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Mathematical Model for the Calculation of Full and
Half Sib Covariance in an Artificial Autotetraploid
Population Including Aneuploids

Tetsuo Morisawa?’ and Kenji Kato
(Course of Applied Plant Science)

For the estimation of genetic variance of an artificial autotetraploid population, a mathemat-
ical model of full and half sib covariances between sibs with various chromosome numbers,
which were derived from euploid or aneuploid parents, was devised for a case where the
inbreeding coefficient of the parents was F = 0. The coefficients defined in Kempthorne's model
were separated into two parts: (i) A, D, T and Q, and (ii) ¢ and ¢. The former four parameters
were defined as probabilities of factor combinations, which could be compared between various
sibs, for additive, digenic, trigenic, and quadrigenic effects, and were mutually independent. The
latter two parameters, which were the numbers of the identical allele and the identical allele pair
combinations that two sibs inherited from a parent, were defined as linear functions of the prob-
abilities that two sibs inherited allele or allele pair from a parent, respectively. These probabili-
ties depend on chromosome behavior during meiosis and the chromosome number of the gam-
etes. For the estimation, it was assumed that quadrivalent chromosomes were distributed by 2-2
and 1-3 with probabilities k and A (x + X = 1), respectively. The distribution of trisomic and
pentasomic chromosomes to the poles was assumed to be 1-2 and 2-3. Then, the probabilities
were estimated for the simple case where all male and female gametes could equally fertilize
irrespective of their chromosome number, provided that tetrasomic chromosomes completely
formed a quadrivalent chromosome.

The constitution of variance components were different according to the sib combinations and
family. Therefore, for the calculation of the covariance of a family, the covariances between
various sibs were averaged by the combination frequency in a family, and for the calculation of
the covariance of population, the family's covariances were averaged by the family's frequency in
the population.
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analyzed, and thus variance components could be easily

Introduction . . .
calculated based on a suitable experimental design?. For

Artificial autotetraploid populations in plants gener-
ally consist not only of euploids but also of aneuploids,
whose percentage ranges from 15% to 60 %% 67141519
The appearance of aneuploids in such populations is
ascribable to the fertilization of aneuploid gametes
resulting from an uneven disjunction of multivalent
chromosomes in euploid and aneuploid plants. The exis-
tence of aneuploids, as well as the double reduction in
meiosis, makes the genetic analysis of the quantitative
traits very complicated. So far, there have been many
reports on the practical and theoretical analysis and on
the computer simulation of genetic variances for quanti-
tative traitsl,Z,S,10.11.13.14,16,17).

Several methods using covariance between relatives
have been reported by Kempthorne®, Killick” and Tan'?.
In these methods, full and half sib families should be

populations derived from crosses between pure lines, the
methods for the estimations of covariance were pre-
sented based on the chromosome segregation model'
and the chromatid segregation model”, respectively.
Kempthorne”, based on the chromosome segregation
model without interaction between loci, established a
general model of covariance between relatives in a ran-
dom mating population. In these models the covariance
can be partitioned into additive and other genetic vari-
ance components. However, these reports assumed the
1deal population consisted only of euploids, and ignored
the frequent occurrence of aneuploids. Since euploids
and aneuploids coexist in actual populations, the covari-
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ance of a family should include the covariances of vari-
ous combinations of sibs, which should be weighted by
the frequency of each combination. Furthermore, the
constitution of variance components should be different
in various sib combinations in a family, and also different
according to families in the population.

