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Minimum Test Sets for Locally Exhaustive Testing of Combinational Circuits
with Five Outputs

Tokumi Yokohira, Toshimi Shimizu, Hiroyuki Michinishi,
Yuji Sugiyama and Takuji Okamoto

Faculty of Engineering
Okayama University
3-1-1, Tsushima-naka, Okayama-shi, 700 Japan

Abstract
In this paper, features of dependence matrices of com-
binational circuits with five outputs are discussed, and it is
shown that a minimum test set for locally exhaustive testing
of such circuits always has 2* test patterns, where w is the
maximum number of inputs on which any output depends.

1 Introduction

Locally exhaustive testing has been proposed!'— as a
method to decrease the number of test patterns while re-
taining the advantages of exhaustive testing in built-in self-
test of multiple output combinational circuits (CUTs). In
this testing, if an output y; depends on w; inputs (1 <
i £ m; m is the number of outputs), w;-bit exhaus-
tive patterns are applied to them. Any minimum test set
(MLTS) therefore has at least 2 test patterns, where w £
maz{wy, wy, -, wn}.

There has been few researches on the number of ele-
ments in an MLTS except the papers [6-8], in which it is
clarified that every CUT with up to four outputs has an
MLTS with 2* elements. On the other hand, it can be eas-
ily shown that every CUT with more than five outputs does
not have such an MLTS. It has not been however known
whether every CUT with five outputs has such an MLTS or
not.

In this paper, we show that every CUT with five outputs
has an MLTS with 2% test patterns. In Section 2, some
terminologies and the concept of linear sum assignment!!!
are described as preliminaries for the succeeding sections.
In Section 3, features of dependence matrices of CUTs with
(w + 1) inputs and five outputs are clarified. In Section 4, a
theorem is established from the features that there exists a
5 x w dependence matrix which is equivalent to each of the
above matrices with respect to linear sum assignment. In
Section 5, it is clarified from the theorem that every CUT
with five outputs has an MLTS with 2% test patterns.

2 Preliminaries'®
2.1 Definitions of Terminologies

We will consider a combinational circuit under test
(CUT) having n inputs z;, 2, - - -, £, and m outputs y;,
Y2, -, Ym. It is assumed that the CUT remains combina-
tional even if any fault occurs. A locally exhaustive test set
(LTS) for the CUT is defined as follows.
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[Definition 1] An n-dimensional vector (2, 23, - --,
z,)iscalled a fest pattern. If a set T of test patterns satisfies
the following condition for every output y; (1 £ i < m),
then it is an LTS. L
Condition: If the output y; depends on w; _inp\_lts zi, .:c;,

-+, Zy,,, then the projection of T onto (2}, 25, - *, Z,,,)
subspace contains all of 2*¢ distinct binary patterns. B

[Definition 2] The dependence matrix D¢ for a CUT
has m row vectors and n column vectors. The ¢5th element
of D¢ is 1 iff the output y; depends on the input z;, other-
wise it is 0. ]

Note that the weight of the ith row vector in D¢ is equal
to w;, and the maximum row weight of D¢ is equal to w,
where w £ maz{w;,w;,- -+, wm}.

[Definition 3] For¥r (r 2 1),lett, (1S p < r)bea
column vector with 2" elements, and assume that the 2" x »
matrix constructed with ¢;,¢,,---, ¢, has all of binary »-
dimensional row vectors. Then, ¢,s are called base column
vectors and the set {),ts,- - -, .} is called a base set. W

[Definition 4] A linear combination of the base col-
umn vectors, kit®kt,® .- - Ok,t,, is called a linear
sum, where ki, ka, - - -, kr € {0, 1} and (k1, k2, , k) £
©,0,---,0). [ ]

Note that there exits 2" —1 linear sums.

In this section, we implicitly assume, unless otherwise
stated, that a base set is " (£ {t;,3,---,t,}), and that
linear sums are linear combinations of ¢y, £;,- -, t,.

[Definition 5] The set of ¢ distinct linear sums f;,
f2, +++, fq is called g-independent if the 2" x g matrix
constructed with these linear sums has all of binary g-
dimensional row vectors. [

[Definition 6] Let G be a set of u linear sums fi, f,,
- ++, fu, and assume that there exists such a mapping g from
X (& {=z,2,++, 4 }) to G that it satisfies the following
condition for every output y;.

