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Abstract 
 
Better understanding of the role of learning by doing and learning by research at 
different stages of technical progress is important for development of a theory of 
innovation and designing effective technology policies. This paper presents a 
comparative analysis of energy technology learning and progress within the framework 
of Schumpeter’s invention-innovation-diffusion paradigm. We estimate learning by 
doing and research rates for a range of energy technologies in four stages of technical 
progress. We find learning patterns that are broadly in line with the perceived view of 
the process of technical progress. Emerging technologies respond slowly to research 
and development (R&D) and capacity expansion. Evolving technologies exhibit high 
learning by doing and research rates. Reviving technologies exhibit considerable 
response to learning by research although they do not face significant market 
constraints. Mature technologies exhibit similar learning characteristics to emerging 
technologies. The results point to relative importance of R&D in the process of 
technological progress. We generally find higher learning by doing than learning by 
research rates but do not find any development stage where learning by doing alone is 
the dominant driver of technical change. Also, high capital intensity and market 
constraints appear to slow down the pace of progress of emerging and evolving 
technologies. We find little scope for potential substitution between learning by doing 
and learning by research across the technologies and different stages of their 
development path. It remains crucial to understand how a technology can be supported 
in its transition from the emergence stage to a self-sustaining growth path. 
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1. Introduction 
 
The importance of technological progress as a driving force behind factor productivity and 
economic growth has been recognised in the economic literature for some time. The main 
focus of the early literature on science and technology was, however, on the effect and 
measurement of technological change on output and growth. A common feature of this 
literature was their treatment of technical change as a phenomenon exogenous to the 
economy. By default, such view of technical progress poses clear limitations for economic 
and policy analysis of technology. 
 
Since the 1960s, the focus of the literature has shifted toward the role of economic factors 
on technical change (Thirtle and Ruttan, 1987). The new paradigm views technical progress 
as an endogenous to the economy and the determinants of the change process. This shift 
originated from renewed attention to the role of technological change and the desire to 
influence the course and rate of the change through policy. The new paradigm emphasizes 
how such induced technical change can be achieved. The notion of induced technological 
progress is particularly relevant for energy and environmental technology issues where the 
economic, social, and social stakes are high (Criqui et al., 2000; Grubb et al., 2002). 
 
It is, therefore, important to enhance our understanding of the effect of learning on 
technical change and different stages of development. Innovation theory and cross-
technology analysis using learning curves can identify the learning characteristics of the 
stages of the process of technical change. It is also of interest to improve the process of 
learning and identify those technologies that are likely to achieve most progress during the 
foreseeable future. Further, it is important to determine whether resources allocated to 
promotion of a given technology are better spent on research and development (R&D) or 
capacity promotion policies. 
 
This paper presents a comparative analysis of technical progress in a range of energy 
technologies representing different stages of the technical innovation and change process 
using the learning curve approach. The paper uses simultaneous two-factor learning curves 
and diffusion models to estimate learning for the technologies and finds comparable 
patterns of learning characteristic among the main categories of technologies. The next 
section reviews relevant literature and concepts of technical change and technology 
learning curves. Section 3 describes the methodology and data used in the paper. Section 4 
presents the results of the analysis. Section 5 is conclusions and policy implications. 
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2. Induced technical change and learning curves 
 
Technical change is generally conceptualized as a gradual process that involves different 
stages. The process and stages have been described in various ways. The most established 
of these is the model based on the paradigm that is often referred to as the Schumpeterian 
trilogy of invention, innovation, and diffusion (Schumpeter, 1934; 1942). Within this 
framework, invention is viewed as the generation of new knowledge and ideas. In the 
innovation stage, inventions are further developed and transformed into new products. 
Finally, diffusion refers to widespread adoption of the new products. 
 
The relationship between the stages of technical progress is no longer thought to be linear. 
Rather, the process of technical change is non-linear and encompasses feedback loops 
between the model components (Stoneman, 1995). These inter-relations and feedback in 
the innovation process are, however, not well understood and despite numerous attempts, to 
this date, a coherent theory of the determinants of technical change and innovation remains 
illusive. The concepts and characteristics of the stages and process of technical change are 
also relevant for economic analysis of energy technologies (Jensen, 2004). 
 
