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Minimum Test Sets for Locally Exhaustive Testing of Combinational Circuits 
with Five Outputs 

Tokumi Yokohira, Toshimi Shimizu, Hiroyuki Michinishi, 
Yuji Sugiyama and Takuji Okamoto 

Faculty of Engineering 
Okayama University 

3-1-1, Tsushima-naka, Okayama-shi, 700 Japan 

Abstract 
In this paper, features of dependence matrices of com- 

binational circuits with five outputs are discussed, and it is 
shown that a minimum test set for locally exhaustive testing 
of such circuits always has 2" test patterns, where w is the 
maximum number of inputs on which any output depends. 

1 Introduction 
as a 

method to decrease the number of test patterns while re- 
taining the advantages of exhaustive testing in built-in self- 
test of multiple output combinational circuits (CUTS). In 
this testing, if an output Pi depends on wi inputs (1 
i m; m is the number of outputs), Wi-bit exhaus- 
tive patterns are applied to them. Any minimum test set 
W T S )  therefore has at least 2" test patterns, where w 4 
max(w1, w2, * , wm}. 

There has been few researches on the number of ele- 
ments in an MLTS except the papers [6-81, in which it is 
clarified that every CUT with up to four outputs has an 
MLTS with 2" elements. On the other hand, it can be eas- 
ily shown that every CUT with more than five outputs does 
not have such an MLTS. It has not been however known 
whether every CUT with five outputs has such an MLTS or 
not. 

In this paper, we show that every CUT with five outputs 
has an MLTS with 2" test patterns. In Section 2, some 
terminologies and the concept of linear sum assignment['] 
are described as preliminaries for the succeeding sections. 
In Section 3, features of dependence matrices of CUTs with 
(w + 1) inputs and five outputs are clarified. In Section 4, a 
theorem is established from the features that there exists a 
5 x w dependence matrix which is equivalent to each of the 
above matrices with respect to linear sum assignment. In 
Section 5,  it is clarified from the theorem that every CUT 
with five outputs has an MLTS with 2" test pattems. 

2 Preliminaried81 
2.1 Definitions of Terminologies 

We will consider a combinational circuit under test 
(CUT) having n inputs 21, XZ, - -, x,, and m outputs y1, 
312, - e, Ym. It is assumed that the CUT remains combina- 
tional even if any fault occurs. A locally exhaustive test set 
(LTS) for the CUT is defined as follows. 

kcally exhaustive testing has been 

[Definition 11 An n-dimensional vector (XI, 22, e., 

2,) is called a testpattern. If a set T of test patterns satisfies 
the following condition for every output yi (1 g i g m), 
then it is an LTS. 
Condition: If the output yi depends on wi inputs 2f, xi, 

... ,x&, thentheprojectionofTonto(xf, x~, . . . ,x&) 
subspace contains all of 2w0' distinct binary patterns. W 

[Definition 21 The dependence matrix DC for a CUT 
has m row vectors and n column vectors. The ijth element 
of Dc is 1 iff the output yi depends on the input xj, other- 
wise it is 0. 

Note that the weight of the ith row vector in DC is equal 
to W i r  and the maximum row weight of Dc is equal to w, 
wherew 4 maz{w~,w2,~-~,wm}.  

[Definition 31 For 'r  (r 2 l), let tp (1 5 p 5 r )  be a 
column vector with 2' elements, and assume that the 2' x r 
matrix constructed with t1,t2,--- , t t  has all of binary r- 
dimensional row vectors. Then, t p s  are called base column 
vectors and the set {t1,!2, - - - , tp} is called a base set. W 

[Definition 41 A h e a r  combination of the base col- 
umn vectors, kltl@k2t2@ ... @&&, is called a linear 
sum,wherekl,k2,---,Ic, E {0,1} and(kl,kz,***, r 
(0, 0, * * * , 0). 

