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Abstract 

 

The ability to accurately localize both tactile and painful sensations on the 

body is one of the most important functions of the somatosensory system. Most 

accounts of localization refer to the systematic spatial relation between skin receptors 

and cortical neurons. The topographic organization of somatosensory neurons in the 

brain provides a map of the sensory surface. However, systematic distortions in 

perceptual localization tasks suggest that localizing a somatosensory stimulus 

involves more than simply identifying specific active neural populations within a 

somatotopic map. Thus, perceptual localization may depend on both afferent inputs 

and other unknown factors. In four experiments, we investigated whether localization 

biases vary according to the specific skin regions and subset of afferent fibers 

stimulated. We represented localization errors as a ‘perceptual map’ of skin locations. 

We compared the perceptual maps of stimuli that activate A  (innocuous touch), A  

(pinprick pain), and C fibers (non-painful heat) on both the hairy and glabrous skin of 

the left hand. Perceptual maps exhibited systematic distortions that strongly depended 

on the skin region stimulated. We found systematic distal and radial (i.e, toward the 

thumb) biases in localization of touch, pain, and heat on the hand dorsum.  A less 

consistent proximal bias was found on the palm. These distortions were independent 

of the population of afferent fibers stimulated, and also independent of the response 

modality used to report localization. We argue that these biases are likely to have a 

central origin, and result from a supramodal representation of the body surface. 

 

Keywords: somatosensory perception, pain, touch, body representation, 

multisensory integration, parietal cortex 
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Introduction 

When an insect lands on the back of our hand, we need to localize it precisely 

in order to swat it away. Localization becomes even more important if the insect 

represents a threat to our bodies, e.g. it painfully bites us. Thus, the localization of 

cutaneous stimuli on the body surface (topognosis or locognosis) is fundamental for 

effective use of somatosensory processing. The representations used to achieve 

localization, however, are only poorly understood. 

Many studies have emphasized that the systematic spatial relation between 

skin receptors and cortical neurons (i.e., somatotopy) allows precise perceptual 

localization (for a review, see J. L. Ochoa, 2010), at least in densely-innervated skin 

regions. Since Weber’s (1834/1996) studies of the ‘error of localization’, the majority 

of psychophysical studies of touch and pain localization have focused instead on the 

precision of localization (e.g., Harris, Karlov, & Clifford, 2006; Harris, Thein, & 

Clifford, 2004; Moore & Schady, 1995; Ylioja, Carlson, Raij, & Pertovaara, 2006). 

Fewer studies have investigated biases in perceptual localization, though there have 

been sporadic reports of various systematic biases (e.g., Boring, 1942; Culver, 1970; 

Parrish, 1897). These biases can be thought of as reflecting a distorted ‘perceptual 

map’ of the skin surface (Rapp, Hendel, & Medina, 2002; Trojan et al., 2006). 

Importantly, biases (i.e. constant error) in localization are logically independent of the 

precision of localization (i.e. variable error). The nature and origin of these distortions 

are unclear, but their existence suggests that perceptual localization involves more 

than simply identifying specific active neural populations within a somatotopic map. 

Particularly, it has been suggested that biases in perceptual localization might reflect 

the reference to some anatomical point, or local sign that could provide a perceptual 

anchor for identifying the site of stimulation (Culver, 1970; Weber, 1834/1996). Thus, 

localizing a somatosensory stimulus may depend on both afferent inputs and other 

unknown factors. 

Consistent biases for tactile localization have been reported, including radial 

bias towards the thumb on the palm (Culver, 1970), and distal bias towards the wrist 

on the forearm (Azanon, Longo, Soto-Faraco, & Haggard, 2010; Parrish, 1897). 

Further, localization of thermal stimuli on the forearm elicited more idiosyncratic 

biases, which varied from person to person (Trojan et al., 2006, 2009). While these 

studies are suggestive, they provide only a fragmented view of the overall perceptual 
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map of the skin, so that its global organization remains unclear. 

We therefore performed several experiments measuring constant errors in 

localization to provide a detailed description of perceptual maps for a single body 

part, the hand. We specifically investigated: (1) whether there are systematic constant 

errors in perceptual localization on different skin regions (e.g., hairy vs. glabrous 

skin), and (2) whether such biases are specific to certain classes of afferent inputs 

(e.g., innocuous vs. nociceptive), or alternately are supramodal. Thus, we studied 

localization biases on the hairy and the glabrous skin of the left hand in response to 

somatosensory stimuli which selectively activate afferents mediating tactile (A ), 

pinprick pain (Aδ), or non-painful heat (C) sensations. 

