as
CA(2) except that “q = 3, 2, 1” in the procedure (2.2) is
replaced with “¢ =7,4,6,2,3,1,5”. o

The followings (i) and (ii) are seen from the RD Pc (3,
n, w) shown in Figure 8.

(i) The shadow areas corresponding to f1, f2 and f3 have
(r41r4+1r6+7s), (r7+rg+ra+r3)and (r7+r3+ri+ rs)
elements, respectively.

(ii) All elements of the shadow area corresponding to each
of fi, f» and f; are 1, and all elements of the other
areas are 0.

From (i), (ii) and (iii) w = maz{rj+ra+re+rs, r7+re+r2+
r3, 77+ 73 + 11 +rs}, the RDPc(3,n, w) has the covering
property.

As mentioned above, the RDPg form =2andm =3
can be generated by simply rearranging the column vectors
of the D¢ so that it has the covering property.

S3

w

Xn€ S¢ Xj,€ S7 X,E€ESs X, €83 X2X1
i1 wee 1 1l - o 0
f,[1 1 o] - 1 1 D
: 0 1 i ... [1 1

i/ sy i S& N S¢ i Sz S3 i S1 NS5
1 [ AL~ R Adolo] - Joloo]-- Too[o] - Jo g
fa A A o0lo]- [oUH AU e 0/0{--. [0]0]0] ... |0| RDPc
f3 ZAT0[0]--. [0[0[0] .. [0]0[01-. {0| M~ TAAR

L P % 53 n— —n—" I

Figure 8 RDPc (3, n, w) for CUT with three essential outputs.

Next, prior to the algorithm for m = 4, we describe how
to merge column vectors in D¢, which correspond to el-
ements of some S;s. For example, from the definition of
S(kh kZ) ttty km), for sz‘ (E 56)’ zjz(e S‘))r {zj| H zjz} is
mergeable with respect to (1, 1, 1, 1)T, which can be re-

arded as if it is an element of S)s. In the same way,

z;,,T;,} (%j, € Sg,z;, € S3) is mergeable with respect
to (1| Or 1» l)T» and {zjn iz zj;} (zjl € Sl' T3, € 52‘ Zjy €
S4) is mergeable with respect to0 (0, 1,1, 1)T.

The algorithm for m = 4 is constructed by the merging
principle mentioned above, but somewhat complicated, be-
cause the number of S(ki, ka, k3, ka)s increases up to 15.
So, we separate into 8 cases by combinations of signs in
three differences |Sy2| — |S3], |S10| — |Ss| and | Se| — |Ss|.
Here, we show for the case that all signs are non-negative
(see Figure 9).

[Algorithm CA(4)]
(1) Construct the D¢ for the CUT.

(2) Setatemporary variable j with 1, and execute follow-
ing procedures (2.1), (2.2) and (2.3) forg =3, 5, 6 in
this order until S, becomes empty.

(2.1) Select two arbitrary elements z;, and z;, from
S, and Sys5_,, respectively, and create a parti-
tioned set from cv(z;,) and cv(z;,).

(2.2) Create a merged column vector from the parti-
tion set obtained in (2.1), and set the jth column
vector of the RDP. with the merged column
vector.

(2.3) Remove the elements z;, and z;, from S, and
Sis_,, respectively, and increase the value of j
by 1.

(3) Execute the following procedure (3.1) for ¢ =15, 9,
11, 10, 14, 7, 13, 12 in this order.

(3.1) Let kjkyksks be the binary representation of g,
and then repeat the following procedures (3.1.1),
(3.1.2) and (3.1.3) if there exists such z;, (€
Sqn)’ Tinos (G Sq,._,), AR 21 (e Sql) that the
set{ zj,, Tju_,» - **» 5, } is mergeable with re-
spect to (ky, k2, k3, ka)” .

(3.1.1) Create a partitioned set from cv(z;,),
cv(zj,_ )y cv(T5y)-

(3.1.2) Create a merged column vector from the
partition set obtained in (3.1.1), and set the
jth column vector of the RD Pc with the
merged column vector.

(3.1.3) Remove the elements z;,, z;,_,, -, Zj,
from S, Sq._, - - Sq,.TESpectively,and in-
crease the value of 7 by 1.

(4) Execute the following procedures (4.1), (4.2) and (4.3)
for ¢ = 8, 4, 2, 1 until §; becomes empty.

(4.1) Select an arbitrary element z;, from S, and set
the jth column vector of the éDPC with cv(z;,)
(4.2) Remove the element z;, from S, and increase
the value of j by 1. u]

Note that, (i) each of the merged column vectors created
in the procedure (2.2) isequal to(1, 1, 1, 1), (ii)) each of the
merged column vectors created in the procedure (3.1.2) is
equal to (ki, k2, k3, ke)T , and (iii) at most only one Sy(g =
8,4, 2, 1) is not empty before the procedure (4) is executed.

In Figure 9, if the binary representation of g is k1k2k3 ks,
T, represents a group of sets of inputs which are merge-
able with respect to (ky, ky, k3, ks)T . Allthe elements in the
shadow area are 1, and the others are 0. The number of ele-

C Tis ¢ To ¢ T ¢ To Tia + T7 T3 ¢ T :
., BT AR A A olol - oL A
£, 7 0]0[-[0]0]o]-- 0]o[o] - [0 B i AL
5 Fiai A ol ol- o VA0 A X Ak 4410101--1010]01 |0
i, WA A A0 o ol-10[ofof - [or A itAai0lol 10

Figure 9 RDPc (4, n, w) for CUT with four essential outputs.



ments of the shadow areas corresponding to f; is equal to n;
(1<Li<4). The RD P has therefore the covering property,
since w = maz{n,, nz, n3, na}. We can also show simi-
larly that there exists an RD P¢ with the covering property
in any other combinations of signs.

For m (2<m<4), an RD P¢ with the covering prop-
erty, as mentioned above, can be constructed. From the
MRVTS theorem described in 3.2, there exists an MRVTS
(MVTS) with 2% elements. An MVTS can easily derived
using the following algorithm.

[MVTS algorithm II]
(1) Using CA(m) (2 < m < 4), construct an RD Pc with
the covering property.
(2) Execute MVTS algorithm I described in 3.2. a

Using MVTS algorithm II-(1), an RD P¢( Figure 10(a)) is
obtained from Figure 2(a). From MVTS algorithm 1I-(2),
an MRVTS(Figure 10(b)) and the corresponding MVTS
(Figure 10(c)) are derived. The MVTS has 2%(w = 4) el-
ements, while a VTS which is obtained from the paper([4]
has 21 elements.

X4
X7 X3 X2 X6 XS X1
fift 1106 01
210 0 1 1 1 1
3011110
foJ]1 0011 0
Xq (a) RDPc
X7 X3 X2 X6 X5 X1 X7 X6 X5 X4 X3 X2 X}
0000O0TCO0 000 O0O0CO0TO
000111 0110001
001010 0011010
001101 010101 1
010011 0010101
010100 0100100
011001 0001111
011110 0111110
100010 1010000
1001 01 1100001
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Figure 10  RDPc, MRVTS and MVTS obtained
using MVTS algorithm II.

5 Conclusion

We first derived a sufficient condition under which an
MVTS for a CUT has 2 elements. Second, we proposed
an algorithm (0 find an MTVS for any CUT with up to four
essential outputs, and proved that the MVTS has 2% ele-
ments independent of the number of the inputs.

It is an open problem whether every CUT with five out-
puts has an MVTS with 2% elements or not. It has how-
ever been shown! that some CUT with six outputs has an
MVTS with more than 2% elements.
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