Note that there exits 2'- 1 linear sums. 
In this section, we implicitly assume, unless otherwise 

stated, that a base set is Tc (A { t l , t 2 , - ~ ~ , t r } ) r  and that 
linear sums are linear combinations of t l 7  t2, - 

[Definition 51 The set of q distinct linear sums fl ,  
f2, . . e ,  fq is called q-independent if the 2' x q matrix 
constructed with these linear sums has all of binary q- 
dimensional row vectors. W 

[Definition 61 Let G be a set of U linear sums fl,  fz, - -, fu, and assume that there exists such a mapping g from 
X (e { XI,  22, - - e, x, }) to G that it satisfies the following 
conhhon for every output yi . 
Condition: Let xi, xi, - ., xi0' denote the inputs on which 

the Output yi depends. If g ( ~ j )  = fj (1 5 j 5 wi), 

, tr 

then the set {ff, f;, , fki} is wi-independent. 
Then the CUT or the corresponding dependence matrix 

DC is called r-assignable, and if ful = g(xj), then it is 
called that the linear sum ful is assigned to the input xi. W 
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Note that, if a CUT is +-assignable, then an LTS with 2' 

[Definition 71 For a given linear sum set L (4 {fl, fz, 

For example, let f l  A tl@t2, f2  A t2@t3, f3 4 t 3  and 

test patterns can be easily obtained. 

- - -, fq}), the set of d linear combinations offl, f2,. - ., 
is represented by F(L) FU1, f2,. . . , fq). 

are represented as follows: 

fi 
A {fl, f2, f31, then f l@f2,  fief37 f3@fl, fl@fZ@f3 

f i e f 2  = tl@t3, fief3 = h, 
f3@fl = tl@t2@t3, fl@f2@ 3 = tl. 

Therefore, F(f1, f2 ,  f3) = F(L) = ftl, t2, t3, tl@t2, t2@t3, 
t3@tl, tl@t2@t3}. 

[Lemma 11 A given linear sum set L (4 { fl,  fz, - - -, 
[Lemma 21 Assume that, a given linear sum set { fl ,  

fz, * * -, fq- 1 } is (q- 1)-independent (q r) ,  and a linear 
sum f is not an element of F(f1, f2, - - - , f q - l ) .  Then, the 
linear sumset { f l , f 2 , - * * , f q - l , f }  isq-independent. H 

[Definition 81 For two linear sums f (4 kltl @ k2t2 

xi=, IEP2P-' < IE;2p-l, then it is called that f is 
smaller than f'. H 

2.2 Linear Sum Assignment Algorithm 
An LTS for an arbitrary CUT can be obtaiued using Ak- 

ers' algorithm below. 
(A-1) r = w. 
(A-2) Select such an arbitrary output yi that the weight 

of the ith row vector in the corresponding dependen? 
matrix is equal to W ,  and assign tj to each input x3 
(1 wi = w ) .  

(A-3) Repeat the following procedures (A-3.1) N (A-3.3) 
until a linear sum is assigned to every input. 
(A-3.1) Select an arbitrary input x j  to which a linear 

sum has not been assigned, and find all output y t ,  
yiZ, - - ., which depend on xj. Next, for each 
output de (1 5 o 5 c),  find all inputs to which 
linear sums have been already assigned, and con- 
struct a set of such linear sums, L:. . 

(A-3.2) Construct an set Si according to the following 
equation. 

fq }) is q-independent iff IF(L)I = 29 - 1. 

@ ... @ Str )  and f' (g kit1 @ yt2 @ * - .  @ k : t p ) ,  if 

i 

si 4 F(Lj*) U F(LjJ U * * * U F(Lic). 
(A-3.3) ConstructF(Z"), whereT'4 { t l , t z , - - * , t r } .  

If Si c F(T'), then execute the following pro- 
cedure (A-3.3.11, otherwise execute the following 
procedure (A-3.3.2). 
(A-3.3.1) Assign the smallest linear sum in the set 

(A-3.3.2) Assign tr+l to Xj, andincrease thevalue 

(A4) Construct the matrix with n linear sums which are 
assigned to the inputs, and consider it as a matrix rep- 
resentation of an LTS. 

In the succeeding sections, we will prove using the con- 
cept of Akers' algorithm that every CUT with five outputs 
has a minimum locally exhaustive test set (MLTS) with 2" 
test patterns. 

- si (= F(T') - Si) to xj. 

of r by 1. 