The study of the organization of the perceptual map of the body may clarify its 

neural bases. For example, there is evidence for differential organization of early 

somatosensory processing of touch and pain (e.g., Chen, Friedman, & Roe, 2009; 

Kenshalo, Iwata, Sholas, & Thomas, 2000; Ploner, Schmitz, Freund, & Schnitzler, 

2000; Tseng, Tseng, Chao, Lin, & Hsieh, 2010; Whitsel, Favorov, Li, Quibrera, & 

Tommerdahl, 2009).  In particular, nociceptive processing may not share the complex, 

hierarchical organization of tactile processing (Ploner et al., 2000). Further, 

intraneural recording studies report a very precise match between the activated 

afferent unit, and perceptual localization (for a review, see Ochoa, 2010), suggesting 

that localizing a somatosensory stimulus within a somatotopic map is an important 

component of localizing it on the body. Therefore, if localization biases arise from the 

organization of early, modality-specific, cortical areas, different patterns of bias 

would be expected for localization of innocuous and nociceptive inputs, indicating 

that perceptual maps mainly depend on somatotopic maps. Alternatively, localization 

biases may arise from a higher-level, supramodal representation of the body surface, 

in which case a common perceptual map would be expected across different sensory 

inputs. 

 

 

Materials and Methods 

Four experiments were conducted, investigating localization on the left hand 

(see Table 1). Experiment 1 investigated the localization of touch on the hairy skin of 

the back of the hand (fingers and dorsum). Participants localized an innocuous tactile 
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stimulus (A  fibers) applied to their hand by using a mouse to position a cursor on a 

picture of the silhouette of their own hand, presented on a computer monitor. 

Experiment 2 compared perceptual maps of different sets of fibers on the hairy and 

glabrous skin of the hand; specifically, we investigated whether the possible 

localization biases on the palm and on the dorsum were depending on the sensory 

class of afferent fibers stimulated, by comparing localization of stimuli activating (a) 

touch (A  fibers), (b) first pain (Aδ fibers), or (c) second pain (C fibers). Experiment 

3 ensured that the biases we observed were actually defined on the skin surface, rather 

than in a retina- or torso-centered frame of reference, by varying the postural 

orientation of the stimulated hand relative to the rest of the body. Finally, Experiment 

4 served to control for the possibility that biases were a product of the response 

modality (i.e., pointing with a mouse cursor), rather than localization as such, by 

having participants localize stimuli haptically on a prosthetic hand. 

 

(Table 1 about here) 

 

Participants 

Thirty-three healthy volunteers (17 females) between 18 and 46 years
 
old 

(mean ± SD, 24.8 ± 5.3 years) participated
 
(n = 10 for Exp. 1; n = 9 for Exp. 2, n = 9 

for Exp. 3, and n = 5 for Exp. 4) for payment. All the participants
 
were right-handed 

(Edinburgh Inventory; mean ±
 
SD, 90.8 ± 19.3). Procedures were approved by the 

UCL
 
ethics committee.

  

 

Stimuli 

Mechanical stimulation 

In Exps. 1-4, the tactile stimuli consisted in a calibrated nylon filament 

attached to a wooden stick (von Frey hair, 2.41gf bending weight, diameter 0.50 mm). 

Each stimulus was administered manually by the experimenter in a pre-marked 

location on the participant’s unseen hand. 

 

Thermal stimulation 

In Exp. 2, pain and heat sensations were evoked delivering pulses of radiant 

heat that were generated by an infrared neodymium:yttrium-aluminum-perovskite 

(Nd:YAP) laser with a wavelength of 1.34 µm (ElEn, Florence, Italy). At this short 



 6 

wavelength, the skin is highly transparent to the laser radiation, and consequently, the 

laser pulses directly and selectively activate Aδ- and C-fiber nociceptive terminals 

located in the superficial layers of hairy and glabrous skin (Iannetti, Zambreanu, & 

Tracey, 2006). The laser pulse was transmitted via an optic fiber and focused by 

lenses to a spot diameter of approximately 7 mm. A visible He-Ne laser spot was used 

to point the Nd:YAP laser at the target location. The duration of each laser pulse was 

4 ms. The skin temperature of the area stimulated was monitored at the beginning of 

each block with an infrared thermometer, and kept at the temperature of 

approximately 32º C (mean ± SD, 32.2 ± 0.53) (see Iannetti et al., 2004, for the effect 

of baseline skin temperature on laser-evoked pain ratings and brain responses). To 

avoid increases of baseline temperature, as well as nociceptor fatigue or sensitization, 

at least 1 min was allowed to elapse between successive stimulations of the same 

location.  