In this study, for the calculation of covariances
between various sibs, the coefficients defined in
Kempthorne's model® were separated into two parts: (i)
A, D, T and Q, and (ii) ¢ and w. The former four
parameters were defined as probabilities of factor com-
binations, which could be compared between various
sibs, for additive, digenic, trigenic, and quadrigenic
effects and were mutually independent. The latter two
parameters, which were the numbers of the identical
allele and the identical allele pair combinations that two
sibs inherited from a parent, were defined as linear
functions of the probabilities (p, q, r, s, u and v) that two
sibs inherited allele or allele pair from a parent. These
probabilities (p, q, r, s, u and v) depend on the mode of
chromosome disjunction in meiosis and the chromosome
number of the gametes. The general formula of p, q, 1,
s, u and v was constructed by using probabilities x and
A. That quadrivalents were distributed to each pole by
2-2 and 1-3, respectively?, provided that both male and
female gametes could equally fertilize irrespective of
their chromosome number and that tetrasomic chromo-
somes completely formed quadrivalent chromosomes.

The problem that the constitution of variance compo-
nents should be different according to the sib combina-
tion of a family and of the family in the population was
solved by averaging the covariances of sibs in the fam-
ily, and of the family in the population.

Modified Kempthorne Model of
Covariances Between Relatives

Let the contribution of each allele at a locus to the
genotypic values of autotetraploid sibs y and y’ be

v=utatatatat..

+ Bt Bzt But Lo+t Lot Baut ...

Tyt Vi Yt ya L+ O3t ...
vV=ut+a' +a’ +as+a+..

+ Bt Bt But But fut fut .

+ Yt Y T Yt Yt Ot (1)

In this equation, the factor x is the population mean. «,
B, v, and ¢ are additive, digenic, trigenic, and quadri-
genic effects, which are mutually independent. Their
means are equal to 0 and their variances are V(a), V(8),
V(y) and V(6), respectively. The subscript figures indi-
cate the allele concerned. The number of the members
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of a, B, v, and ¢ in the equation depends on the chro-
mosome number. Therefore the coefficients and the
constitution of the variance components given in
Kempthorne's equation must be changed according to
the chromosome number. As the coefficients consist of
two parts, they can be separately calculated, considering
that the variance components of the covariance of family
and population are average components. The equation is
changed to the following form:

Cov (yy)=A-(¢p+¢) o> +D- (¢ +y+y) op’
+T - (pw +dw) o +Q - (wy) * o+
(2)

A, D, T, Q: probabilities of factor combinations which
can be compared between sibs, for factors «, 8, vy, and
0.

¢ (¢): number of the identical pollen parent (seed
parent) allele combinations between two sibs.

v (') number of the identical pollen parent (seed
parent) allele pair combinations between two sibs.

ol op’, o1 and o variance component of additive,
digenic, trigenic, and quadrigenic effects. Each variance
component should be different according to the type of
sib combinations. For the calculation of the covariance
of a family, the covariances of various sib combinations
must be averaged by the frequency of each combina-
tion, since covariances may differ from each other. The
covariance of the population can be obtained as the
mean of the ovariance of a family, weighted by the fre-
quency of the family in the population. Therefore, the
variance components of covariance, g% op? o1’ and o,
should be treated as components with an average con-
stitution.

Assumption for Calculation of Covariances

The following four assumptions are made for the cal-
culation of covariances.

1. The segregation is by chromosome rather than by
chromatid.

2. The plants are sampled from a random mating equi-
librium population with a steady state of eu- and
aneruploid frequencies’™!.

3. There are no interactions between loci.

4. In aneuploids whose chromosome number is less than
4x — 1 and more than 4x + 1, aneuploid chromosomes
are non homologous with each other.

The first and third assumptions are also made by

Kempthorne (1955)%.

