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Abstract

According to standard theory, the set of implementable outcome functions

is reduced if the mechanism or contract can be renegotiated ex post. In some

cases contracts can achieve nothing and so, for example, the holdup problem

may be severe. This paper shows that if the mechanism is designed in such a

way that sending a message involves a small cost (e.g., the opportunity cost

of time spent attending a hearing) then ex post renegotiation essentially does

not restrict the set of implementable functions. Any Pareto-efficient, bounded

social choice function can be implemented in subgame-perfect equilibrium, for

any strictly positive message cost.
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1 Introduction

In one interpretation of the mechanism design problem, the agents involved are design-

ing a mechanism for themselves, rather than having it imposed on them by an outside

planner - the mechanism may, for example, be a contract or a constitution. In that

case they will presumably choose a mechanism which will deliver a Pareto-efficient

outcome in equilibrium. Suppose, however, that play of the mechanism results in an

out-of-equilibrium outcome and that this outcome is Pareto-inefficient. Then, unless

they have been able somehow to commit to this mechanism, the agents can be ex-

pected to tear up the contract and negotiate a new, Pareto-efficient outcome. In the

two-agent case, this possibility of renegotiation limits the set of social choice rules

which can be implemented, as shown by Maskin and Moore (1999) (see also Segal

and Whinston (2002) and the survey in Maskin and Sjöström (2002)). The problem

is that it may be necessary to punish an agent for deviating from the equilibrium,

and moreover to do so without simultaneously rewarding the other agent. In that

case, the mechanism would have to have inefficient outcomes for some combinations

of messages, which is impossible if renegotiation cannot be prevented. The Maskin-

Moore renegotiation paradigm has been influential in contract theory. For example,

a number of well-known papers (e.g., Che and Hausch (1999), Segal (1999)) have

shown in the context of buyer-seller models that, when ex post contract renegotiation

cannot be prevented, there are plausible environments in which there is no contract

which can improve on the null contract. These results in turn, it is argued, provide a

foundation for the incomplete contracts paradigm.

One possible solution (Maskin-Moore (1999)) to the problem caused by ex post

renegotiation is to include a third party. The two main parties can then both be

punished by imposition of a fine which is paid to the third party, who need not be

informed about the state. Because this outcome is efficient from the point of all three

agents, it would not be renegotiated. One argument against this kind of scheme (see

Hart and Moore (1999)) is that it would be vulnerable to collusion: for example one

of the original two parties might collude with the third party and trigger the fine. On
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the other hand, Baliga and Sjöström (2005) have shown that if collusive agreements

and the original three-party agreement are modelled in a symmetric manner, and if

the original mechanism may specify secret messages and secret cash transfers, then,

in buyer-seller models and in moral-hazard-in-teams models, the first-best can be

implemented in a collusion-free manner.

A second setting in which the possibility of renegotiation may not much constrain

the set of implementable social choice rules is the case in which the two parties

are risk-averse, as shown by Maskin and Moore (1999) (see also Maskin and Tirole

(1999)). Suppose that it is possible for the mechanism to specify random outcomes

after certain messages and that it is not possible for the parties to renegotiate in

between the time that the messages are sent and the random variable is realized.

Then, even though, for each possible realization of the lottery, renegotiation will take

place to the efficient frontier, the ex ante payoffs can be inefficient because of the

nonlinearity of the frontier. It is a matter of debate how practicable this scheme is -

for example, whether it is possible to prevent renegotiation before the randomization.

In this paper, we show that even if the above solutions are not available, for

whatever reason, the possibility of ex post renegotiation will still not constrain the

implementable set if the mechanism can be designed in such a way that there is a

strictly positive cost of sending a message (this cost can be arbitrarily close to zero).

In the standard mechanism design model the parties can costlessly send messages

(e.g., report their type) to the outside enforcer. In practice, however, sending any

message will incur a strictly positive cost, if only the cost of making a telephone call

or the opportunity cost of the time taken to attend a hearing. We show that if this

friction is introduced to the model, then ex post renegotiation ceases to be a problem.

