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Abstract 

Primary somatosensory maps in the brain represent the body as a discontinuous, fragmented set 

of 2-D skin regions. We nevertheless experience our body as a coherent 3-D volumetric object. 

The links between these different aspects of body representation, however, remain poorly 

understood.  Perceiving the body’s location in external space requires that immediate afferent 

signals from the periphery be combined with stored representations of body size and shape. At 

least for the back of the hand, this body representation is massively distorted, in a highly 

stereotyped manner. Here we test whether a common pattern of distortions applies to the entire 

hand as a 3-D object, or whether each 2-D skin surface has its own characteristic pattern of 

distortion. Participants judged the location in external space of landmark points on the dorsal and 

palmar surfaces of the hand. By analyzing the internal configuration of judgments, we produced 

implicit maps of each skin surface. Qualitatively similar distortions were observed in both cases.  

The distortions were correlated across participants, suggesting that the two surfaces are bound 

into a common underlying representation. The magnitude of distortion, however, was 

substantially smaller on the palmar surface, suggesting that this binding is incomplete. The 

implicit representation of the human hand may be a hybrid, intermediate between a 2-D 

representation of individual skin surfaces and a 3-D representation of the hand as a volumetric 

object. 
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 Information about the size and shape of one’s body is critical for many forms of 

perception. Recent studies investigating body representations underlying position sense have 

revealed large distortions of body size and shape (Hach & Schütz-Bosbach, 2010; Longo & 

Haggard, 2010), not found for explicit judgments of body shape. This suggests that 

somatosensation relies on implicit body representations, distinct from the conscious body image. 

The exact nature of these representations, however, remains unclear. While we experience our 

body as a coherent, volumetric object, the brain also appears to maintain highly fragmented 

representations of individual body parts (Kammers et al., 2009) and skin surfaces (Coslett & Lie, 

2004; Mancini et al., 2011a). Mancini and colleagues (2011a) found systematic biases in 

localisation of cutaneous stimuli on the hand, which were highly consistent across individuals 

and stimulus types (mechanoreceptive vs. thermal), but differed dramatically between palm and 

dorsum. This surface-specificity suggests that these biases arise from fragmented representations 

of multiple 2-D skin regions, rather than from coherent 3-D body representations. Here, we 

investigated the spatial coherence of the implicit body representation underlying a different 

perceptual process: localisation of one’s body in external space (“position sense”). 

We determined whether distortions of distinct skin surfaces of a single body part (the 

dorsal and palmar hand surfaces) are consistent, or particular to each. If position sense derives 

from local sensory features of the skin and organisation of somatosensory cortical maps, distinct 

patterns of distortion might be found, indicating fragmented, 2-D representations of individual 

skin surfaces. In contrast, if position sense uses a 3-D model of the hand as a coherent volumetric 

object, similar spatial distortions should be found on both surfaces, producing correlated 

distortions across individuals.  
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 We used the ‘psychomorphometric’ technique (Longo & Haggard, 2010) to compare 

implicit representations of the dorsal and palmar hand surfaces. Participants indicated the 

perceived location of landmarks on their occluded hand (Figure 1). By having participants 

localise landmarks by verbal instruction, rather than somatic stimuli, we isolated body 

representations mediating position sense specifically, rather than processes such as localisation 

on the skin surface. By comparing the judged locations of landmarks, we constructed implicit 

maps of represented hand morphology, to compare with true hand morphology and across skin 

surfaces.  

 

Methods 

Participants 

 Twelve individuals (nine female) between 19 and 30 years participated. All but three 

were right-handed by the Edinburgh Inventory, M: 43.04, range: -78.95 – 100. 

 

Procedure 

Participants sat with their left hand on a table, either the palm or dorsum facing up. 

Participants rested their hand flat, fingers completely straight. A board (40x40 cm) was placed 

over the hand, resting on four pillars (6 cm high). A camera suspended above the board captured 

still images (1,280x960 pixels). 

Participants used a baton (35 cm length; 2 mm diameter) to indicate the perceived 

location of landmarks on the palm or dorsum of their occluded left hand. For the dorsum, the 

landmarks were the centre of the knuckle at the base of each finger and each fingertip. For the 

palm, the landmarks were the centre of the skin crease at the base of each finger where it meets 
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the palm, and each fingertip. On each trial, participants were verbally instructed which landmark 

to judge. Participants were instructed to take their time, be precise, avoid ballistic pointing, and 

avoid strategies such as tracing the outline of the hand. Before each trial, participants moved the 

tip of the baton to a blue dot at the edge of the board. 

 There were four blocks of 20 trials, dorsum and palm blocks alternating in 

counterbalanced ABBA sequence. Each block comprised two miniblocks of 10 trials, each 

landmark in random order. Immediately before and after blocks, a picture was taken without the 

occluder, showing the hand. 

