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NEW  APPROXIMATE  METHOD  FOR  CALCULATING  THREE-DIMENSIONAL 
MAGNETIC  FIELDS  IN  LAMINATED CORES 

T.Nakata. N-Takahashi and  Y.Kawase 

ABSTRACT 

A new approximate  method for calculating 
three-dimensional  magnetic  fields in laminated  cores 
has been  developed  by  modifying  the  two-dimensional 
finite element  method.  Using  this new method,  both 
computer  storage  and  computing  time  can  be  considerably 
reduced  compared  with  a  three-dimensional  analysis. 

In this  paper,  the new technique is explained,  and 
then  its  usefulness is shown by applying  it to the 
analysis  Of flux distributions at the T-joint of the 
so-called  scrap-less  type  three-phase  transformer  core. 

1. INTRODUCTION 

At  the T-joint of  the  so-called  scrap-less  type 
three-phase  transformer  core  made of grain-oriented 
silicon  steel,  the  laminations  are  alternately  turned 
over so that  the  angle  between  the rolling directions 
of  overlapping  sheets  is 90°[11. In  such  laminations, 
the  flux  distribution in one  layer is different  from 
that  in  the  adjacent one. Thus a  three-dimensional 
analysis is required.  If an approximate analysis of 
such  three-dimensional fields is possible  by  modifying 
the  two-dimensional  finite  element  method,  both 
computer  storage  and  computing  time  can be considerably 
reduced. 

A new approximate  method  for  calculating 
three-dimensional  magnetic  fields  in  laminated  cores 
has been  developed by introducing  the  "flux 
distribution  ratio  [2l"  defined  in 2.2. An economical 
analysis  of  the  flux  distribution in each  layer has 
become  possible  using  the new method. 

2. ANALYSIS __-- 

2.1 Analyzed  Model 

Figure 1 shows  the  so-called  scrap-less type 
three-phase  transformer core. Laminations are 
alternately  turned  over.  The  solid  arrows t----f denote 
the  rolling  directions  of  the  grain-oriented silicon 
steel  sheets  in the first  layer  and  the  dashed arrows 
+e---$ denote  those in the  adjacent  layer.  In  the 
hatched  parts  of Fig.1, the  angle  between  the  rolling 
directions of the  adjacent  sheets is 90'. 

2.2 Flux Density in Each  Sheet 

Figure  2  shows  the  cross-section  of  the core along 
the line f2-n' in Fig.1.  As the  laminations are 
alternately  turned  over, it is sufficient to discuss 
the  behaviour  of  fluxes in only the  two  layers  in 
Fig.2. The magnetic  reluctance in the  x-direction of 
the  first  layer  is  different  from  that  of  the  second 
layer.  Therefore,  the  flux 4x1 in the first layer  is 
different from the  flux 4x2 in the  second  layer. 

The  x-components Bxl and E x ,  of  the  flux  densities 
in the  first  and  second  layers  shown in Fig.2 are 
denoted  by 

Bxl=@xl  /t=QxFxI/t , (1) 

BxZ=@xzIt=@xFxzIt, ( 2 )  
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where @x, 9x1 and @x2 are  the  x-components  of  the  total 
flux in the  two  layers,  the  flux in the  first  layer 
and  the  flux  in  the  second  layer,  respectively. 'I'hcsc 
are the  fluxes  per  l(m)  in  the  y-direction. "t" is  the 
effective  thickn,ess  of  one  sheet  in  the  z-direction. 
The flux  distribution  ratios Fxl and FxZ in  each 
element are defined as follows: 

The  total  flux @x can  be  written,in terms of the 
vector  potential A, as follows 131: 

By  substituting Eqs.(l) and ( 5 )  into Eqs.(l) and 
(2). the  flux  densities Bxl and Ex2 can be rewritten  in 
terms of A and F x ~  as  follows: 

BX 1=  2 F~ aA/ay (6) 

The y-components Byl and By2 of  the  flux  densities 
in  the  first  and  second  layers  can  also  be  derived  in 
the  same  way  and  written as follows: 

where  the  flux  distribution ratio F y l  is  defined by 

FY,=@Y,I@y . (10) 

@ y l  and Q Y  are  the  y-components  of  the  flux in the 
first  layer  and of the  total  flux  respectively. 