Two laser energies were used: 2 J to elicit non-painful heat sensations 

resulting from C-fiber activation (second pain), and 3 J to elicit pinprick pain 

sensations resulting from activation of Aδ fibers (first pain). The appropriateness of 

these energies was verified at the beginning of the experiment, by asking each 

participant to rate verbally the intensity of the sensation elicited by each laser energy 

on a Likert scale ranging from 0 to 10.  A score of 0 was defined as “no pricking 

sensation” and 10 was defined as “the most intense pricking sensation imaginable”.  

The 2 J stimulus elicited a mean rating of 0.7 (SD = 0.7) and the 3 J stimulus a mean 

rating of 3.4 (SD = 0.9).  

In 5 of the 9 participants reaction times (RTs) to the detection of laser pulses 

were also tested, to ensure that 2 J laser stimuli were above the activation threshold of 

C-fibers but below the activation threshold of Aδ fibers. Indeed, RTs to C-fiber 

stimulation were longer than 650 ms, i.e. the cutoff between Aδ and C-fiber RTs 

(Mouraux, Guerit, & Plaghki, 2003; Plaghki & Mouraux, 2003) (mean RT for 2 J 

stimuli: ±
 
SD, 1110 ± 433 ms), whereas RTs to Aδ fiber stimulation were not (mean ±

 

SD, 468 ± 184 ms). In one participant we increased the energies to 3.5 J and 2.5 J to 

achieve differential activation of Aδ and C-fibers, on the basis of RTs.  

 

Procedure 

Experiment 1 

In Exp. 1, the participants sat centrally in front of a computer screen, with 
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their left hand lying flat on the table, palm down, with the wrist straight. Their left 

hand and forearm were occluded by a black curtain (Figure 1b). On each trial, 

participants looked at a black screen and received a single light touch on the hairy 

skin of their left hand. Each stimulus was delivered in one of the 45 pre-marked 

locations on the hairy skin of the hand shown in Figure 1a. Stimulus locations were 

formed by a 3 x 3 grid approximately centred on the dorsum, a 2 x 2 grid on the 

proximal and middle segment of each finger, and a single 2 x 2 grid covering both 

segments of the thumb. The locations were marked with a felt pen at the beginning of 

the study by placing a plastic stencil over each skin surface. Approximately 1 sec after 

the stimulus, a life-size silhouette outline of the participant’s hand was presented on 

the screen. We silhouetted photographs of the hand (high contrast black & white 

picture rendering a white opaque shape of the hand on a dark background), to remove 

any visual information about specific features of the hand, such as knuckles that could 

be used as landmarks. The mouse cursor had the shape of a thin cross and its starting 

position on the screen was randomly varied for each trial. The participant moved and 

clicked the mouse cursor in the location on the silhouette corresponding to where they 

perceived their own hand to have been stimulated. Participants were asked to be 

deliberate and precise in their responses and to avoid ballistic points. The position of 

the mouse click was computed and recorded. Participants were never allowed to look 

at their stimulated hand throughout the experiment. Ten blocks of 45 trials were 

presented, interrupted by short rest breaks, for a total of 450 trials. Each block 

consisted of one judgment of each location in random order. The experiment lasted 

approximately 60 min.  

(Figure 1 about here) 

 

Experiment 2 

In Exp. 2, three types of sensory stimulation were administered to nine 

locations on both the dorsum and the palm of the left hand, in different sessions: 

innocuous stimuli eliciting tactile sensations (mediated by A  fibers), high-intensity 

radiant heat eliciting pinprick sensations (mediated by Aδ fibers), and low intensity 

radiant heat eliciting hot sensations (mediated by C-fibers). The task was the same as 

in the previous two experiments. Within each session, three blocks of each type of 

sensory stimulation were presented in a randomised order. Four sessions of 81 trials 
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each were administered (two for each skin surface) in a counterbalanced ABBA order. 

 

Experiment 3 

Though we interpret biases in Exps. 1-2 as reflecting mislocalization on the 

skin surface, such biases could potentially result from biases in motor control of the 

manual response or unspecified biases in a retina-centred coordinate frame. To 

control for this possibility, we performed an additional experiment in which the hand 

was placed in two different postures: ‘straight ahead’ (as in Exps. 1-2) or ‘rotated’ 90° 

clockwise relative to the body with the fingers pointing to the right. In the latter case, 

the visual display of the hand was also rotated to have the same orientation as the 

participant’s hand. Tactile localisation was tested on the hand dorsum in the two 

postures in separate sessions of 90 randomised trials each, in a counterbalanced order 

across participants. 