Condition: Letz}, 5, - -, x},, denote the inputs on which
the output y; depends. If g(zj) = f} (1 £ j < wy),
then the set {f}, f3,- - -, 5. } is w;-independent.

Then the CUT or the corresponding dependence matrix
Dc is called r-assignable, and if fu, = g(z;), then it is
called that the linear sum f., is assigned to the input z;. B



Note that, if a CUT is r-assignable, then an LTS with 2"
test patterns can be easily obtained.

[Definition 7] For a given linear sum set L (2 {£,, f,
+++, f}), the set of all linear combinations of f;, f,, - - -, f
is represented by F(L) or F(f1, f,- -, fo). d

For example, let f1 £ 4,0t,, f, £ t,®t3, f3 2 t3 and
L £ {f1, £, f3}, then £104,, 2013, 101, /10/,013
are sented as follows:

10f2 = 10t3, fL@fs =1,
F0f1 = 60t:0t3, [10H,0f =t.
Therefore, F(f1, f2, f3) = F(L) = {t1, ta, t3, 11Dty t,Bt3,
t30t,, 1Dt Dt3}.

[Lemma 1] A given linear sumset L (2 { f1, f5, -,
Jq D) is g-independent iff |F(L)| = 29 — 1. |

[Lemma 2] Assume that, a given linear sum set {f;,
J2,++, fq-1} is (g—1)-independent (g £ r), and a linear
sum £ is not an element of F'(f1, f5,+- -, f4—1). Then, the
linear sum set {f1, f2, -+, f4—1, f} is g-independent. W

[Definition 8] For two linear sums f (2 kit; @ kyt,
© -+ © kety) and f' (2 kit) @ kit © --- @ Kit,), if
T kp2P1 < 3 p=1kp2?~1, then it is called that f is
smaller than f'. a

2.2 Linear Sum Assignment Algorithm
An LTS for an arbitrary CUT can be obtained using Ak-
ers’ algorithm below.

(A-]) r=w.

(A-2) Select such an arbitrary output y; that the weight
of the ith row vector in the corresponding dependence
matrix is equal to w, and assign ¢; to each input z}
(15jSw=w). '

(A-3) Repeat the following procedures (A-3.1) ~ (A-3.3)
until a linear sum is assigned to every input.

(A-3.1) Select an arbitrary input ; to which a linear

sum has not been assigned, and find all output yfl,
yfz, RN yf which depend on z;. Next, for each
output ¥ (1 < v £ ), find all inputs to which
linear sums have been already assigned, and con-
struct a set of such linear sums, L}, .

(A-3.2) Construct an set S? according to the following
equation. . . .
§7 &£ F(LL)UFI})U---UFLL).
(A-3.3) Construct F(T™), where T" £ {t;,t5,- -, t,}.
If §7 C F(TT), then execute the following pro-
cedure (A-3.3.1), otherwise execute the following
procedure (A-3.3.2).
(A-3.3.1) Assign the smallest linear sum in the set
Si (=F(T") - §%)toz;.
(A-3.3.2) Assignt,,; toz;, and increase the value
ofr by 1.

(A-4) Construct the matrix with n linear sums which are
assigned to the inputs, and consider it as a matrix rep-
resentation of an LTS. |

In the succeeding sections, we will prove using the con-
cept of Akers’ algorithm that every CUT with five outputs

has a minimum locally exhaustive test set (MLTS) with 2%

test patterns.
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3 Features of Dependence Matrix withm = 5
andw=n-1
In this section, unless otherwise stated, we implicitly as-
sume the followings.
(1) Adependence matrix D}, corresponding to a CUT with
n inputs and five outputs is given, and w = n— 1. And,
the followings are satisfied (see Figure 1).
(1-1) The first w columns in the fifth row are 1s, and
the (w + 1)st column in the fifth row is 0.
(1-2) The (w + 1)st column is (1,---,1,0,---,0,0)7,
A e

a 4—a
where v7 represents the transpose of vector v.
flfz fw
! |
Z1Z2 TwTw+l
Y 1
Yo 1
Yo+l 0
| 4—a
Ya 0
Ysi1]1 110
1Sas4

Figure 1 General form of dependence matrix
with (w + 1) columns and five rows.