 

*** FIGURE 1 HERE *** 

 

Analysis 

Analysis methods were described in full elsewhere (Longo & Haggard, 2010). Pixel 

coordinates of landmarks were coded and averaged, resulting in one map for each block. 

Distances were calculated between the tip of each finger and its base, and between the bases of 

finger pairs. 

 Additionally, we compared actual and represented hand shape using generalized 

Procrustes analysis (GPA). GPA aligns sets of homologous landmarks, removing differences in 

location, rotation, and scale, isolating differences in shape (Bookstein, 1991). Before GPA, 

fingers were rotated to a common set of angles to remove postural differences. GPA was 

conducted using CoordGen, (Integrated Morphometrics Program, H. David Sheets, Canisius 

College, http://www.canisius.edu/~sheets/morphsoft.html). Finally, thin-plate splines, depicting 
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represented hand shape as a deformation of actual hand shape, were computed using tpsSplin (F. 

James Rholf, SUNY Stony Brook, http://life.bio.sunysb.edu/morph/index.html). 

 

Results 

We previously found several characteristic distortions of the implicit representation of the 

dorsum (Longo & Haggard, 2010): (1) overestimation of hand width (~60-80%), (2) 

underestimation of finger length (~20%), and (3) a radial-ulnar gradient of magnification, finger 

length underestimation increasing from thumb to little finger. All three results were replicated 

here (Figure 2). As a measure of hand width, we used the distance between the bases of the index 

and little fingers. There was clear overestimation of the width of the dorsal surface (M: 79.2% 

overestimation), t(11) = 6.54, p < .0001. Clear overestimation was also observed on the palmar 

surface (M: 49.0% overestimation), t(11) = 5.72, p < .0001, but significantly less than on the 

dorsum , t(11) = 4.39, p < .005. The magnitude of overestimation on the two surfaces was 

strongly correlated, r(11) = .834, p < .0005. 

 

*** FIGURE 2 HERE *** 

 

Underestimation of finger length was observed for the dorsal (M: 11.9% 

underestimation), t(11) = -2.58, p < .05, but not palmar (M: 1.8% overestimation), t(11) = .36, 

n.s., surface. There was a significant difference between surfaces, t(11) = 4.00, p < .005. Again, 

under- or overestimation for the two sides was strongly correlated, r(11) = .751, p < .005. 

We found previously that underestimation of finger length on the dorsum increased from 

thumb to little finger. We quantified this radial-ulnar gradient with least-squares regression, 
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using digit number (1=thumb to 5=little finger) to predict underestimation. A clear radial-ulnar 

gradient was observed on the dorsum, mean β = 4.6% / digit, t(11) = 3.37, p < .01. On the palm, 

gradients were not significantly different from 0, mean β = -2.5% / digit, t(11) = -1.83, p = .095, 

but were reduced from the dorsum, t(11) = 4.58, p < .001. 

 

*** FIGURE 3 HERE *** 

 

 To normalise size, GPA normalizes the centroid size (the square root of the sum of 

squared distances of each point from their centre of mass). Centroid size, thus, quantifies overall 

map size, independent of shape. Overestimation of size was observed both for the dorsal (M: 

11.8%), t(11) = 2.33, p < .05, and palmar (M: 17.4%), t(11) = 4.05, p < .002, hand surfaces. 

Overestimation was significantly larger on the palmar surface, t(11) = 2.32, p < .05, but strongly 

correlated across participants, r(11) = .877, p < .0001. 

 

Discussion 

 These results replicate the characteristic distortions of hand representation we recently 

reported (Longo & Haggard, 2010). These distortions are substantially reduced, though 

qualitatively similar, on the palmar compared to the dorsal hand surface. We experience our 

body as a coherent volumetric whole, subject to the same physical and geometric laws as other 

rigid bodies. That different magnitudes of distortion are found on the two sides of a single body 

part, however, suggests that the body model used for position sense is not a fully unified 

representation of the hand as a coherent, 3-D object. At the same time, however, the strong 

correlation between the distortions on the two skin surfaces suggests that the body model does 
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not contain entirely independent 2-D representations of the two skin surfaces either. While our 

recent findings suggest that localisation of somatic stimuli on the skin relies on a fragmented 

representation of individual skin surfaces (Mancini et al., 2011a), the present findings suggest 

that the implicit representation underlying external spatial localisation of the hand is intermediate 

between a fragmented, 2-D representation of individual skin surfaces and an integrated, 3-D 

representation of the hand as a volumetric object. We suggest that this representation can be 

conceived as a 2.5-D body model, a somatosensory analogy to Marr’s (1982; Marr & Nishihara, 

1978) classic description of the ‘2½D sketch’ in vision. 

 How might such a ‘hybrid’ representation emerge? The analogy with vision is potentially 

instructive. Marr (1982) postulated the 2½-D sketch as a representation intermediate between 2-

D retinal images and 3-D representations of objects, describing local surfaces and their 

orientations, but not integrating them into a fully 3-D representation. The body model revealed 

here may be similarly intermediate between a purely local representation of individual skin 

surfaces and a fully volumetric 3-D body. Indeed, there are bidirectional influences between 

somatosensory maps and the conscious body image. For example, cutaneous anaesthesia leads 

the anaesthetized body part to feel larger than it really is (Gandevia & Phegan, 1999). 