 

Experiment 4 

We performed an additional control experiment to ensure that biases found in 

Exps. 1-3 were not an artifact of the response modality (visual localization). We 

adapted the procedure used by Elithorn et al. (1953), having participants respond by 

pointing with their non-stimulated hand on a left rubber hand. Blindfolded 

participants explored the rubber hand haptically with their right hand, then placed 

their right index finger on the location on the rubber hand corresponding to where 

they perceived the tactile stimulus to have been on their left hand dorsum. When they 

indicated verbally that they had made their response, the experimenter triggered a 

webcam suspended directly above the rubber hand to capture a photograph (1600 by 

1200 pixels) showing the participant’s index finger (with the midline previously 

marked) indicating the perceived location.  

 

Analyses 

A picture of each participant’s hand with the grid of stimulus locations marked 

on it was taken at the beginning of the experiment. The locations of the knuckles, 

fingertips, stimulation locations, and participant’s estimates of stimulus location were 

computed in x and y pixel coordinates. In order to place the actual and judged 

locations of each landmark into a common coordinate frame, we used the two-point 

registration method developed by Bookstein (1991) (Bookstein coordinates): two 
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specified landmarks are defined as being points (0,0) and (1,0) with other landmarks 

positioned accordingly. We defined the knuckle of the little finger as point (0,0) and 

that of the index finger as point (1,0). This procedure has two important benefits. 

First, it places the locations of the stimuli (coded from a photograph of each 

participant’s hand) and the locations of the responses (defined by mouse clicks in 

Exps. 1-4 and by a photograph of the rubber hand in Exp. 5) into a common body-

scaled, reference frame for comparison. Second, it defines unit length relative to the 

size of each participant’s hand, removing individual differences in overall hand size, 

allowing averaging across participants. 

Two independent components of localization error can be calculated (Figure 

1c). Constant Error (CE) is the average signed error of a set of localization attempts. It 

represents localization bias, and is our main interest here. Variable Error is the 

standard deviation of a set of responses from the average response location. It 

represents the precision (consistency) of localization.   The full report of the variable 

errors is given in the Supplementary Material. 

We focused our analyses on the CE, which was analysed in two distinct ways.  

First, the CE was considered as an error vector starting from the actual location of one 

stimulus and pointing to its perceived location (Figure 1d). The CE direction is given 

by the angle of this vector (where 0° represents the line connecting the knuckles of the 

index and little fingers), while the CE size is given by the length of this vector (Figure 

1d). In addition, to represent localization biases in a hand-centred reference frame, we 

also decomposed the CE vector into two components, one aligned with the proximo-

distal axis of the hand (perpendicular to the line connecting the knuckles of the index 

and little fingers) and the other aligned with the ulnar-radial axis (parallel to that line) 

(Figure 1e). 

CE direction was analysed using Watson-Williams non-parametric circular 

statistics test (Batschelet, 1981; Berens, 2009; Watson & Williams, 1956). This is 

equivalent to a classical one-factor ANOVA, and assesses whether two or more 

samples share a common mean direction or not. The CE size was analysed by 

repeated measures ANOVA. The vector components in the proximo-distal axis and in 

the ulnar-radial axis were compared to zero (null bias) by t-tests. 
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Results 

 

Experiment 1 

Hand dorsum 

Figure 2a shows the mean position of the actual (grey circles) and the judged 

(white circles) locations of the tactile stimuli on the back of the hand. On the dorsum, 

there were significant radial (t(9) = 4.62, p = 0.001) and distal components of the CE 

vector (t(9) = 6.49, p < 0.0001). These results demonstrate striking similarity of 

localization biases across participants. 

Moreover, the CE vectors of the nine dorsum locations did not differ in mean 

direction (Watson-Williams test: F < 1), which was, on average, 67.72° (SE ± 1.57) 

(see Figure 2b, where each arrow corresponds to the mean direction of each location 

CE vector). They did, however, differ in their size. Proximo-distal, but not radio-

ulnar, position within the grid had a significant effect on the CE sizes (vector lengths) 

(F(2,18) = 17.61, p = 0.001). CE sizes were larger for proximal than for distal stimulus 

locations. Bonferroni post-hoc comparisons showed a significant difference between 

the most distal row and both the middle (p < 0.001) and the proximal ones (p = 

0.006).  

 

Hairy skin of fingers 

In 3.02% of trials where the stimulus was delivered on the back of the fingers, 

participants indicated a different finger from that stimulated. These interdigit errors 

were discarded. 

Localization judgments showed significantly smaller CE sizes (t(9) = 7.13, p < 

0.0001) on the fingers than on the hand dorsum, though no significant differences 

were found between the five fingers (F(4,36) = 2.25, p = 0.083).  

The proximal segments of each finger except the thumb showed significant  

distal biases (ps < 0.05); the proximal segments of the little and ring finger exhibited 

also significant radial components of bias (ps < 0.05), and the thumb significant ulnar 

component (t(9) = -3.07, p < 0.001).  