Research and development (R&D) activities are among the main drivers of technological 
progress. There is a degree of correspondence between the process of technical change and 
the type of R&D activities in basic research, applied research, and development activities. 
Basic research is broadly related to the invention and early stages of conception of a 
technology. As the technology matures, applied research and development activities are 
generally associated with the innovation and diffusion stages of technical progress. As 
noted, R&D is present in all stages of development of a technology although the nature of 
the activity is subject to change. However, R&D is not the only source of technical change. 
Knowledge gained in the process of manufacturing, scale of production, and utilization is 
also recognized as a significant source of technological advancement. There is also reason 
to believe that the relative importance of R&D in technical progress can vary in different 
stages of development of technology. 
 
At early stages of development, technical progress is likely to be achieved through R&D. 
This is partly due to the fact that, in the absence of commercial viability, growth in installed 
capacity remains limited. Installed capacity does not begin to grow until cost improvement 
and/or public policies ensure commercial viability. While market size and conditions are 
constrained, R&D will play the leading role in achieving technical progress. Commercial 
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prospect and supportive policies attract R&D and capacity expansion. As the technology 
develops and gradually reaches maturity the effect of additional amounts of both R&D and 
capacity will tend to diminish. 
 
R&D and installed capacity are important sources of cost reduction and progress in new 
energy technologies (Skytte et al., 2004; Criqui et al., 2000). However, it can take a long 
time before a technology evolves from invention to innovation stage and ultimately 
becomes fully commercialised. It is, therefore, important to study the relative importance of 
technology push and market pull factors and, in particular their role in different stages of 
technological development (see Grübler et al., 1999). This will not only enhance our 
understanding of the stages and process of technical changes but also will help to formulate 
better informed and targeted technology policies. 
 
2.1 R&D and technology policy 
 
The notions of induced technical change and learning curves imply that the direction and 
rate of technical progress and the stages in the innovation process can be influenced. It then 
follows that targeted policies can be devised to mitigate market failure for evolving and 
emerging energy technologies. A typology of policies, consistent with the invention, 
innovation, and diffusion paradigm outlined in the above divides these into supply push and 
demand pull policy measures. 
 
R&D activities are often subject to three main types of market failure namely indivisibility, 
uncertainty, and externalities (Ferguson and Ferguson, 1994). The aim of technology push 
measures is to overcome such barriers and to promote generation of the knowledge base 
and development of evolving and emerging technologies. In turn, market or demand-pull 
measures are devised to promote technical change by creating demand and developing 
markets for new technologies and products. Different technologies are at different stages of 
the development process. Government R&D and promotion schemes are initially more 
important at the basic research and development stage. As the technology matures policies 
supporting demand pull will gradually be more effective in promoting technical progress. 
 
2.2 Learning curves 
 
One approach to measure technical change that has recently received renewed attention is 
based on the notion of learning curves and the estimation of the learning effect. Learning 
curves are used to measure technical change in the form of cost improvement in 
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technologies as a result of innovative activities. The concept of the learning effect as a 
distinct source of technical change was presented in Wright (1936) and Arrow (1963) and is 
often termed as “learning-by doing”. The learning effect of a technology is generally 
derived from learning curves where technical change is measured in terms of reduction in 
the unit cost (or price) of a product as a function of experience gained from an increase in 
its cumulative capacity or output. 
 
Although, the notion of learning curves has been known for a long time, the pressing need 
for innovation in energy and environmental technology and policy instruments has been an 
important source of interest in this area of research. The early applications of learning 
curves, between 1930s and 1960s, were mainly production orientated (Wrigt 1936; Alchian, 
1963; Arrow, 1962; Hirsh, 1952). In 1970s and 1980s, the learning curves were also 
applied in the context of business management, strategy, and organisation studies (BCG, 
1970; Dutton and Thomas, 1984; Hall and Howell, 1985; Lieberman, 1987; Spence, 1986; 
Argote and Epple, 1990). Since 1990s, learning curves have attracted considerable interest 
for the purpose of technology and policy analysis in general and for application to energy 
technologies in particular (Papineau, 2006; McDonald and Schrattenholzer, 2001; Criqui et 
al., 2000; IEA, 2000). 
 
