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Abstract 

One of the most important problem in feature-based 
visual servoing is the slow sampling rate and the delay 
of the camera that can make the closed loop system os- 
cillative or unstable easily. In this paper, a linearized 
observer that estimates the object velocity and updates 
the visual information with the joint sampling rate is 
proposed. Stability of the observer-based control sys- 
tem and effectiveness of the observer are verified by 
experiments on a PUMA 560 robot. 

1 Introduction 

Vision sensor provides rich information on the ob- 
ject and environment, however the sampling rate is 
usually very slow (e.g., 30Hz) compared with that of 
mechanical systems (e.g., 1000Hz). Thus, it is natural 
to compose the control system with two feedback loops 
having different sampling rates. A block diagram of a 
feature-based visual servo system is shown in Figure 1. 
Visual sensor is incorporated in the feedback loop and 
joint servo loop lies inside the vision loop. Since the 
inner loop is 30 times faster than the outer loop, the 
reference command v for the joint servo system should 
be interpolated so as to avoid saturation of the inner 
loop driver due to large step change of the reference. 

Not only interpolating the sensor readings, tracking 
performance will be improved if the object motion dy- 
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Figure 1: Feature-based Visual Tracking 

namics is predicted. Since the CCD camera and image 
processing hardware has sampling/computation de- 
lay, feedforward type controller is much more effective 
than pure feedback for achieving high performance vi- 
sual servoing. There are many publications that try to 
incorporate feedforward structure into the visual servo 
controller. Most of them assume zero-mean Gaussian 
object acceleration, which is required to apply Kalman 
filter, cr-P-7 filter or AR model [9, 1,  61. However this 
assumption is not proper for many tracking applica- 
tions. 

On the other hand, if a model for object motion is 
available, a Luenberger type observer can be adopted. 
Ghosh et al. [2] propose observers for estimating the 
target velocity . Rizzi and Koditchek [7] study a win- 
dow position predictor for object tracking. The au- 
thors use an observer for estimating the object velocity 
and propose a nonlinear controller with the observer 
[4]. On the basis of the object motion model, the 
observer is formulated as a nonlinear adaptive iden- 
tification problem and unknown parameters such as 
position, direction, velocity, center of circle and so on 
are estimated. Thus it can be used for a large class of 
motions including constant velocity, constant acceler- 
ation and cyclic motions. 

This paper considers an compensation scheme for 
the vision sampling delay by estimating the target ve- 
locity. A model describing the object motion is in- 
troduced and a nonlinear observer is presented. The 
effectiveness of the observer-based method was eval- 
uated by simulations and experiments on a two link 
planar direct drive robot [4]. Since the computational 
burden of the controller was too large it was not suit- 
able for robots that have more than three degrees- 
of-freedom. In this paper, a linearized version of the 
observer is presented by neglecting the nonlinear dy- 
namics of the robot. Experiments with PUMA 560 
are carried out to show the validity of the linearized 
feedforward type controller. 
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2 Mathematical Formulation 

Robot Model Assume that the robot has m (2 6) 
joints and the camera is mounted on the robot hand. 
Let q be the ( m  x 1) joint angle vector and se be the 
(6 x 1) vector of camera position and orientation, then 
the kinematic model is given by s, = d(q). 

Object Motion Model Suppose that the object 
has m, (2 6) degrees of freedom and its generalized 
coordinates is p (m, x 1) .  Then the object position 
and orientation is given by so = +(p)  (6  x 1) .  Assume 
that the object velocity is generated by .t (5  m,) di- 
mensional parameter vector d* such that 

ti = q P ) e *  (1) 

is satisfied, where W(p)  is an m, x .t matrix func- 
tion of p.  The vector d* and the equation (1) are 
called the velocity parameter and the object mo- 
tion model, respectively. This motion model is sirn- 
ple but it can model fairly large class of autonomous 
motions including straight, circular, oval and “figure 
8” motions. Similar model was studied and extended 
to the two stage estimator in [3]. 