3 Features of Dependence Matrix with m = 5 
a n d w = n -  1 

In this section, unless otherwise stated, we implicitly as- 

(1) A dependence matrix Dbcorresponding to a CUT with 
n inputs and five outputs IS given, and w = n - 1. And, 
the followings are satisfied (see Figure 1). 
(1-1) The first w columns in the fifth row axe Is, and 

(1-2) The(w+l)stcolumnis(1,...,1,0,...,0,0)~, 

where vT represents the transpose of vector U. 

sume the followings. 

the (w + 1)st column in the fifth row is 0. 

v- 
a 4-a 

Y1 

?Ax 
Y a + l  

314 
315 

Figure 1 
with (w + 1) column's and five 

flh 
1 1  
21x2 

fw 
1 

~ W X " + l  

- a  

matrix 
rows. 

(2) Abaseset isP ( 4 { t 1 , t z , - - . , t w  }),andahearsum 

We consider application of Akers' algorithm to DL (see 
Figure 1). Assume that the output y5 is selected and lm- 
ear sums fl ,  f 2 ,  e-., fw are assigned to the inputs xl, 
22 ,  - a ,  xw respectively in the procedure (A-2), where the 
set F" (A { f 1, fz,. , fw}) is w-independent (note that 
F(Fw)  = F(T")). In the procedure (A-3.1), x,+1 is se- 
lected as x j  and AY+' are constructed (1 5 i s a; note 
that LF+' is li-independent, where l i  4 ILY+')). And then 
S"+' (= F ( L ~ + ' ) u F ( L ~ ' ) u . .  .~F(LE+'))isconstructed 
in the procedure (A-3.2). Using F", Lp+' and S"+', the 
following four lemmas hold (for the simplicity, the super- 
script w+l  is removed from LY" and s"+' in the discus- 
sion below). 

[Lemma 31 For a given linear sum set { fjl,  fjz, - ., 
fj, } (C F"),if fjlCefjz@.**@fj, is anelement inF(Li), 

The proof of Lemma 3 is trivial. 
[Lemma 41 There exists such a linear sum f in F(F") 

- S that it is a linear combination of q linear sums fjl , fjZ, 

(Proof) Since L; c F", there exists a linear sum fj. 
in G(= F" - Li). If we select such an f j .  for each i, and 
create the set of the selected l i n ~  sums, then it has at most 
a elements. Let { fj!, fj2, e s e ,  ti!} (C F"; 1 5 q s a) 
be such set. If a linear sum f;! @ f$ @ - - - @ f) is an el- 
ement in F(L;) for 3i, then {$, $, - . -, $1 s Li from 
Lemma 3. This is contradiction, because at least one ele- 

is a linear combination of tl, t 2 ,  - - -, t,. 

thenq 2 li and{fjlifjz,...rfj,.} C Li. 

**. , f j ,  (q 5 a),wherefj,,fj2,.. . ,fjp E F". 



ment in {f$, fji , + ., fj: 1 is an element in G. Therefore 
the linear sum is not an element in S, consequently the lin- 
ear sum is an element in F(F") - S. Thus there exists the 
linearsumasf. 

Lemma51 Letfj,@fjz@***@fj, (1 5 q 5 a ) b e a  
linear sum f in Le-4, and define E, and Fi (1 i 6 
a) as follows: 

{fjl,fjz,***,fj,}, Fi G n H f .  
Then, Fi is not empty for "i. H 

ASumethatFi =4for3i. SinceF" = L i U z  
and E, C F", Ef C Li. f is therefore an element in 
F(Li). This is contradiction. 

[Lemma 61 Let f ,  Hf and Fi be the same definitions 
as those in Lemma 5, then the followings hold (see Fig- 
ure 2). 
0) If fj.(E Hf) is an element of Fi (1 2 i 5 a ) ,  then 

(P1) If fj.(E Hf) is not an element of Fi (1 2 i 5 a), 

fj,,, fj-n 
1 1 

Zj.1 Zj-11 %+I 

the j ,  th column of the ith row in 0:: is 0. 

then thej, th column of the ith row in 0; is I. 