Result

(I Calculation of A, D, T and Q
First, the covariance between euploid sibs is calcu-
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lated. Since the effect of each factor on the genotype is
mutually independent, calculation should be practiced
within each factor. For factor «, there can be 16 kinds of
allelic combinations between sibs, based on equation (1),
and thus the probability of each combination is 1/16.
Since comparison between sibs is possible only for four
combinations, 1.e. a1 vS. a1, @z VS. @2, a3 VS. a3, a4 VS.
a4, the probability (A) becomes 1/4 (=4/16). For fac-
tors 3, y, and ¢, in the same way, the probabilities D, T,
and Q become 1/6 (=6/36), 1/4 (=4/16), and 1,
respectively. In the combination of 4x — 1 vs. 4x, a com-
parison is possible for only three combinations of addi-
tive effects, i.e. a1 vs. a1, a2 Vs. a2, a3 VS. a3, respec-
tively. In this combination, for factor a, there can be 12
kinds of allelic combinations between sibs and thus the
probability of each combination is 1/12. Therefore the
probability (A) becomes 1/4 (=3/12). For factors 8, v,
and 0, in the same way, the probabilities D, T, and Q
become 1/6 (=3/18), 1/4 (=1/4), and 0 (nothing),
respectively. In a similar manner, coefficients A, D, T,
and Q between other sibs can be calculated, and the
results are summarized in Table 1.
(II) Calculation of ¢ and y where the inbreeding
coefficient of parent is equal to 0

The autotetraploid plant receives either one, two or

Table 1 Estimates of the coefficients A, D, T, and Q calcu-

lated between sibs with different chromosome number

Parameters
Type of combinations

A D T Q
4x—1 vs. 4x—1 1/3 1/3 1 0
4x—1 vs. 4x 1/4 1/6 1/4 0
4x—1 vs. 4x+1 1/5 1/10 1/10 0
4x vs. 4x 1/4 1/6 1/4 1
4x vs. 4x+1 1/5 1/10 1/10 1/5
4x+1 vs. 4x+1 1/5 1/10 1/10 1/5

1) A, D, T and Q are probabilities of factor combinations which
can be compared between sibs, for factors «, 8, v and J.

Table 2 Six types of allelic constitution of two autotetraploid
sibs
) No. of alleles received
Alleh'c ) from a parent Probability”
constitution
sib 1 sib 2
type 1 2 2 p
2 2 1 q
3 2 3 r
4 3 1 S
5 3 3 u
6 1 1 v
b+qg+r+s+utv=1

Full and Half Sib Covariance in Autotetraploid Population 19

three alleles from a pollen parent, and the rest from a
seed parent®. Considering two sibs in comparison, there
can be six types of allelic constitution as shown in Table
2 and Fig. 1.
Calculation of ¢

¢ is defined as the number of identical allele combina-
tons between two sibs. In the case of a parent with four
homologues of the critical chromosome (4x), as in the
type 1 constitution, both of the sibs inherit two alleles
from a pollen parent. Comparison of either of the two
alleles between sibs is possible for four allelic combina-
tiOIlS, Le. A]] VS. Az], An VS. Azz, A12 VS. Az], A12 VS. Azz
in Fig. 1. A, indicates ()th (1=1,2) sib and (m) th
(m =1,2) pollen parent’s allele. The probability that an
arbitrary pair of alleles between sibs is identical is 1/4,
and the mean number of identical allele combinations
becomes 1 (=1/4 X 4). In the type 2 constitution, com-
parison is possible for two allelic combinations where
two alleles are identical at a probability of 1/4. The
mean number of identical allele combinations becomes
1/2 (=1/4 X 2). In a similar manner, the mean number
of identical allele combinations can be calculated for
types 3, 4, 5, and 6, being 6/4 (=1/4X6), 3/4 (=
1/4%3), 9/4 (=1/4%x9), and 1/4 (=1/4 X 1), respec-
tively. Therefore, ¢ is given in equation (3).

bu=p+q/2+3r/2+3s/4+9w/4+v/4 (3)

where p, q, 1, s, u, and v are the probabilities that two

Ay A, Ay Ay
e o o o

pollen parent

sib 1 sib 2
Fig. 1 Type 1 allelic constitution of two autotetraploid sibs in
Table 2.

