
Engineering

Industrial & Management Engineering fields

Okayama University Year 2004

A double layered state space construction

method for reinforcement learning agents

Hisashi Handa
Okayama University

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information
Repository.

http://escholarship.lib.okayama-u.ac.jp/industrial engineering/19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/12524979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SICE Annual Conference in Sapporo, August 4-6,2004
Hokkaido Institute of Tecnology, Japan

A Double Layered State Space Construction
Reinfrocement Learning Agents

H. Handa

Method for

Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, JAPAN
handa@sdc.it.okayama-u.ac.jp

Abstract: In this paper, we propose a new double-layered state space construction method which consists
of Fritzke’s Growing Neural Gas algorithm and a class management mechanism of GNG units. The classi-
fication algorithm yields a new class by referring to anticipation error, anticipation vectors of an originated
class, and anticipation vectors GNG units belonging in the originated class,

Keywords: Reinforcement Learning, Growing Neural Gas, Incremental State Space Construction

1. Introduction

Reinforcement learning is one of the most active research ar-
eas in intelligent systems‘). Reinforcement learning agents
try to maximize the total amount of reward in the future
through their interaction with a complex and uncertain en-
vironment. The object of reinforcement learning agents is to
discover effective policy how agents decide actions against
any perceptual inputs in order to receive the most reward via
their trying.

In order to constitute reinforcement learning agents with
continuous inputs, it is very important to design adequate
state spaces for the agents. However, the design of the state
space is terribly difficult since we have to take account info
the characteristics of input-output map of the agents. More-
over, such design process force us to tune the parameters
for acquiring the adequate state space with a lot of “trials
and errors”. That is, if the designer of the agents prepare
fine-grained state space, the agents have to Iearn huge search
space due to the large number of states. On the other hand, if
coarse-grained state space is given to the agents, the percep-
tual alias problem is occurred: sensory inputs which should
be recognized as the different states are recognized as the
same state.

Recently, state construction methods which autonomously
generate state spaces have been broadly studied. Most of
them depends on the reward signal or state values 3, ‘).

The researches of such studies exhibited the effectiveness
of their own approach. However, we think the most impor-
tant property of the state space for the reinforcement learn-
ing agents is the sit~atedness~): Agents should be able to de-
scribe their surroundings well through their experience, i.e.,
their perception-action series. That is, agents should know
the effects of their actions - the changes of sensory inputs
through their actions. Hence, we propose a double layered
state space construction method, which consists of Fritzke’s
Growing Neural Gas Algorithms (GNG) 6, and a class man-
agement mechanism (CMM), based upon agent’s anticipated
sensory inputs. The GNG condenses sensory inputs and
learns which area is frequently sensed. On the other hand,
the CMM assign class labels onto the references of GNG
nodes by refemng to anticipation vectors of sensory inputs
at the next time step and anticipation errors. The proposed

method can incrementally constitute state space of agents
while reinforcement leaming algorithms leam the policy for
the agents.

2. Growing Neural Gas Algorithm
The Growing Neural Gas (GNG) algorithm is a type of com-
petitive leaming neural network which consists of nodes and
edges @. The edges represent adjacency relationships be-
tween the nodes. A weight vector of which the dimension
is the same as the input vector for neural networks is asso-
ciated to each node. The network topologies of neural net-
works in the GNG is changed adaptively: a node is added
for reducing accumulated errors and is deleted when no ad-
jacent node exists. Furthermore, the adjacency relationship
between the nodes, which is represented by the edge, is dy-
namically changed in accordance with activation frequencies
of the node and its neighboring nodes. In this paper, we
adopt the GNG to learn the input distribution and to con-
dense the input veclor, which is an n-dimensional input vec-
tor, to discrete sets, i.e., nodes (neurons).

The leaming procedure of the GNG algorithms is de-
scribed as follows:

An initial network, which consists of two nodes a and
b having weight vecton wa and Wb, respectively, which
are randomly generated, and an edge between the two
nodes is constituted. The age of the edge is set to be 0.

Find the nearest node s1 and the second nearest node $2

for an input vector [:

SI = argmin [E - wsc I

s2 = argmin 16 - ws, 1,
8 ,

* f ,S i f81

where s indicates a set of nodes.

The age of all edges connected to the node s 1 is incre-
mented by 1.