- a  

fjvl E Fi, fj,ll 6 Fi 
Figure 2 The value of the j,th column of the ith row 

The proof of Lemma 6 is trivial from the definitions of 

From Lemmas 4 - 6, the following two theorems can 
be obtained. 
[Theorem l](see Figure 3) Assume that a linear sum 

f in Lemma 4 is equal to fj,, then the jlst column of the 

in the case that fje E Fi or fj. Fi. 

Li, f E, and Fi. 

itbrow  in^& is0 for'i (1 5 i 5 a). 

Figure 3 Values of the jth columns 
in the case that f = fj,. 

(proof) From the definition of Hf , Hf = { fj, } . There- 
fore, Fi = { fj,} for "i from Lemma 5. Thus, Theorem 1 
holds from (W) of Lemma 6. 

[Definition 91 For two distinct linear sums f (e kl  f l  

@ k2f2 @ e . .  @ kwfw) and f' (A k',fi @ kif2 @ * * *  

@ kSf,) which are elements in F(F"), if k, 5 k; for 
"p (1 5 p 5 w),  then it is called that f is bitwise smuller 
than f'. 

[Definition 101 For a given linear sum set L (E 
F(F")) and f (E L), if there does not exist such a linear 
sum in L that it is bitwise smaller than f ,  then it is called 
that f is a bitwise minimum in L. W 

 or example, letL e { f ~ f i ,  f + 3 f 3 ?  &@fief3 , then 

[Theorem 2l(see Figure 4)  Assume that a linear sum 
f in Lemma 4 is a linear combination of at least two linear 

a) ,and f isabitwiseminimuminS(=F(F")-S). Then, 
the followings hold. 
(Tl) For each v (1 5 v 5 q), there exists such a row Ri, 

corresponding to an output gi, that, the jvth col- of 
the row is 0, and the other columns among the jlst, the 
hnd, -, the jqth columns of the row are 1s. 

(T2) Each of (a - q )  rows obtained by removing &,, RiZ, - -, Ri, from a upper rows has at least one 0 among 

eachoffl@fiand f 2 @ f 3 i s a b i t w l s e " ~ m i n  2 . 
thatis,f = fjl@fjZ@...@fj.@...@fj, (2 5 q 5 

the jlst, the jznd, - - e, the jqth columns. 

Yi, 

Yi, (Ri,) 

yi (E)  

Ys 
. .  

(a;,, a>2, - a, a$. , - - - , aj,) + (1,1, - , I )  
Figure 4 The value of the j,th column of the ith row 

in the case that f = fjl @ f j z  @ ..- @ fj, 
@...e fj, (2 S q S a). 

(Proof) A proof of (Tl) is as follows: Since f is a bit- 
wise minimum in 3, a linear sum f' (& fjl @ fjz @ *.. @ 

@ fj,) which is constructed by remov- 
ing fj. from f is an element in S. Assume that f ' E F(Li, ) 
(1 5 i v  5 a). The set {fj,, fjz, * * . 7  fj.-l, fj.+l, ...* fj,} 
is a subset of Li, from Lemma 3. Therefore, each of fjl, 
fjz, . -, fj--, , fie+], - -, fj, is not an element in Fi, . From 
(Pl) of Lemma 6, the j,~th column in the i,th row of D& 

@ fj.+, @ 
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is 1 for 'U' (1 U' I q ; U' # U). If we assume that fj, 
is ~ ISO an element iiCCiw, then f E F(Li, 1. TES is con- 
tradiction. Therefore, f .. $ Li, . Thus, the j,th column of 
thei,throw is 0 from&) of Lemma 6. A proof of (T2) is 
as follows: If we assume that the j , n t h  column of a row R, 

Figure 5 summarizes the results given by Theorem 2, 
where jl N j and il N i, in Theorem 2 axe assumed 
without loss of generality that j1 < j~ < - < j ,  and 
i, =U( 1 5 U S q), respectively. 

is 1 for 'U' (1 5 U' 5 q), then { fjl, fj2, . . e ,  fj, } E Li, 
C O - U ~ Y  f E F(Li). This is contradiction. 

f31 

Y1 

Y2 

Y3 

Y4 

Y5 

Y1 

Y2 

Y3 

Y4 

Ys 

Y l  
Y2 

Y3 

Y4 

Ys 

(0 Q = 4, f = fjl @ fj2 @ fj3 @ fj4 

Figure 5 Summary of Theorem 2. 