More precisely, we consider a model with two risk-neutral agents, quasi-linear utility

and complete information (i.e., the model encompasses the standard models found

in the incomplete contracts literature). The result is that, for any strictly positive

message cost, any Pareto-efficient, bounded social choice function which satisfies a

weak preference-reversal condition can be strongly implemented in subgame-perfect

equilibrium despite renegotiation.
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To illustrate the argument, consider a simple buyer-seller model. There are two

agents, a buyer (B) and a seller (S), and a single indivisible good. A state of the world

is a pair (v, c), where v is B’s utility for the good and c is S’s cost of producing it. v

and c are commonly known to B and S but not observable by the outside enforcer,

i.e., not verifiable. A Pareto-efficient, bounded social choice function f specifies that

the good should be produced and traded if and only if v ≥ c and specifies, as a

function of the state (v, c), a bounded money transfer (possibly negative) to be paid

by B to S. If the parties make investments before production which affect the state

then, to achieve efficiency (avoid the hold-up problem), f will in general have to make

the transfer sensitive to the state; the problem is that renegotiation may make this

impossible. Ideally, we would like to know that every such f can be implemented.

Assume that the agents split equally any gains from renegotiation. To implement f

we can use a mechanism with the following features.

First S announces the state, i.e., a pair (vs, cs). B can then either say nothing or

else make a challenge. If he says nothing, the output of the mechanism is the outcome

f(vs, cs). A challenge by B consists of a nomination of one of four possible dispute

procedures, corresponding respectively to a claim by B that v < vs, v > vs, c < cs

and c > cs. For illustration, consider the first of these procedures. B names a price

p < vs

2
− ε, where ε > 0 is small compared to the message cost. S pays a large sum

K to B. S then, at each of a large number T of stages, chooses either to send no

message, thereby triggering the default outcome ‘produce and trade the good for price

p’, or else to send a message requesting a delay, in which case she chooses again at

the next stage. If S requests a delay T times then the outcome is ‘produce the good

but do not transfer it, and make no money transfer’. Each time that S delays, B has

to pay S the message cost, less ε.

Consider the case v > c, in which trade is efficient. Suppose that stage T has

been reached. S’s payoff if she does not delay is p − c, while if she does delay she

gets v
2
− c− ε since her delay cost1 is ε and we assume that the renegotiation surplus

of v will be equally split. Thus, if S has announced vs > v and B has nominated

1We assume that there is no discounting.
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price p such that vs

2
− ε > p > v

2
− ε, S will choose not to delay at stage T and, by

backward induction, will choose not to delay at every previous stage, if reached. The

transfer of K gives B the incentive to challenge, and S is therefore deterred from

misrepresenting the state.

The question is, why doesn’t B make an invalid challenge, e.g. claim that v < vs

when in fact v = vs? If he does so, then, at stage T , S will choose to delay since

p < v
2
− ε. By backward induction she will also choose to delay at every earlier stage.

We assume that the parties can renegotiate during the play of the mechanism as well

as at the end, so that they will in fact reach agreement at the outset in order to

avoid the wasteful message costs. Nevertheless, since B is obliged to bear most of

these costs his bargaining position is weak and so, if T is large enough, he is heavily

punished for an invalid challenge2.

The reason that the framework of this paper delivers different results from those

derived in the Maskin-Moore framework is that in the latter every possible play of the

mechanism is ex ante efficient. Here, by contrast, once a message has been sent, some

resources have been used up. Subsequent renegotiation ensures that the equilibrium

continuation play will be efficient but it cannot recover the sunk cost, so such an

outcome will not be efficient ex ante.

The result described here is related to the work of Watson (2001, 2004), which

demonstrates that mechanism design theory needs to take account of the interaction

between renegotiation opportunities and the technology of trade. Watson distin-

guishes between public-action models and individual-action models. A public action

is one taken by the external enforcement authority, while an individual action is an

inalienable decision of one of the contracting parties. The standard theory of mech-

anism design treats actions as public (alternatively, actions are individual but the

analysis is limited to forcing contracts). Watson shows that in an interim renegotia-

tion setting (i.e., one in which renegotiation takes place only before the messages are

sent) public-action and individual-action models are equivalent. However, in an ex

post renegotiation setting more functions can be implemented in an individual-action

2Note that there is no point in S threatening to delay if the challenge is valid because both players
know that she will strictly prefer not to delay when she has to make the decision.
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model. Therefore, given the possibility of ex post renegotiation, explicit modeling of

the technology of trade is necessary. Sending a message is necessarily an individual

action; if doing so is costly then, in an ex post renegotiation setting, one would expect

that explicit modeling of these costs is necessary. The result derived in this paper is

that, if these costs are modeled, then the interim and ex post renegotiation settings

turn out to be equivalent in the standard complete information model.

