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Abstract 

A procedure for control-oriented modeling of uncer- 
tainty is proposed for large flexible structures. Tech- 
niques on quantification of errors in modal truncated 
nominal models are developed for the case where a fi- 
nite number of upper and lower bounds of the unknown 
modal parameters are given. A feasible set of systems 
matching the conditions is introduced,and then error 
bounds covering the feasible set are established in the 
frequency domain. The bounds are easily checked using 
linear programming for any user-specified frequency. 
The feasibility of the proposed scheme is illustrated by 
numerical study on an ideal flexible beam example. 

1 Introduction 

In modeling for controller design in view of robust con- 
trol theory, it is required to characterize a nominal 
model describing essential dynamics of the plant and 
also bounds of magnitudes of the uncertainty for the 
plant[l]. While many researchers attempted to  identify 
nominal models and uncertainty magnitudes[2], there 
proved to be some theoretical issues to quantify uncer- 
tainty bounds. It is hard to derive the bounds with- 
out any a priori information, and the estimated bounds 
tend to be overly sensible to the a priori information[3]. 

Efforts, on the other hand, have been made on bound- 
ing uncettainty using physical knowledge or first princi- 
ples. It has been shown that for elastic equations with a 
finite number of known eigenparameters, the minimum 
worst case error and the nominal model such that the 
minimum is attained, can be characterized explicitly in 
the frequency domain [4]. Efficient numerical bounding 
techniques are also developed for the case where a fi- 
nite number of upper and lower bounds of the unknown 
parameters axe available[5]. 
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While such a physical modeling can be valuable in hav- 
ing insight into essential plant dynamics, it is widely 
recognized that there is some fundamental limitation 
on precise modeling of complicated practical physical 
phenomena. And even if we obtain some estimates 
on nominal models and uncertainty bounds just based 
on first-principles, these may not necessarily be consis- 
tent with actual measurement d a t a  Therefore, model- 
ing procedures using both physical a priori knowledge 
of the plant and experimental data has been desired 
strongly for the sake of quantification of uncertainty 
bounds. 

In this paper, according to  the requirement and issues 
mentioned above, techniques for bounding uncertainty 
for elastic vibrating systems are presented. In the for- 
mulation adopted in [4, 51, we have no other way to 
estimate parameters needed, than doing modal analy- 
sis just theoretically, and it is not so easy to identify 
them from experimental data. Here we formulate our 
problem using modal parameters with which we can 
reflect results of both theoretical analysis on physical 
laws and experimental data. If we consider dynamics of 
vibrating systems that can be described by just super- 
position of simple second order vibrating modes, then 
analysis techniques for modal parameters are roughly 
summarized as in the following two categories[6]; one 
is theoretical analysis determining modal parameters 
from eigenvalue/eigenvector analysis of high dimen- 
sional matrices about inertia and stiffness of the equa- 
tion of motion, and the other experimental one to iden- 
tify modal parameters using least squares or curve fit- 
ting of frequency domain based on input-output data 
in time or frequency domain. 

Finally, to  illustrate feasibility of the proposed quantifi- 
cation formula, we theoretically characterize an interval 
for a finite number of modal parameters, and demon- 
strate controller design for an flexible beam example. 



2 System and Problem Formulation 

2.1 System Description 
We consider elastic vibrating systems described by 

47 

where 0 < w1 5 wz 5 . . . + 00 and ( w j ,  kj) satisfy 

03 

Ikiwi2QI 5 P ( 2 )  
i= l  

for some given a (0 5 a 5 1) and p > 0. 

Remark 1. 
where at least either xzl lkjl (a = 0 ) ,  
(a = 1 /2 )  or Ikiw:l(cy = 1) is given. 

In the above we consider the situation 
Ikiwil 

We assume that first t triples of (kj ,wi ,Ci)  where i = 
1,. . . ,P are known but all the rest unknown, but each 
upper and lower bounds to the first ( p  - t)-th unknown 
pairs (w i ,k j )  i = t +  1 ,..., p are given as (%, Gj, &, 
X i ) ,  respectively, where 
- 

Remark 2. Upper and lower bounds t and Zj to k i ,  
( i = P + l  , . . . ,p) are sometimes given. In that case &. 
- and xi are calculated using &. := min{k82alk 5 k 5 
k j , s  5 8 5 a i } ,  xi := max{k82aIc 5 k 5 &,% 5 
8 5 Gj}. We can prove that similar results can be 
derived using b, kj but the exposition of the results 
are more complicated. 