4 Equivalent Dependence Matrix 
In this section, we show that there exists such a depen- 

dence matrix with w columns that it is equivalent to D& 
described in the preceding section if a bitwise minimum f 
in F(F") - S is assigned to the input 2,+1. 

First, we define equivalence relation between depen- 
dence matrices as follows: 

[Definition 111 For two dependence matrices D& and 
D& with arbitrary number of columns, D& and D$ are said 
to be equivalent iff the followings hold. 
(El) The number of rows (m) in D& is equal to that in Db.  
(E2) The row weight (wi) of the ith row in D,$ is equal to 

that in D$ for ' i  (1 5 i 5 m). 
(E3) Linear sums can be assigned to the inputs in D& and 

D& so that the following conditions are satisfied for ' i  
(1 5 i 5 n). 

wi) be 
sets of linear sums which are assigned to the inputs on 
which the outputs yis depend in D& and D&, respec- 
tively. Then both K: and K;" are wi-independent, and 

We next give an algorithm to construct a dependence 
matrix D$ with w columns which is equivalent to D& de- 
scribed in the preceding section under the condition that lin- 
earsumsfl- f , andab i twi se"umf  inF(F")-S  
are assigned to the inputs 21 N 2, and z,+1 inD,$, respec- 
tively. As mentioned in the preceding section, we assume 
without loss of generality that D& is one of matrices of the 
types illustrated in Figures 3 and 5(a)-(0. 

[Algorithm to construct D&] According to the type 
of D&, do one of the followings (1) - (5) (let ai denote the 
valueofthejthcolumnoftheithrow inD&), andlet D& be 
the matrix obtained from the resultant matrix by removing 

Condition: Let K;' and K;" ([Kit  = 

F(K,') = F(K;"). I 



the (w + 1)st column. 
(1) In the case thatD& is of the type illustrated in Figure 3, 

changeail into 1 forweryi (1 
(2) ~n the case that DL is one of matrices ofthe types il- 

lustrated in Figure 5(a), (c) and (0, change aii into l 
for every i (1 5 i 4 a). 

(3) ~n the case that D& is of the type illustrated in 
Figure 5@), do the following procedures (3.1) and 
(3.2). 
(3.1) Change aii into 1 for every i (i = 1,2). 
(3.2) (3.2.1) If (ai1, ajz) = (0,l) or (1,0), then change 

an aiw whose value is O(w = 1 or 2) into 1. 
(3.2.2) If (ai,, aiz> = (0,O) and (a!l, a:,) # (1, 0), 

then change a;, into 1, and change fj, which 
is assigned to zjl into fj,@fjz. 

(3.2.3) Otherwise, that is, (ai1, ai,) = (0,O) and 
(a:,,a:,) = (l,O), then change a:, into 1, 

i s a). 

and c k g e  fj, which is assigned to-zj, into 
fjl@fjZ. 

(4) In the case that DL is of the type illustrated in 
Figure 5(d), do the following procedures (4.1) and 
(4.2). 
(4.1) Change aii into 1 for every i (i = 1,2). 
(4.2) (4.2.1) If (ai., a!. ) = (0,O) for v = 1 or 2, then 

select such a U, and change aiv and a$* into 1, 
and change fjw which is assigned to z j. into 
f j l  @fjz - 

(4.2.2) Otherwise, that is, (ai- ,  a!*) = (0,l)  or 
(1,O) for w = 1 and 2, then change elements 
whose values are Os among si,, a;,, a!, and 
a!, into IS. 

(5 )  In the case that 0:: is of the type illustrated in 
Figure 5(e), do the following procedures (5.1) and 
(5.2). 
(5.1) Change aii into 1 for every i (i = 1,2,3). 
(5.2) Select an a$. (1 5 z1 5 3) whose value is 0, and 

into 1, and change fj. which assigned 

Before proving that 0; is equivalent to Db, we give 

[Lemma 71 For a set Fa (C F"), assume that Fa 2 

change 
to the input zj. into fjl@fjz@fj,. 

the following lemma. 