Another paper which is close to the present one is Rubinstein and Wolinsky (1992),

which shows that if a time dimension is added to an implementation problem and rene-

gotiation is modeled as costly because it involves delay then the set of implementable

outcomes is expanded, compared with those of the standard model of implementation

with renegotiation. There are a number of differences from the current paper. Firstly,

Rubinstein and Wolinsky establish results only for a version of the buyer-seller model

with one good in which trade is always efficient. Secondly, the only implementable

price functions p(v, c) are those which are monotonic and satisfy v > p(v, c) > c. The

results in this paper are therefore much stronger. Furthermore, the approach is some-

what different. The mechanism that Rubinstein and Wolinsky use is a bargaining

game with discounting and the renegotiation-proofness criterion is that at no stage

should the players both be able to benefit by substituting a different outcome one

period in the future. This seems to require significant ability of the outside enforcer to

structure the negotiations.3 The approach of the current paper is that the bargaining

game is exogenous and the mechanism has to be designed taking this given game into

account. Furthermore, renegotiation is costless.

The dominant model of mechanism design is elegant and tractable, but it is not the

only possible model, and in certain circumstances it leaves out some important con-

siderations. Clearly, it is a common feature of many real contracts that they include

provision for dispute resolution processes which are time-consuming and, therefore,

necessarily costly. The parties to such a contract will have preferences over the man-

ner in which the mechanism plays out as well as over the final outcome and this makes

3For example, as part of the mechanism, it is possible for one player to make a proposal in a
certain set, the other to accept it, and the payoffs to be realized, all within the same period, but it
is not possible for them to agree within that period on a different (renegotiation) proposal.
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a difference to the analysis, particularly, as we show, when renegotiation cannot be

prevented.

There are relatively few papers which study implementation theory with prefer-

ences over process as well as outcomes. Rubinstein and Wolinsky (1992) has been

discussed above. Another that does so is Glazer and Rubinstein (1998), in which vot-

ers care about how many others vote with them as well as about the outcome. Also

relevant is a group of papers which examine models of mechanism design in which

agents have different costs of sending different kinds of messages, for example because

evidence has to be produced, or because there is a psychic cost of lying. Examples

are Green and Laffont (1986), Bull and Watson (2004), and Deneckere and Severinov

(2001). The message costs in the current paper are different because they do not

depend on the type of the sender.

2 The Model

There are two agents, 1 and 2, both risk-neutral. The environment is 〈D, Θ〉, where

D is the set of outcomes and Θ is the set of states of the world. A feasible outcome

consists of a physical outcome (or action) in a set A together with a pair of money

transfers (y1, y2) with non-positive sum. That is,

D = {(a, y1, y2) ∈ A×<2|y1 + y2 ≤ 0}.

We discuss below the case in which the set of actions depends on the state, but for the

moment A is assumed to be the same in all states. Each agent has a payoff function

which depends on the state and is quasi-linear in money: if the action is a ∈ A, the

state is θ ∈ Θ, and agent i’s (i ∈ {1, 2}) money payment is yi ∈ < then i’s payoff is

ui(a, θ)+yi. We assume that the ui functions are bounded: there exists a number M1

such that, for i ∈ {1, 2} and all (a, θ) ∈ A × Θ, |ui(a, θ)| < M1. The assumptions of

risk-neutrality and quasi-linearity are made partly for expositional reasons and partly

because these are the standard assumptions in the incomplete contracts literature.

The result does not depend on them.
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A social choice function (SCF) is a function f : Θ → D. f(θ) = (af (θ), yf
1 (θ), yf

2 (θ))

is the socially-optimal (or f -optimal) outcome when the state is θ. For simplicity, we

assume that in each state θ ∈ Θ there is a unique Pareto-efficient action a∗(θ). That

is, a∗(θ) is the unique solution to the problem

maxa∈Au1(a, θ) + u2(a, θ).