Conversely, manipulating the body image, for example by visual distortion, modulates basic 

somatosensation (Kennett et al., 2001; Mancini et al., 2011b). Such findings suggest that 

interaction between 2-D and 3-D representations is a general feature of somatosensory 

hierarchies (cf. Longo, Azañón, & Haggard, 2010), and may underlie the hybrid representation 

of the body itself. We recently found that the posterior parietal cortex is involved in remapping 

touch from a skin-centred to an external reference frame (Azañón et al., 2010). The present 

results suggest there may be an analogous ‘remapping’ problem in constructing a representation 
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of the 3-D structure of the body itself from underlying 2-D representations of individual skin 

surfaces. It is unclear from the present data, however, whether the 2.5-D representation is stored 

by the brain in some intermediate format, or is built up in real-time from 2-D and 3-D 

representations, whether it is an ‘online’ or an ‘offline’ representation (cf. Carruthers, 2008). 

We previously suggested that differences in cortical magnification, receptive field size, 

and innervation density were related to distortions in implicit body representation (Longo & 

Haggard, 2010, 2011). However, at the larger spatial scale of palm vs dorsum, receptor 

innervation appears not to predict represented size. Although the palm has higher sensitivity and 

cortical magnification than the dorsum (Pons et al., 1987), the palm was not represented as 

larger, but rather was represented more accurately. That is, overestimation of hand width was 

reduced on the palm, and underestimation of finger length was replaced by a near-accurate 

representation. Thus, while high cortical magnification may in some cases produce perceptual 

distortions, such as the ‘Weber illusion’ (Taylor-Clarke et al., 2004; Weber, 1834/1996), it may 

also enhance accuracy for other perceptual abilities, such as position sense. Higher accuracy on 

the palm may also relate to the more orderly, somatotopic representation of glabrous skin, 

compared to hairy skin which is represented irregularly in islands of cortex intermixed with the 

map of the glabrous skin (Powell & Mountcastle, 1959; Pons et al., 1987). 

Interestingly, the perceived distance between tactile stimuli also appears to depend on a 

body representation featuring overestimation of the dorsum (Longo & Haggard, 2011): stimuli 

oriented medio-laterally (across the hand) are perceived as approximately 40% larger than 

identical stimuli oriented proximo-distally (along the hand). This common distortion suggests 

that position sense and tactile size perception may use a common implicit body representation. 

Indeed, overestimation of hand width in both cases mirrors anisotropies both in tactile acuity 
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(Cody et al., 2008) and RF geometry (Alloway et al., 1989). Intriguingly, no such distortion in 

tactile size perception was found on the glabrous skin of the palm. Thus, both for tactile size 

perception (Longo & Haggard, 2011) and position sense (this study), the implicit representation 

of the palm is less distorted than the dorsum. If the brain used a single, coherent model of the 

hand as a volumetric object, one might expect the more accurate representation of the palm to be 

transferred, or extruded, to the dorsum. Our results show that this transfer is partial, at best. The 

brain’s ability to maintain a single, coherent model of the body, capable of integrating diverse 

somatosensory inputs, may be highly limited. 
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 Figure Captions 

Figure 1: (a-b) Landmarks used in this experiment.   On the dorsal surface of the back of the 

hand (a), the knuckle and tip (i.e.,the most distal point) of each finger were judged.  On the 

palmar surface of the hand (b), the centre of the skin crease at the base of each finger where it 

meets the palm and the tip of each finger were judged.  (c-d) Experimental setup and apparatus.  

Participants placed their hand either dorsum or palm up on a surface (c), which was then 

occluded with a board.  They judged where in space each landmark on their hand was by placing 

the tip of a long baton on the board directly above  the perceived location of each landmark (d) 

and responses were recorded with a camera. 

 

Figure 2: (a) Percent overestimation [i.e., (100 × judged length − actual length)/actual length] of 

finger lengths.  Clear underestimation of finger length was observed on the dorsal, but not on the 

palmar, surface of the hand. (b) Percent overestimation of spacing between pairs of knuckles. 

Clear overestimation was observed on both sides of the hand, but was significantly reduced on 

the palmar, compared to the dorsal surface.  (c-d) Scatterplots showing relation between 

overestimation of finger length (c) and hand width (d) on the two skin surfaces.  Clear relations 

were observed for both measures. 

 

Figure 3: (a-b) Generalized Procrustes analysis (GPA) alignment of maps of actual and 

represented hand shape on the dorsal (a) and palmar (b) hand surfaces.  (c-d) Thin-plate splines 

depicting represented hand shape as a deformation of actual hand shape on the dorsal (c) and 

palmar (d) hand surfaces. 

 