{fj~,fjz,*",fj,.} (U h 2)- AndletFb be (Fa - (fj,,}) U 
{fjlefjze * efj,,} (1 2 w 5 U). Then F(Fb) = F(Fa). 

The proof is hivial. Note that since Fa is q-independent, 
Fb is also pindependent from Lemmas 1 and 7, where q 
P a l -  = 

It is trivial that the conditions (El) and (E2) 
are satisfied. Since a bitwise minimum f is assigned to 
%,+I, K,' (1 5 i 5 5 )  is wi-indephnt from  emm ma 2. 
Therefore, from k m m a  1, ifF(K,') = F(K!), then K; is 
also wi-indepndent. 

According to the cases (1) - (5) in the algorithm above, 

[Theorem 31 D& is equivalent to Db.  

it can be proved that F(K,') = F(K;). We show a proof 
only in the case (3) due to space limitation. Let Xi" (1 6 
i 5 5; k = 1,2) be a set of the inputs on which the output 

(A) In the case that (3.2.1) in the algorithm is executed. 
A proof for (ail, ai2) = (0,l) is as follows: X; does 

not contain zj,, and contains Zjz and %,+I. The al- 
gorithm changes a,!, into l and removes the (w + 1)st 
columns. Thmfore, x; - {2"+1} = x; - {z,,}. on 
and zw+l, respectively. Therefore, K; - {fj,@fj,} 
= K;" - {fjl}, consequently, F(K:) = F(K;z) from 
 emm ma 7. similarly, we can prove that F(K,') = 
F(K;) for i = 2 and 3. For i = 4 or 5,  is 0, 
and the algorithm does not change the first w columns. 
Therefore F(K,') = F(K:). 

YidependSinD;. 

the other hand, fj, and fjl@fjz are assigned to xjl 

Similarly, we can prove for (ajl,  ai,) = (1,0). 
(B) In the case that (3.2.2) in the algorithm is executed. 

X: does not contain 2 jl , and-contains z j z  and 
to which fj, and fjl@fj, are assigned in Db, respec- 

to which fjl@fj, and fj, assigned in Db, respec- 
tively. From the algorithm, X: contains zj, and zj, 

tively, and does not contain z,+1. Therefore, K ;  = 
KT, consequently F(K;) = F ( q ) .  

For the second row, we can similarly obtain that Kj 
- {til, fjlefjz} = K,2 - {fjl@fjz, fj,}. ~ e t  K 9 
(Ki - {fjlefjz}) U{fjz}, then the following equations 
hold. 

K - {fji,} =Kj  - {fj,@fj,}- 
K - {fji,} = ~ , 2  - {fj,efj,). 

From Lemma 7, therefore, F(Ki) = F ( q ) .  
For the third row, Xi does not contain Zjl and con- 

tains ~ , + 1  to which fjl@fjz is assigned in Db.  From 
the algorithm, Xi contains zj, to which fj,@fj, is as- 
signed in D&. Therefore, Ki = Kz, consequently 

For the fourth row, if (a$1, a!,) = (0,O) or (0, l), then 
it is trivial that IC: = g, consequently F(K:) = 
F(K,). If (a41,a$2) = (1, I), then fjl assigned to zj, 
in D& is changed into fjl@fjz in D'&. Therefore, 
Kl - {fjl} = K: - {fjl@fj,}. From Lemma 7, 
F(K,') = F ( g ) .  The same argument holds for the 
fifth row. 
In the case that (3.2.3) in the algorithm is executed. 

The Number of Elements in Minimum Test 
Set 

F(Ki) = F(K32). 

The argument in (B) similarly holds. 

In this section, we prove that every CUT with five out- 
puts has an MLTS with 2" test patterns. 

Without loss of generality, we assume that the first w 
columns of the fifth row in a given dependence matrix DC 
are 1s. Then, the following theorem is derived from Theo- 
rem 3. 

[Theorem 41 If a linear sum which is a linear com- 
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bination of t l ,  tar * e, t, is assigned to each input in DC 
using the following algorithm, then a set of linear sums as- 
sim to the inputs on which the output yi depends is wi- 
independent (1 5 i 5 5). 
(1) A ~ s i g n b a S e ~ ~ l ~ ~ e c t ~ r s t l ,  t2,  * - -, tw t o ~ 1 ,  22, * a . ,  

in D c ,  respectively, and create a dependence ma- 
trix ll$!) by copying the first w col- in Dc keeping 
the assignment. 