The maximized value of this problem is denoted by σ(θ).

A social choice function f is Pareto-efficient if and only if for each θ ∈ Θ, af (θ) =

a∗(θ) and yf
1 (θ) + yf

2 (θ) = 0. It is bounded if and only if there exists M2 such that,

for i ∈ {1, 2} and all θ ∈ Θ, |yf
i (θ)| < M2.

Once the state of the world is realized, this true state is common knowledge among

the agents (i.e., there is complete information). The agents then play a mechanism.

We consider extensive-form mechanisms: thus, a mechanism is a finite game-form

in extensive form. Since we are interested in implementation with renegotiation, we

will consider mechanisms which consist of an underlying mechanism together with

renegotiation moves. At each decision node in the underlying mechanism, an agent

chooses a message from some specified set of messages, or else sends no message, and

each terminal node corresponds to an outcome in D, this outcome being common

knowledge. If, given the true state θ, this outcome is inefficient, then we assume that

before it is enforced the players have time to renegotiate to an efficient outcome. We

make the assumption, common in the incomplete contracts literature, that the surplus

from renegotiation is split equally, so if the outcome of the mechanism is (a, y1, y2)

and the state is θ then the players agree to enforce the outcome (a∗(θ), y,−y) where

y is chosen so that player i’s utility for this outcome is

ui(a, θ) + yi +
1

2
[σ(θ)− u1(a, θ)− u2(a, θ)− y1 − y2].

That is,

y =
1

2
[(u2(a

∗(θ), θ)− u2(a, θ))− (u1(a
∗(θ), θ)− u1(a, θ)) + (y1 − y2)].
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To this point the framework is the same as that of Maskin and Moore (1999),

for the case of quasi-linear payoff functions and the specific renegotiation rule just

given. We now introduce two modifications to their framework. The first, which is

minor, is that we assume that renegotiation can take place not only at the end of

the mechanism, but also during the play of the mechanism. Since the mechanism

may have many stages it is natural to suppose that if the players at any stage expect

the continuation play to be inefficient then they will immediately renegotiate to an

efficient outcome. To model this, we assume that immediately after every decision

node of the underlying mechanism there is a renegotiation stage which always takes

the following form. First, player 1 proposes an outcome d1 ∈ D to player 2. Player

2 then either accepts, in which case d1 is the final outcome and the remainder of

the mechanism is abandoned; or 2 rejects, in which case one of the two players is

chosen at random, with equal probabilities, to make a second proposal d2 ∈ D. If the

non-proposer accepts then d2 is the final outcome; if not, this renegotiation phase is

over. If a renegotiation phase ends without acceptance of a proposal then the players

move to the next message stage of the mechanism, or, if the final message stage has

passed, the outcome stipulated by the mechanism is implemented. It is easy to see

that a subgame-perfect equilibrium (SPE) of this bargaining game, when played after

a final node of the underlying mechanism, will give the equal-sharing renegotiation

rule set out in the previous paragraph. Similarly, if, at some message stage, there is a

unique SPE continuation, and this is inefficient, then renegotiation will take place at

the preceding bargaining stage, with the continuation payoffs acting as disagreement

payoffs. We also assume that there is a renegotiation phase immediately before the

mechanism is played (after the players learn θ)4.

The second modification is that we assume that it costs a strictly positive amount

k to send a message5, where k may be arbitrarily small6. This cost enters the sender’s

4In the standard model the initial renegotiation would be redundant, given the possibility of ex
post renegotiation. We shall see that this is not so in the present model because messages are costly.

5It is not necessary to assume that sending a message is necessarily costly, only that the mecha-
nism can be designed in such a way that certain messages have to be sent in a way which imposes
a cost.

6I owe to Joel Watson the suggestion that small costs may be sufficient.
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payoff function in the same way as a deduction of k units of money. We assume that

the players do not discount the future, so it makes no difference whether the cost is

deducted at the time the message is sent or at the end of the game. Our convention is

that it is deducted at the time at which the message is sent: thus, when we refer below

to a ‘continuation payoff’, this is to be understood as excluding all message costs (and

transfer payments) incurred in the history to date. There is assumed to be no cost

of renegotiating the mechanism. Since it is the possibility of renegotiation which

limits what can be achieved, it strengthens the result of this paper if renegotiation is

assumed to be as easy as possible.