(2) Abasesetis T (£ {t1,1, -
is a linear combination of 2,, ¢;, - - -, £,,.

We consider application of Akers’ algorithm to D}, (see
Figure 1). Assume that the output ys is selected and lin-
ear sums fy, fo, ---, fy are assigned to the inputs z,
z3, - -+, Ty Tespectively in the procedure (A-2), where the
set F¥ (& {fi, fay -, fuw}) is w-independent (note that
F(F*¥) = F(T")). In the procedure (A-3.1), Z, is se-
lected as z; and L}"*! are constructed (1 < i £ a; note
that L¥+! is l;-independent, where I; £ |L¥*!]). And then
§v (= F(LY*YUFLY+)U- - -UF (L¥*)) is constructed
in the procedure (A-3.2). Using F¥, L¥*! and §+!, the
following four lemmas hold (for the simplicity, the super-
script w+1 is removed from LY+ and $**! in the discus-
sion below).

[Lemma 3] For a given linear sum set { f;,, fj,, -+,
Ji, }(C F),if £; ©f;,®- - -©f;j, is an element in F(L;),
thenqgli and{fjn.fj:a"'!qu}gLi- |

The proof of Lemma 3 is trivial.

[Lemma 4] There exists such a linear sum f in F(F*)
— S that it is a linear combination of g linear sums f;,, f;,,
---,f,’c (q§a),wheref,~,,f,~,,~-~,fj, € Fv, .

(Proof) Since L; C F", there exists a linear sum fi
in Li(= F* — L;). If we select such an f}. for each i, and
create the set of the selected linear sums, then it has at most
a elements. Let {f;, f;,---, f;}} (CF*; 1S ¢ £ a)
be such set. If a linear sum f}i ® f;i ©--- O flisanel-
ement in F(L;) for 3, then {f;l, ;3, -++, £;%} € L; from
Lemma 3. This is contradiction, because at least one ele-

-, tw }), and a linear sum




ment in {£}}, f ,‘Z ,+++ f;4} is an element in L;. Therefore
the linear sum is not an element in S, consequently the lin-
ear sum is an element in F(F*) — S, Thus there exists the
linear sum as f. ]
[Lemma5] Letf;®f;® - &fj, 1SgSa)bea
linear sum f in Lemma 4, and define Hy andF (1
a) as follows
Hy 2 {f; f500+ 2 f3,}, Fi2 LinHy.
Then, F; is not empty for ¥3. ]
(Proof) Assumethat F; = ¢for5': Since F¥ = [;UL;
and H; C F¥, Hf C L f is therefore an element in
F(L;). ThlS is contradlctlon [ ]
[Lemma 6] Let f, Hy and F; be the same definitions
as tl;(;se in Lemma 5, then the followings hold (see Fig-
ure
(P0) If f;,(€ Hy) is an element of F; (1 £ i < a), then
the j,, th column of the ith row in D, is 0.

(P1) If f;,(€ Hp)is not an element of F; (1 £ i < a),
then the j, th column of theithrow in D5 is1. W
fJ. f:i.n
zJ, z}.n Tyl
1
Yi 0 1 l|a
0 4—a
0
Ys (1 -~ |1 1] -~ 10

f € Fl: f] ” ¢ F
Figure 2 The value of the Jwth column of the ith row
in the case that f;, € F; or f;, ¢ F:.

The proof of Lemma 6 is trivial from the definitions of
L;, f,Hy and F;.

From Lemmas 4 ~ 6, the following two theorems can
be obtained.

[Theorem 1](see Figure 3) Assume that a linear sum
f in Lemma 4 is equal to f;,, then the j;st column of the

ithrowin D} isOfor¥i (1 £ £ a). [ |
fjl
|
zjl Tw+l
®n 0 1
2 0 1
: a
Ya 0 1
0 4 -«
0
Ys |1 1 - 1]0

Figure 3 Values of the jth columns
in the case that f = f;,.