2.3 Calculation  of  Energy,  Vector  Potentials  and  Flux 
Distribution  Ratios 

---_________ 

In our new approximate  method,  the  vector 
potentials (A)  and  the  flux  distribution  ratios  [Fxl) 
and lFyl) are  calculated  under  the  minimum  energy 
principle. The total  energy X of  the  two  layers in 
Fig.2 can be  expressed as 

T 

U V W -- - 
< 1 ./ 1> 

directions 

z k x  mixed-  regions 

Fig.1 Three-phase  transformer core. 

1st layer 

2nd layer 

Fig.2 Section a-a' of laminated  core. 
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x=x1+x,, 
(11) 

(22) 

where X I  and XZ are the  energies in the first and 
second  layers, and these  are  given by 

xl=xX1+xY1 , (12) 

X2=Xxl+,Xyz, ( 1 3 )  

where, (Fxl) and (FYI) are  assumed  to  be  known. 
Any kinds of elements,  such as high-order element, 

isoparametric  element etc., can be  used  for  the 
discretization of Eq.(22). For simplicity, a 
first-order  triangular  element  is  used  here. Bx1 can 
be  written as follows from Eq.(6): 

Where, Nk is  an  interpolation function [31 of a first- 
order triangular  element  associated  with node k. From 
Eqs.(22) and (231, 'aXxl/aAi can be rewritten as 

(1.7) The derivative of Xyl, XX z  and Xyz with  respect  to  Ai 
can be  calculated  in  the  same way, and  the  final ax/ aAi 
is  given  by In Eqs.(14)-(17), it is assumed that the z-components 

of  the  fluxes  and  eddy  currents  are neglected, and  the 
energy in each  layer  can  be  calculated  using  the x- and 
y-components of rel~~ctivities. S denotes the region to 
be  analyzed,  and vXl, vx2 , v y l  and v are the  x-  and 
y-components of the reluctivities :A the first and 
second  layers,  respectively. 

In a  laminated  core,  as  the  z-component of the 
flux  density  is  very  small  compared  with  the  x- or 
y-component,  the  above-mentioned  assumption is 
acceptable,  when  the  interlaminar air gap between  the 
sheets is  very small compared  with  the thickness of the 
sheet. 

In order to calculate  both  the  flux  distributions 
in  the  first  and  second  layers,  not  only  the  vector 
potentials (AI but also the  flux  distribution  ratios 
(Fxl)  and (Fy,) are treated as independent  variables. 
The following  equations  are  obtained  under  the  minimum 
energy  principle: 

(18) 

(25) 

In the  nonlinear analysis using the Newton-Raphson 
iteration  technique  [31,  the  increments { 6 A j ]  are 
obtained from the  following  equation: 

(26) 

:x/aAiaAjis given as follows  from Eqs.(ll)-(l3): 

+--- a "I aBx' aNi f - a$r:, Ak) dxdy, ( 2 0 )  

a ~ x :  a A j  aY k, 

aBx'l/aAj can be calculated asfollowsfrom Eq.(23): where Ai is the vector  potential at node i. The suffix 
(e) denotes the  element e. n  is  the  number  of  nodes 
at which  the  vector  potential is unknown,  and  ne  is  the 
number  of  elements in the region to be  analyzed. 

Although,  only  the  case of two kinds of layers 
with different magnetic  reluctances  is  discussed  here, 
the  analysis of the case of m kinds of layers is 
possible by introducing 2(m-1) kinds of  distribution 
factors. 

2.4 Finite  Element  Formulation 

The  energy X is a  nonlinear  function  of  the  vector 
potentials (A) and  the  flux  distribution  ratios  [Fxl) 
and  [FyIl..  Therefore,  it  is  difficult to solve Eqs.(l8), 
(19) and (20) directly  and s o  an iterative technique 
is introduced. 

2 
From Eqs.(28) and (29),  aXxr/aAiaAj is given by 

(30) 

The derivative  of Xyl, X x I  and X y t  with  respect to Ai 
and A j  can be calculated in the same way, and the final 
a2X/aAiaAj is given by 

(a) .Discretization  of Eq.(18) 

The derivative of X in Eq.(18) with  respect to the 
vector  potential  Ai  is  given as follows  from 
EqS.(ll)-(l3): 

ax a 
a Ai aAi 
- =- (XXl+XYl+ Xxz+Xy,) (21) 
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(b) Discretization  of Eas.(l9)  and ( 2 0 )  

aX/aFxl  and ax/ aFy,  are  obtained  from  Eqs.(6)-(9) 
and (11)-(17) under , the  assumption  that  the  vector 
potentials {Ajare known  as  follows: 