The accumulated error E(s1) of the node s1 is accumu-
lated according to the following equation:

-2698- PR0002/04/0000-2698 WOO 0 2004 S E E

mailto:handa@sdc.it.okayama-u.ac.jp

Figure 1: A depiction of the weight modification of GNG
nodes

5. Move the weight vector wsl of the node s1 to the inte-
rior division of the input vector 6 for which the interior
fraction is q,. In addition, all nodes connected n to the
node s1 are moved to the interior division of the input
vector 6 for which the interior fraction is en:

a%, = %(E - ws, 1
Awn =cn(t -wn)j

wh‘ere 0 < en < < 1. Hence, the nearest node
SI approaches more than the neighboring nodes, as de-
picted in Fig. l .

6. If an edge exists between nodes $ 1 and 9 2 , the age of
the edge is reset to 0. Otherwise, a new edge of age 0 is
added between the nodes.

7. Edges of age greater than amos are removed. As a con-
sequence, nodes which are not connected to other nodes
are also removed.

8. At every X step, a new node i s added to the network.

9. The accumulated errors for all nodes are decreased by
multiplication by a constant parameter d defined in ad-
vance.

10. Go back to 2) if terminal conditions have not held.

The node addition in the step 8) in the above procedure is
carried out as follows:

Sa) First, find a node q with the maximum accumulated er-
ror.

8b) Next, find a node f which has the maximum accumu-
lated error among all nodes connected by the node q, A
new node T is then generated at the midpoint between
the nodes q and f, that is, the weight vector of the node
T is defined as follows:

wr = 0.5 x (w, + w,)

Sc) The edge between nodes q, f is removed. Instead, two
new edges, i.e. the edge between nodes q , T and the
edge between nodes T , f, are added to the network.

Sd) The accumulated error of the nodes q, f is reduced by
multiplication by a predefined constant value 9. In ad-
dition, the accumulated error of the node T is initialized
as the accumulated error E(q) of the node p:

W d = -11 - rl)E(d
W f) = 4 1 - V)E(f)

E (T) = Jw

Environment

Sensor Actuator
Reward

‘I.

The references of nodes in the GNG for
an Action A (left) and an Action B (right)

Figure 2: An overview of the proposed method

3. Double Layered State Space Con-
struction Method for Reinforcement
Learning Agents

3.1 An Overview of the Proposed Method
As depicted in Fig. 2, the proposed method serves as
“the state recognition unit” which maps continuous n-
dimensional inputs to discrete states. The balloon area in
this figure shows the constitution of the proposed method. In
the proposed method, the Growing Neural Gas (GNG) mod-
ule, which is identical to the conventional GNG algorithms
mentioned in the previous section, learns the topology of the
input space of the reinforcement leaming agents. The Class
Management Mechanism (CMM) module administrates the
lookup table from nodes in the GNG module to states pre-
sented to the action selection module in the reinforcement
learning agent. Because the GNG module is identical to the
conventional GNG algorithms, we will introduce the CMM
module in the next subsection.

3.2 Class Management Module
The CMM module has several groups of the references of
the GNG nodes. Each group corresponds to each action of
the agents. Hence, the number of groups is the same as the
number of actions. In addition, the CMM module has several
classes (states) for each group. The classes in a group (ac-
tion) a consist of the state-action value of each class V(s , a),

-2699-

an anticipation vector As,a of the class s, and an anticipated
error EA(s, a). Each reference U in a group (action) a has
an anticipation vector A,,,, and an index of the member
class (state) s. By referring to the anticipation error of the
class, the CMM module decides whether a new class is gen-
erated. The following paragraphs describe the calculations in
the references, the calculations in the classes, and the class
management of the CMM module.

Reference-level behavior is described as follows: The an-
ticipation of a reference U belonging in a group (ac-
tion) a indicates an n-dimensional vector which estimates
the sensory changes by taking the action a in which the ref-
erence U is activated. Suppose that j denotes the number
of occurrences of situations that take an action a in which
the reference U is activated. Moreover, let 6i be a sensory
difference between the time step [(t j) , in which the ith oc-
currence is observed, and its next time step is ((t i + l), i.e.
bi = [(t i + 1) - <(ti). The anticipation vector Au,a is in-
crementally updated as follows:

AA,,, ~ a (6 -& ,a) , (1)

where eo denotes a predefined constant value.
The calculation in the class level is carried out as follows:

The anticipation vector A , , is updated by the same means
in equation (1):

Moreover, the anticipation error is accumulated for each oc-
currence:

where p is a predefined constant parameter. The method by
which to update the state-action values of class (state) de-
pends on the reinforcement learning algorithms. However,
we can adopt various kinds of conventional reinforcement
learning Algorithms, such as SALSA, TD(X), and Profit
Sharing, to combine with the proposed method, in this pa-
per, we employ the Q-Learning Method to update the state
action d u e s ’1:

where the subscript t indicates the time step. In the calcu-
lation of max, V(st+l, at+l), st+l corresponds to classes
(states) in all groups (actions), for which the reference refers
the same GNG node activated in the time step t $- 1.