- 

Cj ( i  > P) is assumed to satisfy 

for given y > 0 and 0 5 jl 5 1 .  

In a subsequent section we illustrate an example to 
determine a, p, y, /3 from equations of motion for an 
elastic vibrating system. 

2.2 Problem Statement 
We choose the t-th partial sum, the known part of ( 1 )  

as a nominal model. 

Our problem is to find a least upper bound of errors 
between the nominal model and the system 

.(U) := sup IG(jw) - G t ( j w ) ]  (6) 
G€Pt  

for each user-specified frequency w where Pf is the set 
of systems satisfying all the conditions shown above. 

We can rewrite ~ ( w )  as in 

0 

j=1  

Evaluating r ( w )  represented as in (7) is apparently not 
an easy task since it contains infinite number of un- 
known parameters. 

3 Quantification of the Error Bounds 

From relation ( 2 ) ,  it follows that l&jwzu1 5 X i ,  here 
Xi := + zj. We suppose that this restriction is 
taken into account in (3) and we assume the relation 
max{ I& I ,  IXi I} 5 Xi * 

3.1 Upper Bounds 
An upper bound to r ( j w )  is shown in 

Theorem 1. For q where t+ 1 5 q 5 p ,  r ( w )  5 Fq(w) 
holds, here 

I a + l  

and 

where 
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Proof. Let Xi := kiw:a, then 

IG(jw) - Gt(jw)l= I 2 XiHa,wi(jw) 
i=f+1 

For all q such that P+ 1 5 q 5 p ,  the following evaluzG 
tions hold true. 

ca 

Here, if we set zi := ]Xi1 ( i  = L + 1,. . . , q ) ,  zq+l := 
- lXjl then the result follows. 

While an upper bound to r ( j w )  for each q such that 
L + 1 5 q 5 p is shown in theorem 1, we can expect 
from the above proof that the larger the number q, the 
smaller the corresponding upper bounds. This is shown 
in 

Proposition 1. Suppose e +  1 5 q1 5 qz 5 p. Then 

That is, Fg(w) is always minimal if q = p, but mini- 
mizing q is not necessarily equal to p, as in 

Proposition 2. Let 7 be the smallest n such that for 
a l l i l n + l  

Ri = max{IXiI, IXiI), ci 2 %+I (10) 

hold. Such an 7 will exist uniquely in L I 7 I p - 1. 
Then - 

r q ( w )  = Fi(w) ( q  2 z) 
Fg(w) > F+) ( q  < 7) 

and 

hold. 

In other words, among upper bounds ~ ~ ( w ) ' s  of r (w) ,  
the smallest is no other than %(U), and we can see the 
problem is reduced to a linear programming problem 
with 7 - L + 1 variables. 

3.2 Lower Bounds to the Solution 
A lower bound to the r ( j w )  can be found by just choos- 
ing an element from the feasible set. It is desirable to 
find a lower bound as large as possible, in light of eval- 
uating tightness of upper bounds. We develop a tech- 
nique to obtain such a lower bound utilizing the result 
of upper bound in the following 

Corollary 1. 
q ( w )  hold true here 

For q such that z+ 1 5 q 5 p ,  .(U) 2 

and, wp,j(w) = argmax,.,,.,leSv, IHa,e( jw) l  where j?i'"' 
is defined such that 

and (Z?) ,  . . . ,2 iw))  f+ 1 is the (tl, . . . , xi+1) maximizing 
(9) .  - 

Proof. Suppose q 1 7 + 1. If we define 

G("')(S) := Gt(S) + I ? i ( w ) H a , w , , , ( w ) ( ~ )  
i= f+ l  

for some fixed frequency w ,  we can see that this belongs 
to the feasible set and conclude ~ ( w )  := IG(")(jw) - 
Gc(jw)l is.a lower bound to r ( j w ) .  

The upper bound f ( w )  can be rewritten as in 

~ ( w )  := Ij?i(w)Ha,wp,,(,)(w) ( j w ) l  

so we can see the quite clear relation between F(w) and 

5+1 

i=f+1 

E @ ) .  

3.3 Evaluating Least Upper Bounds 
Suppose 7 = L is verified, that is, consider a case where 
intervals for high order modal parameters are unknown 
or no information contributing to uncertainty quantifi- 
cation is available, then we can see from the discussion 
in the previous section : 

Corollary 2. The relation 

will hold true for 2 = e. 