We refer to a mechanism with renegotiation as described above and with message

cost k as a k-mechanism.

Definition A social choice function f is k-implementable in subgame-perfect equi-

librium with renegotiation if there exists a k-mechanism such that, for each θ ∈ Θ,

there exists a subgame-perfect equilibrium of the mechanism and the outcome of

every SPE is f(θ).

Player 1 prefers (a, y,−y) to (a′, y′,−y′) in state θ if

u1(a, θ) + y +
1

2
[σ(θ)− u1(a, θ)− u2(a, θ)]

> u1(a
′, θ) + y′ +

1

2
[σ(θ)− u1(a

′, θ)− u2(a
′, θ)],

i.e., if

[u1(a, θ)− u1(a
′, θ)]− [u2(a, θ)− u2(a

′, θ)] > 2(y − y′).

It follows that it is possible to find (y, y′) such that 1 prefers (a, y,−y) to (a′, y′,−y′)

in state θ and vice versa in state θ′, i.e., preference reversal holds allowing for rene-

gotiation, only if d(a, a′, θ) > d(a, a′, θ′) where

d(a, a′, θ) = [u1(a, θ)− u1(a
′, θ)]− [u2(a, θ)− u2(a

′, θ)].

Therefore we will need to make the following assumption.
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Assumption 1: Given θ, θ′ ∈ Θ such that f(θ) 6= f(θ′), there exist a ∈ A and

a′ ∈ A such that

d(a, a′, θ) > d(a, a′, θ′). (1)

Assumption 1 is fairly weak and indeed is automatically satisfied in the buyer-

seller models found in the incomplete contracts literature. To see this, consider the

following model.

Example: Buyer-Seller Model Player 1 is a seller (S) and player 2 is a buyer (B),

who will produce and trade at most one unit of some indivisible good. The set of

goods which may potentially be produced is G; S will produce at most one of these.

The set of states of the world Θ = V × C where V and C are sets of real-valued

functions of G. In state (v, c), v(g) is B’s value for good g ∈ G and c(g) is S’s

cost of producing g. The set of actions A = {G × {1, 0}} ∪ ∅, where (g, 1) means

that S produces g ∈ G and transfers it to B, (g, 0) means that S produces g but

does not transfer it to B, and ∅ means that no good is produced. If θ = (v, c) then

uB((g, 1), θ) = v(g), uB((g, 0), θ) = uB(∅, θ) = 0, uS((g, 1), θ) = uS((g, 0), θ) = −c(g),

and uS(∅, θ) = 0.

If (v, c) = θ 6= θ′ = (v′, c′) then either v(g) 6= v′(g) for some g ∈ G or c(g) 6= c′(g)

for some g ∈ G, or both. Suppose that v(g) > v′(g). If we take a = (g, 0) and

a′ = (g, 1) then d(a, a′, θ) = v(g) and d(a, a′, θ′) = v′(g), so (1) is satisfied. If

v(g) < v′(g), take a = (g, 1) and a′ = (g, 0), giving

−v(g) = d(a, a′, θ) > d(a, a′, θ′) = −v′(g).

If v(g) = v′(g) but c(g) 6= c′(g) then we can take (a, a′) = (∅, (g, 0)) if c(g) > c′(g)

and (a, a′) = ((g, 0), ∅) if c(g) < c′(g). Again, (1) is satisfied in each case.

3 The Implementation Result

In the framework set out above, but without message costs, the set of efficient
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implementable outcome functions would be severely restricted, as shown, for example,

by Maskin and Moore (1999), Segal (1999) and Che and Hausch (1999). But, as the

following result shows, matters are different if message costs are positive.

Theorem: Any bounded, Pareto-efficient social choice function which satisfies

Assumption 1 is k-implementable in subgame-perfect equilibrium with renegotiation

for any k > 0.