Camera Model The object image is generated by 
the perspective projection of the relative position be- 
tween the camera and the object. Let “& be the 
(6 x 6) coordinate transformation matrix from the 
world coordinates to the camera coordinates. Then 
the relative position of the object r is defined by 

r = [X  Y z a P ylT = c ~ w ( s ,  - s e ) ,  ( 2 )  

where X ,  Y ,  2 represent the object position in the carn- 
era coordinate system and a, P,  y are the object orien- 
tation parameters of any kind. Let the vector [x yIT be 
the coordinates of a feature point in the image plane. 
Then, the camera model is defined by 

[ ; I = ; [ ; ] ,  (3) 

where f is the focal length of the lens. If there are 
n feature points on an object, then the object image 
can be represented by a 2n dimensional feature vector 
< = [<T . . .  (‘ZIT, which is a function of the relative 
position between the object and the camera i .  This 
relation is called the camera model and is expressed 
by the mapping L defined by 

< = L ( T ) ,  Ed = L ( T d ) ,  (4) 
where r d  is the desired relative position between the 
camera and the object and <d is the desired feature 
vector. 

Jacobians 
yields 

Differentiation of the camera model (4) 

The matrices J (2n x m) and L (2n x m,) are called im- 
age Jacobian and motion Jacobian, respectively. 
It is straight forward to see that 

where 

(7) 
Then we have 

Consider a feature point that lies on the optical 
axis of the camera. When the point moves along the 
optical axis or when the camera rotates around the 
optical axis, the object image do not change. Thus 
this point feature is not useful to control the camera 
position in the Z axis and rotation around the 2 axis. 
In general, if the Jacobians are not full rank, there ex- 
ist such direction(s) of motion that do not change the 
image features and the closed loop system becomes in- 
ternally unstable [5]. Thus, we assume rankJ = m and 
rankL = m,. To satisfy the condition on J ,  2n 2 m 
is necessary. Also if four feature points on a object 
plane is available, then the condition is satisfied for 
practically all object/camera configuration. The re- 
lation between the feature/camera configuration and 
visual servo performance are studied in [5]. 

3 Nonlinear Control Law 

Controlled Variable Let the nominal point be r d  

that satisfies <d = L ( r d ) .  Define a matrix k? = J ( q * ,  p * )  
as the image Jacobian at  the nominal position of the 
object p* and the nominal configuration of the robot 
q* that satisfy s c ( q * )  - s , ( p * )  = r d .  Then the con- 
trolled variable z is defined by 

(9) 

The objective < -+ <d is guaranteed when z -+ 0 pro- 
vided that BTJ is positive definite [4]. 
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Figure 2: Observer-based Controller 

Controller A strictly linearizing controller is de- 
rived by calculating the second derivative of z :  

2 = B ~ J M - +  - h)  + x + Ne* + a+*). (io) 
Please refer to [4] for the definition of A, N ,  0 ,  IC. Since 
B T J  is invertible for p and q in the neighborhood of 
p* and q*,  the actuator torque 

= M ( B ~ J ) - +  - x - Ne* -a@*) )  + h (11) 

with new input v = -Klz-  K2i linearizes the dynam- 
ics to yield + K2i + IC1 z = 0 ,  which is exponentially 
stable. 

Observer The control law (11) requires unknown 
variables i and 0'. Thus an observer is used to es- 
timate them. Let the estimates of the parameter 0' 
and controlled variable z be 0 and 2 ,  respectively, and 
consider the following estimator [8] 

E = B~ J* + B ~ L W B  + ~ ( i  - 

e = - W T L T B P ( i - z ) ,  (12) 

where H is any stable matrix and Q is any positive 
definite matrix. While P is selected to satisfy 

H T P + P H = - Q ,  Q>O.  (13) 

Let the estimation error be e = [ ( z  - 2)T (0. - 
then the estimator (12) makes the equilibrium point 
e = 0 asymptotically stable. 

Observer-based Controller On the basis of the 
estimated velocity of the feature vector i and the es- 
timated object motion parameter 0, consider the fol- 
lowing controller: 

T = M ( B T J ) - ' ( v  - X - N e  - @.(e)) + h,  

w = -Kit - Ic2BT(Jq + LW8).  (14) 

Defining ii = &(e* )  - I C ( @  and substituting (14) into 
(10) yields 

z = - I C ~ %  - ii2(i - B ~ L W ~ )  + ~ e + w i .  (15) 

Thus we obtain the following closed loop dynamics 

i. = Az + f i e + b i ,  (16) 

where x, A, N and 6 are defined by 

0 
N = [  N + I12BTLW 

Then, the estimator (12) and the controller (14) make 
the equilibrium point (z, e )  = 0 asymptotically stable 
[4]. The block diagram in Figure 2 shows the struc- 
ture of the object motion estimation and robot motion 
control that are carried out in parallel. 