(Proof) From the deﬁnmon of Hy, Hy = {f;,}. There-

fore, F; = {f;,} for ¥i from Lemma 5. Thus, Theorem 1
holds from (PO) of Lemma 6. |
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[Deﬁnitlon 9] For two distinct linear sums f (£

lf 1

(57 k2f2 DD kwfw) and f’ (_ k’lfl 57} k2f2 @ -

eB kL, fw) whlch are elements in F(F"), if k, < k; for

P (1 £ p S w), then it is called that f is bzthse smaller
than f. |
[Definition 10] For a given linear sum set L (C

F(F"’)) and f (e L), if there does not exist such a linear

sum in L that it is bitwise smaller than £, then it is called

that f is a bitwise minimum in L.

For example, let L £ {£101,, /,0f3, 10/,0f3
each of f1®f, and f,@ f; is a bitwise minimum in
[Theorem 2](see Figure 4) Assume that a lmear sum

f in Lemma 4 is a linear combination of at least two linear

sums, that is, f = £;,0f;,®---©f;,®---®fj, 2S¢ =

@), and £ is a bitwise minimum in § (= F(F*)— S). Then,

the followings hold.

(T1) Foreachv (1 £ v £ q), there exists such a row R;,
corresponding to an output y;, that, the j, th column of
the row is 0, and the other columns among the j;st, the

Jjond, - - -, the jgth columns of the row are 1s.
('I‘2) Each of (a— q) rows obtained by removing R;,, R;,,
-, R;, from a upper rows has at least one 0 among

then

the ]1Sl the jond, - - -, the jgth columns. |
i T fi. L
| } } |
Zjy Tj, Zj, Zjq Zwsl
1
¥i, (R:) 0 1 1 1 1
¥i, (Ri,) 1 0 1 1 1
H a
vi, (Bs,) 1 1 0 1 1
¥i, (R:) 1 1 1 0 l
i (R) a;l eyl el e} 1
1
0
ild4—a
0
ysil-~[1|~-(1|~f1]-|1]~1|0

(a} @55 ,za""a';.',""aa;') £#(1,1,---,1)
Figure 4 The value of the j,th column of the ith row
inthe casethatf=£;, © f;,®--- @ fj,
®--®f;, ¢S a).

(Proof) A proof of (T1) is as follows: Since f is a bit-

wise minimum in S alinear sum f' (2 £;, ® f. )
Jiuli ® fou © -+ © £;,) whichis constmcted{)y remov-
ing f;, from fisanelementin S. Assume that f' € F(L.' )
(1S4, S a). The set {fj,, fipo = % Fiuoys Fivar oo Fig}
is a subset of L;, from Lemma 3. Therefore, each of f;,,
Fizs s Fiu ,,f,m, -+, fj, is not an element in F;,. From

(P1) of Lemma 6, the j,+th column in the i,th row of D}



is1forVv' (1 £v' £ ¢;v' #v). If we assume that f;,
is also an element in L;_, then f € F(L; ). This is con-
tradiction. Therefore, f;, & L;,. Thus, the j,th column of
the i, th row is 0 from (ﬁO) of Lemma 6. A proof of (T2) is
as follows: If we assume that the j,th column of a row R;
is1for¥v' (1 £ v' £ g), then { f,, firo -+ £i, } C L,
consequently f € F(L;). This is contradiction. |

Figure 5 summarizes the results given by Theorem 2,
where j; ~ j; and i; ~ i, in Theorem 2 are assumed
without loss of generality that j; < j» < -+ < j, and
iy, =v(l S v < q), respectively.

Ti f,
Tj ”ljz Tw+l
n 0 1 1
7)) 1 0 1
y3 0
Ya 0
ysl1 - 11| - il - 1o
@a=2f=f,9f;
I J -fiz
} |
Zj, Zj Tw+l
n 0 1 1
L'7) 1 0 1
Y3 a; a; 1
Ya a a 0
ys|1 1 1l - 1]0
() a=3, f=£;® fj), (a},a}) £, 1)
fi fin T
| | !
Zj Tj, Tjs Tw+l
73 0 1 1 1
Y2 1 0 1 1
Y3 1 1 0 1
Y4 0
ysl1 - 1l - 1] ~ 1] - 10