(3) Repeat the following procedures (3.1) N (3.5) until a 
linear sum is assigned to every input in Dc. 
(3.1) If the (w + j)th column in DC is not the form 

of ( ~ , . . . , ~ , o , . . . , o , o ) ~ ,  then rearranging four 

rows except for the fifth one in this form and re- 
arrange the corresponding rows of $-’) in the 
same interchanges as DC . If the (w + g )th column 
in D c  is the form of (1, - - , 1,0, - - , 0, olT, then 

keep both DC and unchanged, and go to 
the procedure (3.2). 

(3.2) Concatenate Dg-’) with the (w +j)th column in 
Dc. And considering the concatenated matrix and 
linear sums which are assigned to the inputs corre- 
sponding to the first w columns in the concatenated 
matrix as D& and fl, f2, . .., fw in Sections 3, re- 
spectively, create F(F”) and S. 

(3.3) Assign a bitwise minimum f in F(Fw)  - S to 
the input Z w + j  in D c .  

(3.4) Assign f to the input Zw+j  in D& (the input cor- 
responding to the (w + 1)st column in ob), and 
create D& using the algorithm in Section 4. 

(3.5) Dg)  = D;, and increase the value of j by 1. H 
(Proof) If n = w , then the proof is trivial. We therefore 

assumethatn 1 w + l .  LetMO’-’)(lS j 5 n-w+l)be 
the matrix constructed with the first (w + j - 1)st columns 
in Dc. 
(1) The argument below holds in the first visit of the pro- 

cedure (3). 
Since DE) = M(O) and a base column vector ti ,  (1 5 

j 1  5 w) is assigned to the input Zj19 the set of fl, f2, 
e, fw in the procedure (3.2) is w-independent. There- 

fore, the procedures (3.3) and (3.4) are executable and 
DE) and Mc0) are equivalent. 

Since D‘O) and Mc0) are equivalent and a bitwise 
minimum p i s  assigned to the input zw+l in DC by 
the procedure (3.3) and the input 2,+1 in D& by the 
procedure (3.4), D& and M(’) are equivalent. On the 
other hand, from Theorem 3, D&(= Dg)) and D& are 
equivalent. Therefore, D$) and M(’) are equivalent. 

(2) If we assume that Dg-’) and MO’-’) (2 5 j 5 n - w )  
are equivalent, then the argument below holds in the 
jth visit of the procedure (3). 

Since Dg-’) and MO’-’) are equivalent, from the 
condition (E3) in the definition 11, K: in D& of the 
procedure (3.2) is w5-independent (w5 = w). There- 

(2) j = 1. 

-- 
a 4-a 

-- 
a 4 - a  

(3) 

fore, the set of fl ,  fit e, f, in the procedure (3.2) 
is w-independent. Therefore, the procedures (3.3) and 
(3.4) are executable. 

Since D$-’) and Mu-’) are equivalent and a bit- 
wise minimum f is assigned to the input Zw+j  in Dc 
by the procedure (3.3) and the input Zw+j in D& by the 
procedure (3.4), D& and Mu) are equivalent. On the 
other hand, from Theorem 3, ob(= Dg’) and 0; axe 
equivalent. Therefore, Dg) and Mu) are equivalent. 
From (1) and (2), by induction, DE-,) and M(”-”) 
(Dc itself) are equivalent. Therefore, from the condi- 
tion (E3) in the definition 11 , a set of linear spms as- 
signed to the inputs on which the output yi depends in 

From the definition 6 and Theorem 4, every CUT with 
five outputs is w-assignable. Therefore, we can conclude 
that every CUT with five outputs has an MLTS with 2w test 
patterns. 

6 Conclusion 
In this paper, we showed that every CUT with five out- 

puts has an MLTS with 2’ test patterns. From the result, 
it can be concluded that while every CUT with more than 
five outputs does not have such an MLTS, every CUT with 
up to five outputs has such an MLTS. 
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