Conversely, the middle segments did not show any significant distal 

component of bias (ps > 0.05). The proximal component was significant for the 

middle segment of the index finger only (t(9) = -5.83, p = 0.021). Furthermore, the 
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middle segments of the little and ring fingers showed significant radial components of 

bias (ps < 0.05), whereas the index finger and the thumb exhibited a significant ulnar 

component (ps < 0.05). 

Overall, a small proximal bias was found on the middle segments (mean ± SE, 

-0.01 ± 0.19), and a distal bias on the proximal segments (mean ± SE, 0.06 ± 0.01), 

leading to a significant difference in bias in the proximo-distal axis between these 

segments (F(1,9) = 11.87, p = 0.007).  

All analyses were repeated using Bookstein coordinates centred on each finger 

knuckle and tip, as opposed to knuckle of the little and index fingers: the pattern of 

results was not changed. 

 (Figure 2 about here) 

 

Experiment 2 

On the hand dorsum, analysis of the proximo-distal and ulnar-radial 

components of the CE vector (figure 4) again showed significant distal bias (t(8) = 

5.24, p < 0.0001), and also bias towards the thumb (t(8) = 8.54, p < 0.0001).  This 

replicates the results of Exps. 1-2. In contrast, a just-significant proximal shift (t(8) = -

2.30, p = 0.049) was found on the palm (Figure 3).  

 

Effects of sensory modality 

Mislocalizations of high and low-energy nociceptive stimuli (pain and heat) 

were similar to those of tactile stimuli, both on the hand dorsum and palm (Figure 3).  

On the dorsum, analysis of the proximo-distal and ulnar-radial components of 

the CE vector again showed significant distal bias (pain: t(8) = 9.19, p < 0.0001; heat: 

t(8) = 14.49, p < 0.0001) and also radial bias towards the thumb (pain: t(8) = 3.84, p = 

0.005; heat: t(8) = 2.67, p = 0.028). Inspection of the direction of the CE vector showed 

similar directions for touch (mean ± SE, 63.04° ± 1.49), pain (mean ± SE, 80.90° ± 

4.08), and heat stimulation (mean ± SE, 86.21° ± 9.62) (Figure 4). We compared the 

directions of touch and pain vectors for each of the 9 locations, in a series of 9 

Watson-Williams tests (Watson & Williams, 1956). The direction of CE vectors for 

touch and pain stimulation were statistically equivalent for 8 of the 9 locations tested.  

In the most proximal and ulnar location the difference was significant (F(1,16) = 6.22, p 

= 0.024). However, one significant result might be expected in nine separate tests, 

under the binomial distribution (p = 0.39).  Comparing the touch and heat conditions, 
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different CE directions were found for the three locations closest to the thumb, and for 

the one in the centre of the grid (p < 0.05): the estimated locations of low-energy 

nociceptive stimuli (heat) tended to be shifted distally and towards the centre of the 

grid. No significant differences emerged comparing the CE directions of each heat 

and pain stimuli. The size of CE vectors was greater in the heat (mean ± SE, 0.39 ± 

0.01) than in the touch (mean ± SE, 0.28 ± 0.04) condition (t(8) = -2.69, p = 0.027). 

Other pairwise comparisons showed comparable CE lengths.  

On the palm, analysis of the proximo-distal and ulnar-radial components of 

the CE vector showed a significant proximal bias in each sensory condition (touch: t(8) 

= -2.30, p = 0.049; pain: t(8) = -2.69, p = 0.025; heat: t(8) = -3.20, p = 0.011), and a 

significant radial bias only for pain (t(8) = -2.24, p = 0.052).  CE directions for thermal 

low (mean ± SE, 237.15° ± 15.94) and high-energy stimuli (mean ± SE, 233.65° ± 

13.11) were equivalent (ps > 0.05) to those for touch (mean ± SE, 231.66° ± 20.32, 

Figure 4). A significant difference was found only for the most distal point closest to 

the thumb (touch vs. pain: F(1,16) = 6.80, p = 0.019; touch vs. heat: F(1,16) = 8.24, p = 

0.011). The CE size was equivalent for touch, pain, and heat (ps > 0.05).  

(Figure 3 about here) 

Overall, Exp. 2 showed that the biases found for localizing touch were not 

dependent on the population of afferent fibres stimulated within that region, but were 

specific to particular skin regions. 

 

Experiment 3 

On the dorsum, analysis of the proximo-distal and ulnar-radial components of 

the CE vector again showed significant distal bias (t(8) = 5.03, p = 0.001) when the 

participants’ hand and the visual comparison hand were both rotated by 90 deg 

relative to the torso (Figure 4a). 