©) a=3, f=fjl$fj2$fj3

fil f.iz

| }

Zj Zj, Tw+l
Y1 0 1 1
¥ 1 0 1
v3 o3 o3 1
Ya H | 1
w1 - |1 [1] - 1]o

@ a=4, f=f;® f, @},a}) £Q, D),
@},ad) £(1,1)
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fi fi s
| } )
Zij Zja Zjs Zwtl
" 0 1 1 1
» 1 0 1 1
y3 1 1 0 1
vol kgl Wil Bl 1
v [T 1] -1l - [1]-1]0
) a=4,f =fJ'1 @ f.‘iz ® fiss (a’;l’a‘}z’ a}:) £(1,1,1
i fix fis Fis
| | : |
Zj, Zj; Tjs ZTjs  Tw+l
31 0 1 1 1 1
w| 11 0] |1 |1 [1
Y3 1 1 0 1 1
Ya 1 1 1 0 1
ys (1-{1 1 1 1{-1]0

D a=4, f=fi1 @fj;@fj,ﬂ?fj,
Figure 5 Summary of Theorem 2.

4 Equivalent Dependence Matrix

In this section, we show that there exists such a depen-
dence matrix with w columns that it is equivalent to D},
described in the preceding section if a bitwise minimum f
in F(F*) — S is assigned to the input Zy41.

First, we define equivalence relation between depen-
dence matrices as follows:

[Definition 11] For two dependence matrices D and
D2, with arbitrary number of columns, D}, and D% are said
to be equivalent iff the followings hold.

(E1) The number of rows (m) in D, is equal to that in D%

(E2) The row weight (w;) of the ith row in D}, is equal to
that in D% for ¥i (1 < i £ m).

(E3) Linear sums can be assigned to the inputs in D}, and
D2 so that the following conditions are satisfied for Vi
1<ism).

Condition: Let K} and K? (|K}| = |K?| = wi) be
sets of linear sums which are assigned to the inputs on
which the outputs y;s depend in D}, and D%, respec-
tively. Then both K} and K? are w;-independent, and
F(K}!)=F(&}. [ |

We next give an algorithm to construct a dependence
matrix D2 with w columns which is equivalent to D}, de-
scribed in the preceding section under the condition that lin-
ear sums f; ~ f,, and a bitwise minimum f in F(F¥)—- S
are assigned to the inputs 2; ~ z., and .1 in D}, respec-
tively. As mentioned in the preceding section, we assume
without loss of generality that D}, is one of matrices of the
types illustrated in Figures 3 and 5(a)-(f).

[Algorithm to construct D%] According to the type
of D}, do one of the followings (1) ~ (5) (let a§ denote the
value of the jth column of the ith row in D},), and let DZ be
the matrix obtained from the resultant matrix by removing




the (w + 1)st column.

(1) Inthe case that D}, is of the type illustrated in Figure 3,
change a}, into 1 foreveryi (1< i < a).

(2) In the case that D}, is one of matrices of the types il-
lustrated in Figure 5(a), (¢) and (f), change a, into 1
foreveryi (15i £ a).

(3) In the case that D} is of the type illustrated in
fslg:};m 5(b), do the following procedures (3.1) and
(3.1) Change a}, into 1 for every i (i = 1,2).

(3.2) (3.2.1) If(a},a})=(0,1)or(1,0), then change
an a}, whose value is O(v = 1 or 2) into 1.

(3.2.2) If (a},a},) = (0,0) and (a} ,a})) #(1,0),
then change a?, into 1, and change £;, which
is assigned to z;, into f; @ f;,.

(3.2.3) Otherwise, that is, (a3 ,a3) = (0,0) and
(a},a}) = (1,0), then change @}, into 1,
and change f;, which is assigned to z;, into
15185,

(4) In the case that D} is of the type illustrated in
ggzu)re 5(d), do the following procedures (4.1) and
(4.1) Change o}, into 1 for every i i = 1,2).

42 @2n (a;?' s a;' )=(0,0) forv = 1 or 2, then
select such a v, and change a?, and a}, into 1,
and change f;, which is assigned to z;, into
fii®f5,-

(4.2.2) Otherwise, that is, (a] ,a?) = (0,1) or
(1,0) for v = 1 and 2, then change elements
whose values are Os among a3, a3,, a}, and
a}, into 1s.