We provide here an outline of the proof, the remaining details being in the Ap-

pendix. Take an SCF f which satisfies the conditions of the Theorem. Let M2 be

an upper bound on |yf
i (θ)|. For each ordered pair (θ, θ′) let a(θ, θ′) and a′(θ, θ′) be

actions satisfying (1) in Assumption 1. Let K be a number satisfying

K > 4M1 + M2 + k, (2)

let ε satisfy 0 < ε < k
2
, let T be an integer satisfying

T >
4K

k − 2ε
, (3)

and, finally, let

y(θ, θ′) =
1

4
[d(a(θ, θ′), a′(θ, θ′), θ) + d(a(θ, θ′), a′(θ, θ′), θ′]− ε. (4)

(Where the pair (θ, θ′) under consideration is clear, we will drop the arguments and

refer to a, a′ and y.)

The following describes the underlying mechanism which will implement f (un-

derlying because the renegotiation stages are omitted in the description).

1. Player 1 announces a state θ ∈ Θ.

2. Player 2 either (a) sends no message, in which case the mechanism ends with

(a∗(θ), yf
1 (θ) + k

2
, yf

2 (θ) − k
2
) as the outcome; or (b) challenges and names a state θ′

such that f(θ′) 6= f(θ). If 2 challenges then 1 pays K to 2 and there begins a challenge

procedure of up to T stages, as follows.
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In stage t of the challenge procedure (t = 1, .., T ) player 1 either (i) sends no

message, in which case the mechanism ends with outcome (a′, 0, 0); or (ii) sends the

message ‘wait’, in which case 2 pays k − ε to 1 and play moves to stage t + 1, unless

t = T in which case the mechanism ends with outcome (a,−y, y).

If a player deviates from the above rules, he or she pays a large fine to the other

player.

This completes the description of the mechanism. We refer to this mechanism,

including the renegotiation stages, as M f (K,T, ε). We show in the Appendix that in

any SPE of M f (K, T, ε):

(a) if the true state is θ, then in the subgame in which 1 has announced θ and 2

has just challenged with θ′ 6= θ, player 2’s continuation payoff is

K +
σ(θ)

2
− 1

2
[u1(a, θ)− u2(a, θ)] + y + Tε− Tk

2
; (5)

(b) if the true state is θ′, then in the subgame in which 1 has announced θ 6= θ′

and 2 has just challenged with θ′, player 2’s continuation payoff is

K +
σ(θ′)

2
− 1

2
[u1(a

′, θ′)− u2(a
′, θ′)]. (6)

The reasoning behind (a) is that if stage T is reached when the challenge was

invalid, then 1 prefers to say ‘wait’, i.e., choose (a,−y, y), by (1). Of course, renego-

tiation takes place before she does so (after the previous message) in order to avoid

the loss k associated with the message. By backward induction, if no renegotiation

has taken place by stage t < T then 1 will say ‘wait’ there too. At the renegotiation

which takes place immediately after the challenge, the cumulative gain, Tk, from

not going down this path is shared equally between the players. Nevertheless, as

expression (5) shows, 2 bears a substantial cost from an invalid challenge because the

mechanism requires him to bear most of 1’s message costs. The argument for (b) is

more straightforward. If stage T of the challenge procedure is reached after a valid

challenge, player 1 will prefer to choose (a′, 0, 0) (i.e., ‘no message’). By backward

induction, she strictly prefers to make the same choice at any earlier stage, rather
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than incur cost ε and get (a′, 0, 0) at the next stage. So, if the challenge is valid (1 has

lied), the mechanism ends at the first stage of the challenge procedure with 2 getting

the payoff in expression (6).

Suppose θ is true and 1 has told the truth (announced θ). If 2 does not challenge

2 gets

u2(a
f (θ), θ) + yf

2 (θ),

while, by (5), if he challenges he gets

K +
σ(θ)

2
− 1

2
[u1(a, θ)− u2(a, θ)] + y + Tε− Tk

2
− k;

which, by (2) and (3), is strictly less. This shows that, once 1 has announced the true

state, 2 cannot profitably challenge.

Now suppose that θ′ is true but 1 has announced θ. If 2 does not challenge, he

gets

u2(a
f (θ), θ′) + yf

2 (θ),

while, by (6), if he challenges he gets

K +
σ(θ′)

2
− 1

2
[u1(a

′, θ′)− u2(a
′, θ′)]− k,

which is strictly greater by (2). This shows that 2 will always challenge a false

announcement by 1.