Analysis of CE directions showed that the mean direction was 64.67° (SE ± 

12.34) in the straight posture, and 82.78° (SE ± 18.12) in the rotated condition. For 

each of the nine locations, the direction of the CE vectors was not significantly 

different between the straight ahead and the rotated postures (all ps > 0.05). The CE 

size was equivalent for the two postures (ps > 0.05), except for the most distal and 

medial location (t(8) = 2.73, p = 0.026). These results suggest that the bias is 

independent of hand posture. 
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Experiment 4 

Using the rubber hand for localization judgments assumes that the participant's 

hand and the rubber hand have approximately the same shape. We validated this 

assumption by calculating an hand ‘shape index’ (SI, adapted from Napier, 1980) as 

[(hand width / hand length) * 100], where the hand width is the distance between the 

knuckles of the little and index finger, and the hand length is the distance between the 

knuckle of the middle finger and the wrist. The rubber hand had a similar shape (SI = 

72.22) to the participant’s real hands (mean ± SD, 83.94 ± 7.18). We then directly 

compared Bookstein coordinates for the actual locations from the participant's hand 

with those for responses on the rubber hand. Note that this transformation adjusts for 

differences in hand size. 

The localization of tactile stimuli on a rubber hand showed a pattern of CEs 

analogous to those obtained when localizing the stimuli on the hand photograph.  In 

particular, analysis of the proximo-distal and ulnar-radial components of the CE 

vector again showed significant distal bias using localization on the rubber hand 

(Figure 4b, t(4) = 12.62, p = 0.0002).  

The mean CE direction was 64.95° (SE ± 7.20) for visual localization on the 

picture, and 63.25° (SE ± 8.53) for tactile localization on the rubber hand. For each of 

the nine locations, the directions of the CE vectors were statistically equivalent 

between the straight ahead and the rotated postures (all ps > 0.05). The results of this 

experiment suggest that the pattern of error found in the present study is independent 

of response modality. 

 

 (Figure 4 about here) 

 

Discussion 

In everyday language, to know something ‘like the back of my hand’ is to 

have intimate and expert knowledge. Our data suggest that this expression is 

misleading from a neuroscientific point of view. The brain appears to use a highly 

distorted perceptual map of the hand to localize somatic stimuli delivered to the body 

surface. This study yielded four main findings: (1) There are systematic biases in 

localizing stimuli on the hand dorsum. These consist in a distal and radial shift of the 

estimated spatial locations (Exps. 1-4). A less consistent proximal bias was found on 
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the hand palm (Exp. 2). (2) Even within the back of the hand, these biases are specific 

to particular skin regions, as they occur on the dorsum and on the proximal segments 

of the fingers, but not on the middle segments of the fingers (Exp. 1). (3) These biases 

are largely independent of the sensory submodality and population of receptors 

stimulated, since they are similar for selective stimulation of A , Aδ and C primary 

afferents (Exp. 2). (4) These biases do not depend on either the posture of the hand 

(Exp. 3), or on the method used for providing localization responses (Exp. 4). To 

summarise, perceptual maps of the hand are strikingly consistent across individuals 

and across sensory modalities. Further, they are highly stereotyped and dramatically 

distorted. Together, these results may suggest that a supramodal representation of 

body structure contributes to somatosensory localization. 

To our knowledge, this is the first quantitative comparison of perceptual maps 

of tactile and thermal sensations on the hand. The consistent pattern of biases 

observed on the hand dorsum contrasts with the idiosyncratic biases previously 

reported for the forearm (Trojan et al., 2006). Interestingly, Nathan and Rice (1966) 

reported that localization errors of tactile and heat stimuli on the hand dorsum are 

more common in the distal vs. proximal direction. Similarly, spatial discrimination 

thresholds for touch and pain on the hand dorsum are worse in the proximo-distal than 

in the radial-ulnar direction (Schlereth, Magerl, & Treede, 2001). This asymmetry 

may reflect the elongated shape of receptive fields on the hand dorsum (e.g., Alloway, 

Rosenthal, & Burton, 1989; Brown, Fuchs, & Tapper, 1975; Powell & Mountcastle, 

1959). The finding of radial biases for localization of touch on the palm also 

replicates a previous report (Culver, 1970). 

These systematic distortions in the perceptual maps contrast strikingly with 

intraneural recording studies (for a review, see Ochoa, 2010). These studies report a 

very precise match between (1) the identified receptive field of an afferent unit, and 

(2) the perceptual localization during stimulation from that intraneural site (Ochoa & 

Torebjork, 1983). However, these studies focussed on high-resolution skin regions, 

such as fingers and palm. In these regions we found smaller, and less consistent biases 

than in lower-resolution regions, like the hand dorsum. 