(5) In the case that D} is of the type illustrated in
ggzl;re 5(e), do the following procedures (5.1) and
(5.1) Change a}, into 1 for every i (i = 1,2, 3).

(5.2) Selectana}, (1< v < 3) whose value is 0, and
change @} into 1, and change f;, which assigned
to the input z;, into f;,®f;,®f;,. [ ]

Before proving that D2 is equivalent to DL, we give
the following lemma.
[Lemma 7] For a set F, (C F™), assume that F, D

{fiisfizs--+2 f5.} (@ 2 2). Andlet Fy be (F, — {f;,h U

{£;i©f,®---0f;.} 1 £ v S w). Then F(F}) = F(Fn)-

The proof is trivial. Note that since F, is g-independent,
1;"' ils also g-independent from Lemmas 1 and 7, where ¢ £
al-

[Theorem 3] D2 is equivalent to D}. |

(Proof) It is trivial that the conditions (E1) and (E2)
are satisfied. Since a bitwise minimum f is assigned to
Zys1, K} (1 £ i £ 5) is wy-independent from Lemma 2.
Therefore, from Lemma 1, if F(K}) = F(K?), then K7 is
also w;-independent.

According to the cases (1) ~ (5) in the algorithm above,
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it can be proved that F(K}) = F(K?). We show a proof
only in the case (3) due to space limitation. Let X* (1 <
i £ 5;k = 1,2) be a set of the inputs on which the output
yi depends in DL,
(A) In the case that (3.2.1) in the algorithm is executed.
A proof for (a3, a2,) = (0, 1) is as follows: X does

not contain z;,, and contains z;, and 2..;. The al-
gorithm changes a}, into 1 and removes the (w + 1)st
columns. Therefore, X] — {2441} = X? — {z;,}. On
the other hand, f;, and f; ®f;, are assignet{ o zj,
and z,,,,, respectively. Therefore, K] — {f; ®f;,}
= K? - {;,}, consequently, F(K}) = F(K?) from
Lemma 7. Similarly, we can prove that F(K}) =
F(K}) fori = 2and 3. Fori = 4orS5,al,, is0,
and the algorithm does not change the first w columns.
Therefore F(K}) = F(K?).

Similarly, we can prove for (a?l, a;'fz) =(1,0).
In the case that (3.2.2) in the algorithm is executed.

X} does not contain z,, and contains z;, and Zy41
to which £;, and f; ®f;, are assigned in D, respec-
tively. From the algorithm, X7 contains z;, and z;,
to which f;,®f;, and f;, are assigned in D%, respec-
tively, and does not contain z,,;. Therefore, K} =
K?, consequently F(K}) = F(K?).

For the second row, we can similarly obtain that K}
- {fjv -fj1$fi2} = K22 - {filefiz’ fiz}' LetK £
l(lK 12; —{f;,9f;,}) U{;,} then the following equations

old.

K- {f.‘iz} = K% - {fﬁ@fj:}'
K - {;,} = K3 - {£;,01;,}.
From Lemma 7, therefore, F(K}) = F(K3).
For the third row, X} does not contain z;, and con-
1ains Z,.1 to which f; @ f;, is assigned in D},. From
the algorithm, X? contains z;, to which f; ®f;, is as-
signed in D%. Therefore, K} = K32, consequently
F(K})=F(K)).
For the fourth row, if (a}l s a‘}z) =(0,0) or (0, 1), then
it is trivial that K} = K2, consequently F(K})
F(K?). If (a} ,a%) = (1,1), then f;, assigned to z;,
in D} is changed into f; @fj, in D%. Therefore,
K41 - {fj)} = Kf - {fjl®fj2}' From Lemma 7,
F(K}) = F(K?). The same argument holds for the
fifth row.
(C) In the case that (3.2.3) in the algorithm is executed.
The argument in (B) similarly holds.

B)

5 The Number of Elements in Minimum Test

Set

In this section, we prove that every CUT with five out-
puts has an MLTS with 2% test patterns.