@ indicates the pollen’s alleles and O indicates the seed
parent’s alleles. A; (i=1~4) is pollen parent’s allele. A,
indicates 1th (1= 1,2)sib and m th (m =1,2) pollen’s allele.
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sibs inherit the allele or allele pair from a parent. The
subscript of ¢ indicates that a parent has four homo-
logues of the critical chromosome.

In the cases of a parent with three or five homo-
logues of the critical chromosome, the equation for
4x — 1 and 4x + 1 are simply calculated by applying the
same method as in equation (3). The equations are;

bsx-1=4p/3+2q/3+v/3 (4)
baxi1=4p/5 + 6r/5+9u/5 (5)

As for hypoaneuploids whose chromosome numbers
are less than 4x — 1, the deficient chromosomes are non-
homologous with each other, and thus they can be con-
sidered to have three homologues of the critical chromo-
some. For this reason, equation (4) is also applicable to
most of the hypoaneuploids. In a similar manner, as for
hyperaneuploids whose chromosome numbers are more
than 4x + 1, equation (5) is also applicable to most of the
hyperaneuploids. If the critical genes are not on the
aneuploid chromosome, ¢ can be calculated by equation
(3).

Calculation of v

v is defined as the number of identical allele pair
combinations between two sibs. However, at least one of
the sibs receives only one allele from a parent in types
2, 4, and 6. Therefore, v is calculated only for types 1,
3, and 5. In the case of a parent with four homologues of
critical chromosome (4x), the probability that two sibs
inherit an identical allele pair from a parent is 1/6, since
six kinds of allele pair are possible among four parent
alleles. There can be 1, 3, and 9 combinations of allele
pair, and the mean number of identical allele pair com-
binations becomes 1/6 (=1/6 X 1), 1/2 (=1/6 X 3), and
3/2 (=1/6 xX9) for types 1, 3, and 5, respectively.
Therefore the equation for v is:

Wi=p/6+1/2+ 3u/2 (6)

In the cases of a parent with three or five homologues of
critical chromosome, the equations are simply calculated
by applying the same method for equation (6). The
equations are:

Wix1=Dp/3 <7>
Wix1=p/10 + 3r/10 + 9u/10 8)

Equation (7) is applicable to hypoaneuploids whose
chromosome numbers are less than 4x — 1, by the same
reasoning for equation (4). Equation (8) is also applicable
to hyperaneuploids whose chromosome numbers are
more than 4x + 1, by the same reasoning for equation

(5).
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(ITI) Calculation of the probability of allelic consti-
tution of two sibs

For quadrivalent chromosomes, disjunction to the
poles can be 2-2 and 1-3 at anaphase I, with the prob-
abilities of x and 4 (k + 1 =1), respectively. Distribution
of trisomic and pentasomic chromosomes is assumed as
1-2 and 2-3, respectively, with the probabilities equal to
19,

The probability of an allelic constitution of two sibs
can be calculated by assuming that the fertilizing ability
of the gametes is not affected by their chromosome
number and that tetrasomic chromosomes completely
form quadrivalent chromosomes. When parents and off-
spring are all euploid, there are 6 kinds of allelic consti-
tutions between two 4x sibs, as shown in Table 2 and
Fig. 1. As for type (1), the probability that both sibs
inherit two alleles from a pollen parent is p =« X Kk =
k% since a gamete with two critical chromosomes is
produced at a probability of k. The number of alleles
inherited from a seed parent is automatically settled by
those from a pollen parent. For example, in type (1), the
number of alleles is two for both sibs, therefore the
probability 1S Dseed parent = Dpollen parent. 1 Ne probability can
be similarly calculated for other types of allelic constitu-
tion. Each probability is shown in Table 3-(4).

On the other hand, in cases where the critical chro-
mosome is involved in aneuploidy, these probabilities
must be calculated by taking the frequency of different
chromosome disjunction types into consideration. As an
example, 4x offsprings derived from a cross between
4x — 1 parents were examined. The disjunction of triso-
mic chromosome is 1-2 as mentioned above, and thus
there are no individuals which inherit three homologues
from either parent. Therefore the probability that two
sibs inherit two homologues from a pollen parent and a
seed parent IS Dpolen parent = 1, Dsced parent = Dpollen parents
respectively, as shown in Table 3-(4).