(33) 

b x ~ ,  Vx2, v y l  and, vy 2  are  functions  of BXI,  BXZ, By1 
and By,. The  flux  densities  are  the  functions Of Fxl 
and F~,. Therefore,  Eqs.(32)  and ( 3 3 )  are  nonlinear 
equations of Fx1 and  Fy,. Fx, and Fy , can  be 
calculated by the  Newton  iteration  technique. The 
increments ~ F X ,  and & F Y I  are  given by 

2 

( 3 4 )  

( 3 6 )  

( 3 7 )  

- 2.5 Calculation 

Figure  3  shows  the  steps  of  calculation. 0: The  initial  values  of  vector  potentials (A)  and 
flux  distribution  ratios (Fx,) and (FYI) are Set. 0: The  increments  of  the  vector  potentials { 6 A )  can 
be  calculated  from Eq.(26). 0: The increments of flux distribution  ratios  (6FxI) 
and (6Fyl) are  calculated  from Eqs. (34) and  (35). ( E  1 }  
and ( E  ] are  small  numbers  for  the decision of 
convergence. 
@: The above steps  are  repeated  alternately  until  the 
final  solution  is  obtained. (co)is a  small  number  for 
determining  convergence. 

(-2 

calculation of 

Fig.3 Flow chart. 

3. APPLICATION - 

The  flux  distribution in each  layer  of  the  T-joint 
of a  three-phase  transformer core denoted  in Fig.1 has 
been  calculated. The core  is  made  of 0.35 ( m m )  thick 
grain-oriented  silicon  steel M-5. The  dimensions  of 
the core are  shown  in Fig.1. 

Figure  4  shows  the  flux  density  vectors in each 
layer  of  the  T-joint.  The  overall  flux  density  Bleg in 
the  limb is 1.7(T). The arrows denote the  amplitude 
and  the  direction of the  flux  density  vector in each 
element. The directions of fluxes  near  the  corner of 
the  window in the  T-joint  are almost the same as the 
rolling  direction. The average  flux  distributions of 
both  layers  in Figs. 4(a)  and (b) are shown  in Fig.5. 

The spatial  variations  of the loci of the rotating 
flux  density  vectors  corr;esponding  to  Fig.4(a)  and 
Fig.5 are shown in Figs.6 and 7 ,  respectively.  The 
spatial  distribution of the  maximum  flux  density 
corresponding  to Fig.4(a) is  shown i n  Fig.8. In 
Fig.4(b), as  the  flux  passing  through  the  line  a-a' 
wants to flow  toward  the  corner a, the  maximum  flux 
density at the  corner is beyond 2.O(T). 

Figures  4 to 8 show  that  the  apparent  flux  is quite 
different  from  that  in  each  layer.  Therefore,  there 
would  be a large  error in estimating  the  iron  losses 
from  the  fluxes  in  Figs.  5  and 7 ,  since  the  iron  losses 

I t '  ' 1  t f  ' 1  t '  ';I 

=3 

=60° 
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Fig.5 Apparent  flux  distributions 
(M-5,  0.35mm,  Bleg=1.7T). 

BY [TI 
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Fig.6 Loci  of  the  flux  density  vectors 
in the  first  layer 
(M-5, 0.35mm,  Bleg=1.7T). 
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Fig.8 Distribution  of  the  maximum  flux 
density  in  the  first  layer 
(M-5, 0.35mm,  Bleg=1.7T). 

are  a  function of the  fluxes in each  layer  denoted  in 
Figs. 4, 6 and 8. 

The results  presented  here were calculated within 
about 70(%)  increase of computing  time than a 
two-dimensional  analysis. 

4. CONCLUSIONS 

, By modifying  the  two-dimensional  finite  element 
method,  it has become  possible to analyze  easily  the 
flux distribution in each  layer of laminated  cores  made 
of  grain-oriented  silicon  steel. In our new method, 
the  distribution of flux  in each layer  is  determined by 
the  minimum  energy  principle. The method  has  the 
following  advantages: 
( a )  The  approximate  three-dimensional analysis is 
possible  by  adding  several  lines to the  usual 
two-dimensional  program. 
(b) The computing  time is within  twice as much as 
two-dimensional one. 

The results 'obtained  provide  information for 
designing the most  suitable  laminated  core. 

The  method  will  be  improved so that  the  energy due 
to the  z-component  of  the  flux  and  eddy currents can 
be  taken into account. 
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