Without loss of generality, we assume that the first w
columns of the fifth row in a given dependence matrix D¢
are 1s. Then, the following theorem is derived from Theo-
rem 3.

[Theorem 4] If a linear sum which is a linear com-




bination of ¢y, t,, - - -, ¢, is assigned to each input in D¢

using the following algorithm, then a set of linear sums as-

signed to the inputs on which the output y; depends is w;-

independent (1 £ i £ 5).

(1) Assign base column vectors ¢,%3,-- -, ¢, 021,23, -,
2., in D¢, respectively, and create a dependence ma-
trix Dg) by copying the first w columns in D¢ keeping
the assignment.

@j=1

(3) Repeat the following procedures (3.1) ~ (3.5) until a
linear sum is assigned to every input in D¢.

(3.1) If the (w + j)th column in D¢ is not the form
of (1,---,1,0,--+,0,0)T, then rearranging four

[ ] 4—a
rows except for the fifth one in this form and re-
arrange the corresponding rows of D" in the
same interchanges as D¢. If the (w + 7)th column

in D¢ is the formof (1,:-+,1,0,--+,0,0)T, then
e e Ve

-1 4—a
keep both D¢ and DY~ unchanged, and go to
the procedure (3.2).

(3.2) Concatenate DZ ™" with the (w +3)th column in
Dc. And considering the concatenated matrix and
linear sums which are assigned to the inputs corre-
sponding to the firstw columns in the concatenated
matrix as D}, and fi, f,, - -, fw in Sections 3, re-
spectively, create F(F*) and S.

(3.3) Assign a bitwise minimum f in F(F¥) — S to
the input Z.,.; in De.

(3.4) Assign f to the input Z,,,; in D}, (the input cor-
responding to the (w + 1)st column in D}), and
create D using the algorithm in Section 4.

(3.5) DY = D2, and increase the value of j by 1. B

(Proof) Ifn = w, thenthe proof is trivial. We therefore
assumethatn 2 w+1. Lee MG D (1S jSn-w+1)be
the matrix constructed with the first (w + j — 1)st columns
in Dc.

(1) The argument below holds in the first visit of the pro-
cedure (3).

Since DY = M© and a base column vector t;, (1 <
J1 £ w) is assigned to the input z;,, the set of fi, f2,
- -+, fw in the procedure (3.2) is w-independent. There-
fore, the procedures (3.3) and (3.4) are executable and
DY and M are equivalent.

Since DY and M© are equivalent and a bitwise
minimum f is assigned to the input z,,,; in D¢ by
the procedure (3.3) and the input .4 in D} by the
procedure (3.4), D} and MD are equivalent. On the
other hand, from Theorem 3, D%(= DY) and D}, are
equivalent. Therefore, DY and M are equivalent.
If we assume that Dg_l) and MI-D2<j<n—w)
are equivalent, then the argument below holds in the
Jth visit of the procedure (3).

Since D" and MY~D are equivalent, from the
condition (E3) in the definition 11, K} in D}, of the
procedure (3.2) is ws-independent (ws = w). There-

¢
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fore, the set of fi, f2, *++, fw in the procedure (3.2)
is w-independent. Therefore, the procedures (3.3) and
(3.4) are executable.

Since DY~ and MU= are equivalent and a bit-
wise minimum f is assigned to the input Z,.,; in D¢
by the procedure (3.3) and the input z,.; in D¢, by the
procedure (3.4), D and M©) are equivalent. On the
other hand, from Theorem 3, D% (= DY) and D}, are
equivalent, Therefore, D’ and MY) are equivalent.
From (1) and (2), by induction, D& ~* and M®—*)
(D¢ itself) are equivalent. Therefore, from the condi-
tion (E3) in the definition 11, a set of linear sums as-
signed to the inputs on which the output y; depends in
Dc is wi-independent. ]

From the definition 6 and Theorem 4, every CUT with
five outputs is w-assignable. Therefore, we can conclude
that every CUT with five outputs has an MLTS with 2% test
patterns.

3

6 Conclusion

In this paper, we showed that every CUT with five out-
puts has an MLTS with 2% test patterns. From the result,
it can be concluded that while every CUT with more than
five outputs does not have such an MLTS, every CUT with
up to five outputs has such an MLTS.
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