Considering the plants whose chromosome number
ranges from 4x — 1 to 4x + 1, there can be six combina-
tions of chromosome numbers among the offspring
derived from nine cross combinations. The probabilities
were calculated for these sibs in a similar manner and
the results are summarized in Table 3. In cases where
the fertilization ability of the gametes is affected by
their chromosome number, the probability of these
allelic constitutions must be corrected by their ability.
The probabilities calculated for 4x +1 (or 4x — 1) sibs
are also applicable to 4x + k (k=2,3...) sibs, since the
additional (or deficient) chromosomes are non homolo-
gous with each other.

(IV) Examples
In the first case, full and half sib covariances between
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4x sibs derived from 4x X 4x cross are calculated,by
assuming that only 2x pollen and ovule contribute to the
fertilization. The allelic constitution of two sibs is con-
sidered as type 1 (Table 2). Therefore, probabilities are
p =1 in both parents (k =1 in Table 3-(4)). The values
of ¢, w, ¢, and v are 1, 1/6, 1, and 1/6, respectively.

Full and Half Sib Covariance in Autotetraploid Population 21

Thus full and half sib covariances can be calculated by
equation (2), using parameters for 4x vs. 4x given in
Table 1 and these values. The results are:

(9)
(10)

Cov (FS) = g.%/2 4 2002/9 + 0+2/12 + 0+%/36
Cov (HS) = g,2/4 + 01,°/36

Table 3 The estimates of the probabilities (p, q, r, s, u, and v) of allelic constitution of two sibs whose chromosome number ranged