The CMM module, at every predefined interval, divides
a class, such that its anticipation error is the highest among
all classes and is greater than the threshold, into two new
classes. The division procedure is described as follows:

1. Find a class CI which has the maximum anticipation
error.

2. If the anticipation error E ~ (c 1 , a) of the class c1 is
greater than cc, go to step 3). Otherwise, exit this di-
vision procedure.

3.

4.

5.

6.

7.

4.1

Figure 3: A depiction of the mountain-car task

Find a reference uf for which the anticipation vector
is the farthest from the anticipation vector A,,,, of c1
among all references which have the index to the class
c1.

Generate a new class e,, and move the re fen” uf
from class e1 to e,,.

For each reference U’ in the class c1, which is connected
to references in the cIass c,, if the distance between
the anticipation vectors and A,,,, is longer than
the distance between the anticipation vectors Aut+ and
A,, ,,, then the node U’ is moved to class cn.

The previous step is recursively applied while the newly
moved references exist.

The anticipation error EA(%, a) of the class c,, is set
to be 0. The anticipation error E A (c ~ , U) of the class c1
is multiplied by a constant value g. Moreover, the an-
ticipation vectors Acn,a and A,,,, are set to be the av-
eraged vectors of the anticipation vectors in the classes
e, and c1, respectively.

4. Computational Simulation

Problem Settings
In this paper, we compare the proposed method to tile-coding
to examine ihe mountain-car task I). As depicted in Fig. 3,
the agent is surrounded by hills on both the left and right
sides. The agent’s task is to reach the hill on the right side.
However, the agent does not potentially have enough power
to reach the right hill, e.g., the agent cannot reach the right
hill using only the action “right” from the bottom of the val-
ley with the initial velocity = 0, In the mountain-car task
problems written in the textbook by Sutton ‘I, the agent can
perform three types of action: “go left”, ‘do nothing”, and
“go right”. In this paper, for simplicity, the agent can per-
form only two types of action (cf. Fig. 6): “go left” and “go
right”. The agent can sense its current position and velocity,
as shown on the abscissa in Fig. 3. The agent is rewarded
-1 at each time step. The state value of the goal state, i.e.,
the right end in Fig. 3 is set to 0. One episode finishes either

-2700-

Table 1 : Parameters for the proposed method

0.7

0.7

E= 6.0

when the agent achieves the goal state or the number of step5
reaches 500. For each run, 200 episodes are examined.

The parameter for the proposed method is summarized in
Table 1. We adopt a Q-Learning as the reinforcement learn-
ing algorithm for the proposed method. We compared the
proposed method to the conventional Q-Learning method
with tile coding, in which the tile size was set to be 3, 5,
7,9, 11, 13, or 15. The learning parameters cy and y for the
proposed method and the conventional Q-Learning are set to
be 0.9.

4.2 Experimental Results

Figure 4 and Fig. 5 show the temporal changes in the mov-
ing average of the success ratio and the number of steps re-
quired in order to achieve to the goal state, respectively. In
both graphs, the 2 axis denotes the number of episodes. In
Fig. 4, the y axis denotes the success ratio, which is defined
as the fraction of runs required in order to achieve the goal
state. In Fig. 5, the g axis denotes the number of steps. If the
agent cannot attain the goal state during a certain run, the
number of steps in the run is set to 500, which is the same as
the maximum episode length. The conventional Q-learning
with coarse-grained tile-coding, e.g., tile size = 3 or 5 , shows
worse performance than the proposed method and the con-
ventional Q-Learning with fine-grained tile-coding. In the
proposed method, the number of steps decreases faster than
for other algorithms.