Now consider 1’s choice of announcement at the start. Suppose that the true state

is θ′. If 1 announces θ′ then her payoff is

u1(a
f (θ′), θ′) + yf

1 (θ′)− k (7)

since 2 will not challenge. If she announces θ 6= θ′ then 2 will challenge. If he

challenges with θ′ then player 2’s payoff will be given by (6). Since the total surplus

14



available is σ(θ′), 1’s payoff if she announces θ is therefore bounded above by

σ(θ′)
2

−K +
1

2
[u1(a

′, θ′)− u2(a
′, θ′)], (8)

which is less than the expression in (7) by (2). This shows that in any SPE player 1

tells the truth.

Thus, the unique SPE outcome in state θ, starting from the first announcement

stage, is that 1 announces θ, incurring cost k, 2 does not challenge, there is no renego-

tiation and the final outcome, net of the message cost, is (a∗(θ), yf
1 (θ)− k

2
, yf

2 (θ)− k
2
).

Therefore, once θ is realized, the players renegotiate (before playing the mechanism)

to split the surplus of k, giving outcome (a∗(θ), yf
1 (θ), yf

2 (θ)) = f(θ). This proves the

Theorem.

4 Discussion

Some continuation equilibria of the mechanism used here are inefficient. For ex-

ample, at some nodes a player has to decide whether or not to send a message,

and in some circumstances his equilibrium strategy is to do so. A strong version

of renegotiation-proofness (one which is common in the literature) would rule this

out, the assumption being that somehow the players would renegotiate out of such a

continuation. However, the mechanism above specifies that there are specific dates at

which a message must be sent in order to avoid a particular consequence. If that date

is reached and no renegotiation has yet happened, then it is too late to renegotiate.

The relevant player must take whatever action is optimal for himself at that point.

Of course, the players anticipate this inefficient outcome and renegotiate beforehand

in order to avoid it.

The assumption above is that the surplus is equally shared in renegotiation, but

the analysis can easily be adapted to other specifications. If player 2 has all the bar-

gaining power then the mechanism above will not work because it would not be costly

for him to invoke the dispute procedure, but in that case one could use a mechanism

in which the roles of the two players are interchanged. Similarly, the formal model of
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bargaining outlined above assumes, since it is a finite-stage procedure, that if bargain-

ing ends without agreement then there is an inefficient outcome. This is incompatible

with the idea of renegotiation-proofness, but it is easy to see that the analysis can

be adapted to include an infinite-horizon protocol. Assume that the parties discount

the future and bargain according to an infinite-horizon alternating-offers model. If

the periods are sufficiently close together then this model will approximate to the one

analyzed above and the result will go through.

The mechanism M f (K, T, ε) (like many similar mechanisms found in the imple-

mentation literature) could be criticized on the grounds that it asks a player to

describe the state θ, which might be very costly. On the other hand, in equilibrium

the state is not actually described because renegotiation takes place beforehand in

order to save on the costs of doing so. Even if describing the entire state is infeasible,

for many models it would suffice to have a mechanism in which a small subset of

the information contained in the state is described. For example, for the buyer-seller

models in the literature, one would only need to describe the name of the efficient

action (good) and the utility pair associated with it. In that case the challenge pro-

cedure would have to involve the option of making a counter-challenge in which a

different action is claimed to be efficient. For discussion of this issue, see Maskin and

Tirole (1999).

Similarly, if the action space A depends on the state θ then the result will still

obtain. In that case the mechanism would specify that after 1 has announced θ, 2

can, in addition to challenging the reported utilities, challenge the implied report

about which actions are feasible. That is, 2 can exhibit an action which is infeasible

though 1 has reported that it is feasible, or vice versa. By the usual assumptions,

such statements are directly verifiable by the outside enforcer, and 2 can be rewarded

for a valid challenge.