from 4x—1to 4x+ 1

Chromosome number of seed parent

Chromosome
number of polle 4x—1 4x 4x+1
parent D q r s u v p q r s u v D q r s u v
(1) offspring 4x — 1 vs. 4x — 1
4x —1p. p. 1/4 1/2 — — — 1/4 1/4  1/2 — — — 1/4 — — — — — 1
s. p. 1/4 1/2 — — — 1/4 174 1/2 — — — 1/4 1 — — — — —
4x p. p. K* KA — — — ¥4 K? KA — — /4 — — — — — 1
s.p. A4 kA — - = K A4 kA — — — K2 1 — — — — —
4x+tlpp. 1 — — = = = 1 = ==
sp. — — — - - 1 - - - - - 1 - - = - - -
(2)  offspring 4x-1 vs. 4x
sx—lpp. 12 12 — — —  — 14 12— = — 14— 2 = = 172
sp. 12 12 — — — — 14 14 14 4 —  — 12 — 12 - - -
4x p. p. KRA2 kM2 YA — — kb kh kM2 YA — A — a2 — — — Y4
2 2
SP e ’;2:1 — = = KM2 kA2 :;4 A kM2 — kM2 kM2 — M4 —  — —
4x +1p. p. 1/2 — 1/2 — — — 1/2 — 1/2 — — — — — — — — —
s. p. — 1/2 — — — 1/2 — 1/2 — — — 1/2 — — — — — —
(3) offspring 4x — 1 vs. 4x + 1
4x—1p. p. — — — — — — 1/2 1/2 — — — — — 1 — — — —
s. D. — — — — — — — — 1/2 1/2 — — — — 1 — — —
4x p. p. — — kM2 A4 — — K KA2 KA/2 21%/4 — — — KA/2 — A4 — —
s.p. A4 kA2 — - - — A4 kA2 kA2 K2 — — ¥4 — KA/2 — — —
4x+1 p. p. — — 1 — — — 1/2 — 1/2 — — — — — — — — —
s. p. — 1 — — — — — 1/2 — 1/2 — — — — — — — —
(4) offspring 4x vs. 4x
4x — 1 p. p. 1 — — — — — 1/4 1/2 — — — 1/4 1/4 1/2 — — — 1/4
s.p. 1 — — — — — 1/4 — 1/2 — 1/4 — 1/4 — 1/2 — 1/4 —
4x p. p. K2 — Kl — A4 — K2 KA KA /2 A4 A4 K KA — — — A4
s.p. K? KA — — — 24 K KA KA A2 /4 )4 K — KA — A4 —
4x +1 p. p. 1/4 — 1/2 — 1/4 — 1/4 — 1/2 — 1/4 — 1 — — — — —
s. p. 1/4 1/2 — — — 1/4 1/4  1/2 — — — 1/4 1 — — — — —
(5) offspring 4x vs. 4x + 1
4x —1p. p. — — — — — — 1/2 1/2 — — — — 1/2 1/2 — — — —
s. D. — — — — — — — — 1/2 — 1/2 — — — 1/2 — 1/2 —
4x p. p. — — kM2 — A4 — K KA/2 KA 4 )4 — K kA2 kA2 A4 — —
s.p.  KkKA2 /4 — - = —  KAM2 A KA AAE kA2 kA2 — kA2 — KP4 — kA2 —
4x+1p. p. — — 1/2 —  1/2 — 1/4 — 1/2 — 1/4 — 1/2 — 1/2 — — —
s.p. 1/2 1/2 — — — — 1/4 1/4 1/4 1/4 — — 1/2 — 1/2 — — —
(6) offspring 4x+1 vs. 4x+1
4x—1p.p. — — — — — — 1 — — — — — 1 — — — — —
sp. — - = = = = = == = = ===
4x p.p. — — — — 1 — K? — KA — 4 — K? — KA — A4 —
s. p. 1 — — - - — 4 — KA — K’ — 24 — KA — K’ —
4x+1 p. p. — — — — 1 — 1/4 — 1/2 — 1/4 — 1/4 — 1/2 — 1/4 —
s. p. 1 — — — — — 1/4 — 1/2 — 1/4 — 1/4 — 1/2 — 1/4 —

1) The probabilities should be divided by row totals of each family except right upside and left downside marginal blocks, where pollen parent is 4x.
2) The “p. p.” and “s. p.” indicate the pollen parent’s and seed parent’s alleles.
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In the second case, full and half sib covariances
between 4x sibs derived from the crosses 4x X 4x,
4x — 1 X 4x, and 4x + 1 X 4x are calculated, by assum-
ing that « = 0.8 and 1 = 0.25', The allelic constitutions
of sibs are from type 1 to type 6 in Table 2. The prob-
abilities (p, q, 1, s, u, and v) can be calculated by using
k =0.8 and 1 =0.2 in Table 3-(4). The values of ¢, v, ¢
' and v calculated by equations (3)~(8) are summa-
rized in Table 4.

Full sib covariance can be calculated by equation (2),
using parameters for 4x vs. 4x given in Table 1 and
those in Table 4. The results are:

 Cov (FS) = 0.5000.%+ 0.2330p
+0.10001*+ 0.0400%* (11)

4x —1 X 4x  Cov (FS) = 05750+ 0.4680p>
+0.14701*+ 0.0650% (12)

4x +1 X 4x : Cov (FS) = 0.4450,%+ 0.1790
+0.0620%+ 0.0200:> (13)

4x X 4x

Half sib covariance between sibs with a common pol-
len parent can be calculated in a similar manner. In this
case ¢’ and v’ have to be 0. The results are:

4x X 4x - Cov (HS) = 0.25004*+ 0.0330"  (14)
4x — 1 X 4x : Cov (HS) = 0.2780,*+ 0.0420p°  (15)
4x +1 X 4x : Cov (HS) = 0.2230,*+ 0.0220p°  (16)