 

Origin of the localization biases 

Two key findings of this study shed light on the origin of these localization 



 15 

biases. First, biases are supramodal, being largely independent of the group of afferent 

fibers stimulated. This makes it unlikely that these biases have a peripheral origin, 

due, for example, to the functional properties of primary afferents. Given the 

segregation of modalities in early somatosensory cortices (e.g., Friedman, Chen, & 

Roe, 2004; Mountcastle, 1957), our finding of similar distortions for all tested afferent 

pathways rather suggests a role of regions beyond SI. Indeed, the role of SI in pain 

localization is controversial (Apkarian, Bushnell, Treede, & Zubieta, 2005; Bushnell 

et al., 1999; Seyal, Siddiqui, & Hundal, 1997). Moreover, there is evidence that 

localization of touch and pain involves also operculoinsular and posterior parietal 

regions. A positron emission tomography (PET) study reported enhanced activity in 

contralateral SI and inferior parietal cortices in a task that required selective attention 

to the location of laser stimuli (Kulkarni et al., 2005). Laser-evoked potential (LEP) 

studies suggest a specific involvement of operculoinsular regions, including the 

secondary somatosensory cortex, SII, when either a spatial discrimination (Schlereth, 

Baumgartner, Magerl, Stoeter, & Treede, 2003) or localization task (Bentley et al., 

2004; Kanda et al., 1999; Valeriani et al., 2000) is performed. Attending to which 

finger was stimulated selectively activated the right temporo-parietal junction in a 

functional magnetic resonance (fMRI) study (Van Boven, Ingeholm, Beauchamp, 

Bikle, & Ungerleider, 2005). Finally, neuropsychological and transcranial magnetic 

stimulation (TMS) studies found that damage or disruption to the parietal cortex 

impairs the localization of both tactile and noxious stimuli (Paillard, Michel, & 

Stelmach, 1983; Porro et al., 2007; Rapp et al., 2002). 

Second, biases are specific to each skin region. We also found, unsurprisingly, 

that localization is less biased on more densely-innervated skin surfaces. This 

indicates that low-level factors are also likely to play a role in the generation of the 

bias. Whereas variations across skin regions in receptive field (RF) shape and density 

can not explain the direction of the observed biases, they could rather explain the 

extent of these distortions. RFs of primary tactile neurons innervating the hairy skin 

are anisotropic and oval-shaped, with the long axis running proximo-distally 

(Alloway et al., 1989; Powell & Mountcastle, 1959). While RF anisotropy has 

obvious consequences for variable error (precision), it is unclear how it could produce 

systematic patterns of constant error (bias). In addition, differences in receptor density 

seem unable to explain the specific bias directions in our study, for two main reasons. 

First, when stimuli are delivered to the hairy skin of the middle finger segments, there 
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is a localization bias away from the densely-innervated fingertips (i.e., with an 

opposite direction than the bias observed on the hand dorsum). Second, on the 

glabrous skin, the perceptual maps did not reveal any attraction towards the densely-

innervated fingertips. Conversely, RF characteristics and distribution might rather 

explain our finding of lower bias on the fingers and on the palm in comparison to the 

hand dorsum.  

Taken together, these results suggest that perceptual localization relies both on 

the afferent input and on high-level structural representations of the body surface. 

Here we propose a simple model of the cortical mechanisms underlying touch and 

pain localization (Figure 5). Sensory inputs from each class of receptors are 

transmitted to primary somatosensory regions, where they are represented 

topographically, in distinct maps for each receptor population (e.g., Friedman et al., 

2004; Mountcastle, 1957). However, localizing a stimulus within a somatotopic map 

is not sufficient to localize it on the skin surface.  There is no fixed association 

between firing of a specific neuron and a specific skin location, because the plasticity 

of sensory cortices means that the receptive field of a specific neuron can change 

(Longo, Azanon, & Haggard, 2010; Medina & Coslett, 2010; Merzenich et al., 1984; 

Pons et al., 1991). Therefore, localization on the skin surface requires first learning, 

and then applying, an additional mapping between neural codes and skin locations.  

Moreover, the high plasticity of somatotopic maps means that these associations 

require constant updating. 

In fact, the finding of stereotyped distortions in perceptual maps (particularly 

of poorly innervated skin regions) may suggest that locognosis involves not only 

localization on the skin, but also an additional referencing to actual body structure. 