Appendix

This Appendix provides the remainder of the proof of the Theorem. Take an
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SCF f which satisfies the conditions in the statement of the Theorem, and define the

mechanism M f (K,T, ε) as in the main text. It remains to show that in any SPE of

M f (K, T, ε):

(a) if the true state is θ, then in the subgame in which 1 has announced θ and 2

has just challenged with θ′, player 2’s continuation payoff is

K +
σ(θ)

2
− 1

2
[u1(a, θ)− u2(a, θ)] + y + Tε− Tk

2
; (9)

(b) if the true state is θ′, then in the subgame in which 1 has announced θ 6= θ′

and 2 has just challenged with θ′, player 2’s continuation payoff is

K +
σ(θ′)

2
− 1

2
[u1(a

′, θ′)− u2(a
′, θ′)]. (10)

(a) Consider a subgame in which the state is θ, 1 has announced θ, i.e. told

the truth, and 2 has challenged with state θ′ 6= θ. Suppose that stage T of the

challenge procedure has been reached and there has been no renegotiation so far. If

1 sends no message then the outcome of the mechanism will be (a′, 0, 0) which will

be renegotiated so as to give 1 a payoff of

σ(θ)

2
+

1

2
[u1(a

′, θ)− u2(a
′, θ)]. (11)

If instead she sends the message ‘wait’ then, after renegotiation, her payoff (net of

message cost) will be

σ(θ)

2
+

1

2
[u1(a, θ)− u2(a, θ)]− y − ε (12)

so she prefers to say ‘wait’ if

d(a, a′, θ) > 2y + 2ε. (13)

From (4) and Assumption 1, this is satisfied, so 1 chooses to wait. Therefore there is

a unique SPE continuation and 1’s continuation payoff at (or just before) the stage-T
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choice is made is given by (12) while player 2’s is

σ(θ)

2
− 1

2
[u1(a, θ)− u2(a, θ)] + y + ε− k. (14)

Now suppose, as an induction hypothesis, that just before the decision at stage t

(t = 2, ..., T ), when no renegotiation has taken place so far, there is a unique SPE

continuation, 1’s continuation payoff is

σ(θ)

2
+

1

2
[u1(a, θ)− u2(a, θ)]− y − (T − t + 1)ε + (T − t)

k

2
(15)

and 2’s is

σ(θ)

2
− 1

2
[u1(a, θ)− u2(a, θ)] + y + (T − t + 1)ε− (T − t)

k

2
− k. (16)

This is true for t = T by (12) and (14). Expressions (15) and (16) sum to σ(θ)− k so

there is a renegotiation surplus of k after the message ‘wait’ has been sent at stage

t−1, which will be equally split. Thus, at stage t−1, 1 chooses between ‘no message’,

giving the payoff in expression (11), and ‘wait’, which gives her

σ(θ)

2
+

1

2
[u1(a, θ)− u2(a, θ)]− y − (T − t + 2)ε + (T − t)

k

2
+

k

2
, (17)

since she has to bear cost ε if she waits. Thus, she prefers ‘wait’ if

d(a, a′, θ) > 2y + 2ε− (k − 2ε)(T − (t− 1))

which is true by (13); hence, in the unique SPE continuation, 1’s payoff at stage t−1

is given by (17) and 2’s is

σ(θ)

2
− 1

2
[u1(a, θ)− u2(a, θ)] + y + (T − t + 2)ε− (T − (t− 1))(

k

2
)− k,

which proves the induction hypothesis. Therefore, (using (16) with t = 1) once 2

has challenged, his continuation payoff in the unique SPE continuation, including the
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payment K and adding k
2

for the renegotiation which takes place immediately after

the challenge, is

K +
σ(θ)

2
− 1

2
[u1(a, θ)− u2(a, θ)] + y + Tε− Tk

2
.

(b) Consider a subgame in which 1 has announced θ, 2 has challenged with θ′, but

the true state is θ′, so the challenge is valid.

By the logic leading to (13), at stage T of the challenge procedure 1 strictly prefers

to send no message if

2y + 2ε > d(a, a′, θ′),

which is true by (4) and Assumption 1. Suppose that at stage t > 1 player 1 strictly

prefers to send no message. This continuation being efficient (allowing for the rene-

gotiation from outcome (a′, 0, 0)), there is no renegotiation after the message ‘wait’ at

stage t− 1, so 1 chooses at stage t− 1 between (i) pre-renegotiation outcome (a′, 0, 0)

now or (ii) the same outcome at the following stage, less cost ε. Clearly the former is

better. Therefore, by backward induction, the unique equilibrium payoff for 2 if he

challenges with θ′ is

K +
σ(θ′)

2
− 1

2
[u1(a

′, θ′)− u2(a
′, θ′)],

which establishes (10). QED.
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