Discussion

Variance components of covariance between 4x sibs
are o.’=4V(a), op’=6V(B), cr*=4V(y), and os’=
V(6). On the other hand, those between 4x — 1 and 4x
sibs are o.>=3V(a), op*=3V(B), or*=V(y), and o5’ =
0, and those between 4x+1 and 4x sibs are
o' =4V(a), o’ =6V(8), 0r*=4V(y), and o&*=V(J),
since the constitution of variance components is deter-
mined by the smaller number of the members of «, 8,
y, and ¢ in the equation (1). In a similar manner, vari-
ance components of any combinations are equal to the

Table 4 The estimates of ¢, g, ¢’, and ¢’ calculated for 4x
sibs, in case of k =0.8 (A=10.2)

Cross combination

Parameters
4x X 4x 4x — 1 X 4x 4x +1 X 4x
13 1.00 1.11 0.89
W 0.20 0.25 0.13
¢ 1.00 1.19 0.89
7 0.20 0.26 0.15

1) ¢ (¢') is number of the identical pollen parent (seed parent)
allele combinations between two sibs.
2) w (y) is number of the identical pollen parent (seed parent)
allele pair combinations between two
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variance components of the sib with a smaller chromo-
some number. Therefore, for the calculation of the cova-
riance of a family, these covariances must be averaged
by their combination frequency in a family. The covari-
ance of a population can be obtained as the mean of the
covariance of a family, weighted by the frequency of the
family in the population. The constituion of the variance
component, therefore, must be considered as the aver-
age constitution.

For example, the equations (9) and (10) are also
covariances, in a case where only euploid chromosomes
contribute to the trait, and coincide with Kempthorne’s
results defined for euploid sibs (g.2=4V(a), o=
6V(B), o1*=4V(y), and o’ = V(6))®. Covariances from
(11) to (16) are calculated, in cases where all kinds of
gametes produced by parents contribute to the fertiliza-
tion, and where only aneuploid chromosome contributes
to the trait. In these cases, the coefficients of each vari-
ance component of the covariance proved to be different
between families. This is the reason why ¢ and y are
different among both parents. Therefore, to obtain the
4x full sib covariance in a 4x X 4x family, the covari-
ances calculated by equations (9) and (11) have to be
averaged by the probabilities that a set of homologous
chromosomes is or is not involved in aneuploidy, respec-
tively. As to 4x —1 X 4x family, those calculated by
equations (9) and (12) must be averaged by the same
way. In a similar manner, covariances of various sib
combinations in a family can be calculated.

The covariance of a family can be calculated as the
mean of the covariances of various combinations of sibs
which should be weighted by their combination fre-
quency. The actual frequency of euploids and various
types of aneuploids are different among the crops, i.e.
Lettuce®, Artemicia'”, Japanese radish'”, Renge®?”, and
Rye grass'”. The frequency of each combination can be
estimated by the distribution of chromosome number in
a family, as indicated by many reports®®”!"1>19 The
covariance of the population can be obtained as the
mean of the covariance of a family. Therefore, the vari-
ance components of the covariance of a population must
be treated as components with an average constitution.

Covariance in practical populations may include the
variance due to the effects of genotype and the chromo-
some number itself. Therefore the experimental design
should be established to divide the covariance into vari-
ance components ascribable to genotype and chromo-
some number. Factorial design to use a mating system,
where only 2x pollen fertilize with 2x +k (k=0, 1, ...)
female gametes, is suitable as an experimental design. In
this design, the families derived from this mating system
must be arranged in two ways: seed parent and off-
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spring chromosome numbers. Therefore the effects of
genotype and of chromosome numbers can be calculated
by analysis of variance. The details will be given else-
where.

In the case where the segregation is by chromatid
rather than chromosome, the genotypic frequency of
gametes will be influenced by double reduction in
euploid and complicated segregation in aneuploid'?.
Therefore the equations of ¢ and w may be different
from those in the case of chromosome segregation.
Construction of ¢ and y, including these factors, is
under investigation.
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