4 Linearized Controller 

The controller derived in the previous section is rig- 
orous and useful for theoretical analysis. However, 
the computational burden of the inverse dynamics be- 
comes huge for robots that have many degrees of free- 
dom ( M ,  J,  L ,  W, A,  N ,  IC are all state dependent). On 
the other hand, most general purpose industrial robots 
are velocity control type and the joints contain high 
ratio gears, thus the terms of acceleration, centrifu- 
gal force and Colioris force can be neglected. Then 
the controller can be linearized without having seri- 
ous performance deterioration and the computational 
burden can be reduced considerably. 

The linearized dynamics of the visual servo system 
(9) at ( q , p )  = ( q * , p * )  is given by 

i = BTBq + BTL* WO* 

q = (BTB)-'(w - BTL*WO*) 

(18) 

where L* = L(q*,p*). Then the following control law 

(19) 

linearizes the dynamics from v to z as i = v .  Thus 
with a positive definite gain matrix IC, the feedback 
law v = - K z  makes the equilibrium point z = 0 ex- 
ponentially stable. 

For the linearized system (18), linearized observer 
similar to (12) can be used: 

i = BTBq + BTL*W6 + H(2  - z ) ,  

e = - W ~ L * ~ B P ( ~ - % ) .  (20) 
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Figure 3: Robot Configuration and Object Position 

Note that, at  the rate of joint servo, the observer can 
be drived and the image feature vector z can be u p  
dated. Thus the large vision delay is canceled by using 
i instead of z .  Since B and L* are constant matrices, 
the computational burden is fairly reduced. Only W 
may depend on the object position p .  Some examples 
of the linearized controller with the PUMA robot will 
be described in the following section. 

5 Experiments 

5.1 Linear Motion 
Experimental Setup A board with five feature 
points is attached to a PUMA 550. The X,-Y,-Z, 
world coordinate system is at  the base of the PUMA 
560 which holds the camera. A nominal camera po- 
sition is in front of the the marks and the distance is 
about 1000 [mm]. The nominal positions of the object 
and the camera are shown in Figure 3. 

Object Motion In this experiment, the object 
moves up and down; that is, the object mot8ion 
is translational in the 2, direction. Thus, so = 
[0 0 v,* 0 0 0IT, where v,* is the object velocity in the 
vertical direction 2,. Since the object motion is one 
dimensional, we can choose the generalized coordinate 
as the object height in the world coordinate system, 
i.e., p = 2,. Then we have p = vz and the parame- 
terization (1) is given by W = 1 and 8 = v,. Since 
d s 0 / a p  = [0 0 1 0 0 0IT, the matrix L for the observer 
becomes as follows: 

L = JjCRW[O 0 1 0 0 O]T (21) 

The observer estimates vf , that is, the object velocity 
in the vertical direction. At t = 10 [sec] the object 
starts to move with velocity -20 [mm/sec], that is, 20 
[mm/sec] in the downward (-& direction), and stops 
at t = 15; after 10 seconds of pause, it moves upward 
with velocity 10 [mm/sec] and stops at t = 35. 

20, I 

0 ,  
-20- 
-40 - 
-60 - 
-80 - 

-1oc- 

20 30 40 50 
I 

15, I 

10 -12 

Time [sec] 

0 10 20 30 40 50 
Time [sec] 

Figure 4: Step Response 
(a) -: with Observer, - -: without Observer, 
- .  .: Reference (b) -: Estimated, - -: True 

Experiment The experimental results are shown in 
Figures 4 (a) and (b). In Figure 4 (a), the vertical 
axis shows the position of the camera in the world 
coordinate system. Only the data in 2, direction is 
shown but note that all 6 DOF are controlled by visual 
servo. The performance difference due to observer is 
found only in Z, direction. The solid and broken lines 
are the results with and without the observer, respec- 
tively. The dotted line is the reference trajectory of 
the camera. The control law with the observer is given 
by (20) and (??), and the control law without observer 
is 

q = -(BTB)-lKZ. (22) 

The matrix A' is the gain, which is the same as the 
observer-based controller. By using the observer the 
tracking speed is improved and the tracking error is 
reduced considerably. As shown in the nonlinear case 
[4], overshoot is a shortcoming of the observer-based 
scheme. Figure 4 (b) shows the estimated velocity of 
the object. The broken line shows the true value and 
the solid line is the estimated value. The observer 
estimates the object velocity fairly accurately. 