This second step is not logically necessary, but it appears to occur automatically and 

particularly when the information provided by the lower level representations is poor 

due to the low resolution of the afferent input (e.g., on the hand dorsum). The less the 

somatosensory system knows about the location of one stimulus, the more it will 

revert to higher structural representations. Thus, localization judgements might be the 

product of two successive processing stages: localization of the stimulus on the skin 

surface, and registration of the skin surface with a structural model of the body. The 

first stage involves modality specific maps in early somatosensory cortices, while the 

second might be a supramodal body representation housed in non-primary 

somatosensory areas, possibly the posterior parietal cortex (G. Spitoni, G. Galati, G. 
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Antonucci, P. Haggard, and L. Pizzamiglio, unpublished observations). The second 

stage would also be the origin of the systematic directional biases found in the present 

study.  Importantly, conscious perception of location arises only after the automatic 

operation of this second stage.  

 

(Figure 5 about here) 

 

Tactile localization biases reported in other studies might also depend on 

cortical representations of the body. For example, tactile localization on the forearm is 

more precise close to joints or even artificial landmarks (Cholewiak & Collins, 2003). 

Moreover, the distance between two tactile stimuli on two different body parts feels 

longer than an identical physical stimulus within a single body part, indicating that the 

metric representation of the body might be influenced by an internal representation of 

the body that contains information about body segments (de Vignemont, Majid, Jola, 

& Haggard, 2009). Future studies might test whether those results also reflect 

supramodal biases, or are specific for the tactile modality. 

 

 

Conclusions 

We used participants' attempts to localize somatosensory stimuli in order to 

measure perceptual maps of the hand. The perceptual maps varied systematically 

across stimulated skin regions. Within each skin region, however, the perceptual maps 

for touch, pain, and heat stimuli were largely similar. The localization of 

somatosensory stimuli was systematically shifted distally and radially on the hand 

dorsum, whereas a less consistent proximal bias was found on the hand palm. These 

findings provide evidence that localization biases have a common, central origin, and 

may reflect a supramodal representation of body structure. 
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Figure captions 

 

Figure 1. (a) Stimulus locations. The black circles represent the approximate 

locations of the stimuli on the glabrous and hairy skin of the left hand. (b) Apparatus. 

Participants localized the stimuli delivered to their unseen left hand on a silhouetted 

picture of their own hand. (c) Calculation of the constant error (CE). The white 

squares represent four estimates (E1…E4) of the actual stimulus location (grey 

circle). The constant error (bias) was defined as the deviation of the average of the 

estimated locations (white circle) from its actual location. (d) CE direction and size. 

The CE direction was the angle of the CE vector, and the size was given by its vector 

length. (e) CE axes. The CE vector was also analysed in its two components, aligned 

with the proximal-distal and with the ulnar-radial axes. 

Figure 2. Exp. 1: Perceptual map of touch on the hairy skin of the left hand 

(N=10). The average actual (grey circles) and estimated (white circles) locations of 

the 45 stimuli, and the average position of the knuckles and the fingertips are plotted 

in Bookstein shape coordinates, centred on the knuckle of the little finger (0,0) and of 

the index finger (1,0). Bars represent ± 1 SE.  

Figure 3. Exp. 2: Perceptual maps of touch, pain, and heat on the left hand 

dorsum and palm (N=9). The average actual (grey circles) and estimated (white 

circles) locations of the 9 stimuli, and the average position of the knuckles are plotted 

in Bookstein coordinates, centred on the knuckle of the little finger (0,0) and of the 

index finger (1,0). Bars represent ± 1 SE. 

Figure 4. (a) Exp. 3: Control for pointing error. Perceptual maps of touch on 

the left hand dorsum, in the straight ahead and rotated (90°) postures (N=9). (b) Exp. 

4: Control for response modality. Perceptual maps of touch on the left hand dorsum.  

Localisation was reported on visually (picture of the hand, left panel) or haptically (by 

pointing to the corresponding location on a rubber hand) (N=5). The average actual 

(grey circles) and estimated (white circles) locations of the 9 stimuli, and the average 

position of the knuckles are plotted in Bookstein coordinates, centred on the knuckle 

of the little finger (0,0) and of the index finger (1,0). Bars represent ± 1 SE. 

Figure 5. A model for localization for touch, pain, and heat. 
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Table 1. Summary of experimental designs 

 

  

 

Sensation Body part Skin surface Afferent Response 

     Fibers  Modality 

        Targeted 

 

 

Experiment 1 touch  dorsum, hairy  A   visual 

    fingers 

 

Experiment 2 touch,  dorsum, hairy,  A   visual 

pain,   palm  glabrous A  

heat      C 

 

Experiment 3 touch  dorsum hairy  A   visual 

 

Experiment 4 touch  dorsum hairy  A   visual, 

          tactile 
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