Next, we investigate acquired state segmentations in a typ-
ical run as delineated in Fig. 6. In this figure, a neural
network learned by the GNG module (upper graph), antic-
ipation vectors for each references (middle graphs), and as-
signed classes (lower graphs) are plotted. The left and right
sides in the middle and lower graphs indicates the resuIts for
the action “left” and “right”, respectively. The horizontal and
vertical axes for all graphs represent the position and the ve-
locity of agents, respectively. The location depicted on these
axes is indicated as 0 on the other axes. In addition, we de-
fine the zero point of the position of the agent as the bottom
point of the valley in Fig. 3. The dots in the upper graph indi-
cate nodes in the GNG module. The references in the CMM
module in the middle and lower graphs are located at the
same coordinates as corresponding nodes in the GNG mod-

“.U

0 20 40 60 80 100 120 140 160 180 200

episodes

Figure 4: Temporal changes in the moving average of the
success ratio

450

400

350

300
E
e!
* WO

203

150

tile Size = 7 --
tileslze=9

lile size = 11 - ~ ~ ~ -
tilesize= 13 -I

1M)i ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
0 20 40 60 80 100 120 140 160 180 200

episodes

Figure 5: Temporal changes in the moving average of the
number of steps required to achieve the goal state

ule. The numbers in the lower graphs indicate the assigned
states. Circled numbers indicate that the state-action value
of that reference is greater than the others. The distribution
of nodes in acquired neural networks by the GNG module
is not uniform. The GNG module does not yield nodes for
unseen inputs so that the shape of the resuItant node distri-
bution depends greatly on the characteristics of an agent in
a given environment. For example, the agent in this problem
cannot maintain high speed at the top of mountains. Hence,
the proposed method generates no state for such inputs (i.e.
the corners of the graphs). Referring the lower graphs, the
number of states for the actions “left” and “right” in this run
are 1 I and 17. The distribution of circled numbers indicates
that the agent learns a proper policy.

5. Conclusions

In this paper, we proposed an double layered state space con-
struction method for reinforcement learning agents, which
consists of Fritzke’s Growing Neural Gas algorithms and the
Class Management Mechanism. The proposed method con-

-2701-

GNG nodes

Action "left" Action "right"

Figure 6: Depictions of state segmentation acquired by the proposed method: a neural network learned by the GNG module
(upper graph), anticipation vectorS for each references (middle graphs), and assigned classes (lower graphs). The left and right
sides of the middle and lower graphs indicate the results for actions "left" and "right", respectively. Horizontal and vertical axes
for all graphs represent the position and the velocity of agents, respectively.

-2702-

stitutes a state space based on anticipated behaviors of an
agent, namely, a couple of actions by the agent and the re-
sultant change in sensory inputs. Computational simulations
using the mountain-car task clarified the effectiveness of the
proposed method. In future studies, we would like to apply
the proposed method to other kinds o f reinforcement learn-
ing problems, including rea1 robots, and to extend the pro-
posed method, by for example incorporating rewards or con-
trol variables into the anticipation vectors.

Acknowledgment
This research was supported in part by the Ministry of Edu-
cation, Science, Sports and Culture through a Grant-in-Aid
for Young Scientists (B), 15700159,2003.

References
[l] R. S. Sutton and A. G. Barto, “Reinforcement Learn-

ing; An Introduction,”The MlT Press, 1998.

[2] A.Dubrawski and P.Reignier, “Learning to Categorize
Perceptual Space of a Mobile Robot Using Fuzzy-ART
Neural Network“, Proceedings of IEEE/RSJ Intema-
tional Conference on Intelligent Robors and Systems
IROS’94, V01.2, pp.1272-1277, 1994.

[3] M. Asada, S . Noda, and K. Hosoda, “Action-Based
State Space Construction for Robot Learning,” JRSJ
Vol. 15, No.6, pp.76-82, 1997 (in Japanese)

[4] A. Ueno, S. Nakasuka and K. Hori, “Simultane-
ous Leaming of Situation Classification and Be-
havior Rules for Autonomous Agents,” Journal of
Japanese Society for Artificial Intelligence Vol. IS,
N0.2, pp. 297-308 (2000)

[5] R. Heifer and C. Scheier, “Understanding Intelligence,
” The MIT Press, 1999.

[6] B. Fritzke, “A Growing Neural Gas Network Leams
Topologies,” Advances in Neural Informution Process-
ing Systems 7, MlT Press, pp. 625632,1995.

[7] C. J. C . H. Watkins, and P. Dayan, “Technical note:
Q-learning,” Machine Leuming, vol. 8, pp. 279-292,
1992.

IS] R.Sutton, “Learning to Predict by the Method of Tem-
poral Differences”, Machine Learning, vol. 3, pp. 9-
44,1988.

-2703-