5.2 Tracking a Mini Robot 

Object Motion The camera tracks a Khepera 
robot as it moves on the floor. The motion is cir- 
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Figure 5: Experimental Setup 

cular with radius 97 [mm]. We assume that the cen- 
ter of circle is known. Two cases with velocities 0.9 
[rad/sec] and 1.8 [rad/sec] are examined. The exper- 
imental setup is depicted in Figure 5. The feature is 
the center of the Khepera in the image. The camera 
tracks the object in a plane parallel to the floor, that 
is, the orientation and the height of the camera are 
kept constant. 

Let the object position be [ X ,  Yo 0IT. Orientation 
is not significant because the object is considered as a 
point. Then the generalized coordinates of the object 
becomes p = [ X ,  YOIT. Using 8so/8p = [l 1 0 0 0 0IT 
yields 

L = Jj"R,[l 1 0 0 0 O]T. (23) 

The observer estimates the rotational velocity of the 
object. 

The Khepera robot starts to move counter- 
clockwise at  t = 5 [sec] with rotational velocity w = 0.9 
[rad/sec]; changes its velocity to w = 1.8 at t = 20; 
and stops at  t = 35. After 5 seconds of rest, Khep- 
era starts to move again clockwise with w = -0.9; 
changes the velocity to w = -1.8 at t = 54; and stops 
at t = 69. 

Control Law In this experiment, the controlled de- 
gree of freedom is two, i.e., the X and Y coordinates 
of the camera position in the world coordinate system. 
Thus to simplify the controller the controlled variable 
z is set to [. In other words, we choose B = I .  Also, 
since the optical axis of the camera is aligned to the 
2, axis which is orthogonal to the floor, the image 

,-3b i o  io i o  40 i o  do io ' 
Time [sec] 

Figure 6: Estimated Rotational Velocity ( L j )  

Jacobian linearized at the reference position can be 
simplified to 

where 2, is the camera height at  the reference posi- 
tion. 

Experiment Figure 6 shows the estimated value of 
w .  The solid line is the estimated velocity and the 
dashed line is the true velocity. The observer esti- 
mates the velocity fairly accurately but oscillations are 
found. The oscillations are due to the calibration er- 
ror of the rotation center. Also, the arm configuration 
becomes almost singular (the arm is almost stretched 
out) when the object is at the farthest position. Thus 
the joint control accuracy is not very good around the 
farthest point. This singularity problem is another 
reason for oscillation. 

Figures 7 (a) and (b) show the error in the image 
plane for z and y directions, respectively. The solid 
line is the result with the observer and the broken line 
is the result without the observer. Note that the error 
is reduced for both direction by using the observer. 

Figures 8 (a) and (b) show the feedforward term 
-LWe and the feedback term -I<i of the observer- 
based controller. The feedforward input is larger than 
the feedback input and the magnitude of the feedfor- 
ward input changes with the object velocity. Thus the 
object tracking is mainly driven by the feedforward in- 
put and the feedback is used to correct the tracking 
error. 

6 Conclusions 

The vision sensor includes delay in its structure and 
the sampling rate is usually very slow. Thus, increas- 
ing the feedback gain yields oscillations and feedfor- 
ward type controllers are effective. We have intro- 

267 



= 20, ‘ 1  
2 15 
4 10 
0 ” s  

.CI 

$ 0  
-5 

-10 
-15 

J . .  
-2% i o  io i o  40 i o  i o  i o  

Time [sec] 
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duced a visual feedback controller with a velocity feed- 
forward that compensates the vision delay and gen- 
erates the inter-sample information. Stability of the 
observer-based control system is presented in a nonlin- 
ear form and a linearized version is derived to reduce 
the computational complexity. Experimental results 
with PUMA 560 have shown the stable and accurate 
performance of the observer-based visual servo con- 
troller. The results emphasizes the usefulness of object 
velocity feedforward in the application of vision-based 
control. 
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Figure 8: Control Input 
(a) Feedforward (-LWB) (b) Feedback ( - IC()  
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