In other words, in the case of 1 = P, the upper and lower 
bounds shown in the above theorems coincide, and be- 
come equal to the least upper bounds r ( w )  and explicit 
formula for the least upper bounds can be available. 
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Remark 4. It is easy to show the following fact from 
comparing with the result in [4]: for 7 = e, the complex 
number Gn(w) minimizing 

for w is no other than G t ( j w ) ,  and the minimized value 
is r(w). That is, 

.(U) = min sup I G ( j w )  - Gn(w)I (12) 
Gm (W E c GE Pt 

hold true. 

4 Example 

4.1 Flexible Beam: Equation of Motion 
We consider an example for controller design to s u p  
press the bending vibration for an ideal flexible beam. 
Dynamics of bending motion of canti-levered beam 
where sensors and actuators may not be collocated is 
described as 

av asv 
a€ a€3 v ( t , O )  = - ( t , O )  = 1) = - ( t ,  1) = 0 (13.b) 

?At) = . ( t , € O )  (13.c) 

where a(() is Dirac's delta function. firthermore -y = 
1 x and ti = 1 and to = 0.5 represent the location 
of point input and output. 

4.2 Evaluating a, /3, and p 
It is well-known that a countable infinite number 
of non-trivial solutions to the Eigenvalue/Eigenvector 
problem 

cp'"'(€) = P d E )  (0 < € < 1) 

exist, and let 0 < p1 5 ~2 5 
pi([) the transfer function can be written as 

and corresponding 

where Ci = p;(t0) and b; = pi(&). If we apply this 
to (l) ,  we see w? = p;,  <i = 7wi ( V i ) ,  k; = c;bi/p; 
therefore it should be p = 1. 

Furthermore, I 

W 

while 

should be bounded. So a' < 0, 2 a  - 2 -  a' < 0. On 
the other hand ICi/wj12 = vco(&,) where qc,,(() is 
a solution to the following boundary value problem: 

?$:(e) = w - E o ) ,  0 < € < 1 

5Jc0(O) = 9;0(0) = 7$,(1) = $p) = 0 
vci(<) can be defined similarly, and E:, Ibi/wiI2 = 
a,(&). We obtain that if CY' = -1, CY = 0, then Evalu- 
ation like p = d5~c~(<~) Q,(&) proves to be true. 

I 

'- toP 1 0' td ld 

Figure 1: Evaluation of upper and lower bounds to the 
least upper bounds. 

4.3 Quantification of Error Bounds 
Quintic B splines defined on equidistant 21 spatial 
nodes on [0, 11, adjusted to  the boundary conditions, 
are used as coordinate functions. And we evaluate as 
a,(€;) = 0.333, Q , ( < ~ )  = 0.0417 by Galerkin approxi- 
mation using the above coordinate functions. A finite 
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dimensional system is derived, and the eigenvalues of 
the approximating system are guaranteed from princi- 
ples of variations to be upper bounds of the eigenvalues 
of the original system. The computed results of bound- 
ing parameters w i ,  lei are shown in Table 1. Refer to [5] 
for detail of the parameter bounding. Applying the for- 
mula of the main result, both sufficient and necessary 
magnitudes are plotted in Figure 1. We see that their 
gap is so small that they do not affect controller de- 
sign. Two major vibrating modes are considered in the 
nominal model (e  = 2). We obtain the 8th order con- 
troller that satisfies the specs for QO = 1 and W d  = 1 
using the MATLAB linear matrix inequalities (LMI) 
toolbox. The design results of ]S(jw)l,  IWd(jw)l,  and 
IWa(jw)l are plotted in Figure 2. 

Figure 3: Step response of the plant in open and closed 
loop 

4.4 Discussion 
The feasible set in this example is broader than that in 
[5] since we are not using internal eigenstructures but 
just modal parameters of input-output relations. Thus 

uncertainty bounds become larger by +10dB, but we 
found little effects on achievable control performance. 

5 Conclusion 

In this paper we proposed a modeling of uncertainty in 
elastic vibrating systems. Here we formulate the sys- 
tem as input-output relation, and presented a methods 
to bound of uncertainty in the frequency domain. The 
class of systems considered here include ones in [5] and 
the results are its generalization in some sense. Our ap- 
proach is based on feasible set of systems, and it is to 
find upper and lower bounds of uncertainty magnitudes 
by solving linear programming. The minimum size of 
linear programming problem to be solved is given for 
bounding the errors allowing for reasonable effiencient 
computation. We pointed out that the least magni- 
tude of uncertainties is given in explicit form for the 
case where intervals of high order modal parameters 
are unknown; we clarified a meaning of the result in [4] 
in another view. We illustrate the feasibility of the pro- 
posed scheme by numerical study on an ideal flexible 
beam example. 
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