In their most common form, learning curves define the cost or price of a technology as a 
power function of a learning source in cumulative form such as installed capacity, output, 
or labour. The learning curve for a given technology is defined as in Equation (1). The 
learning effect of capacity increase on the cost of technology is then generally expressed as 
learning rate measured in terms of the percentage cost reduction for each doubling of the 
cumulative generation capacity or production as in Equation (2). 
 

εα KC *=            (1) 
 

ε−−= 21LR           (2) 
 
where: 
C unit cost of technology 
K cumulative capacity (or production, etc.) 
ε learning elasticity 
LR learning rate 
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2.3 Issues with single-factor learning curves 
 
The usefulness of the simple specification of learning curves in Equation (1), originally 
developed in the context of manufacturing and mature industries, to technical change in 
evolving and emerging technologies is uncertain. The endogenous view of and proactive 
approach to technical progress implies that, in order to induce technological progress, both 
push and pull instruments should be used. 
 
Therefore, the use of simple single-factor specification of learning curves in the context of 
change in energy technologies poses has known limitations. An important shortcoming of 
single-factor curves is that that they do not take the effect of R&D on cost reduction into 
account. From a policy point of view, single-factor learning curves can only lead to 
capacity-oriented recommendations while ignoring the role of R&D in technical change. In 
addition, in the absence of explicit inclusion of R&D in the models, they are likely to 
produce inaccurate estimates of learning by doing rates. 
 
Single-factor learning curves are often intended for the analysis of innovation process. 
However, there is likely to be a possible endogeneity between cost reduction and capacity 
expansion i.e. reductions in the cost of a technology are also likely to increase the adoption 
of that technology. Therefore, within the framework of the invention, innovation, and 
diffusion paradigm, single-factor learning curves amount to leaving out the main aspect of 
the technology diffusion. Moreover, by including only cumulative capacity, they only 
indirectly refer to the diffusion stage of technological development. Consequently, single-
factor learning curves are not appropriate for analysis of evolving and emerging energy 
technologies where the innovation stage of the technological process is generally of most 
interest. 
 
2.4 Two-factor learning curves 
 
In some recent studies, the notion of learning effect has been extended to incorporate 
“learning-by-researching” where R&D is assumed to enhance the technology knowledge 
base, which in turn leads to technical progress. The learning effect of R&D is accounted for 
in “two-factor learning curves” that incorporate cumulative R&D spending or number of 
patents as proxy for stock of knowledge (Kouvariatakis, 2000). As a policy analysis tool, 
two-factor learning curves incorporate a role for R&D and, in effect, for technology policy 
in promoting and achieving induced technical progress. 
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The notion of two-factor learning curves was first proposed in Kouvariatakis et el. (2000) 
where cumulative R&D and cumulative production are assumed to be the drivers of 
technology cost improvement. Despite their relative advantages, however, there are few 
examples of application of two-factor learning curves. Klassen et al. (2002) and Cory et al. 
(1999) have applied two-factor learning curves in analysis of innovation in wind energy. 
Also, Miketa and Schrattenholzer (2004) and Barreto and Kypreos (2004) have used two-
factor learning curves in bottom-up optimization models of energy technologies. The effect 
of R&D on the technology cost reduction is illustrated in Figure 1. 
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Figure 1: Cost reduction effects of learning by doing and learning by research 
 
The learning by doing effect from the increase in cumulative capacity is represented by the 
decreasing curve D showing the volume effect. The effect of learning by research is 
through technological improvement and causes a shift in the trajectory of learning curve of 
the technology to D’. For example, a reduction in the cost of a given technology from c1 to 
c2 is attainable either by an increase in cumulative capacity x2, or a capacity increase to x3 
combined with a shift in the learning curve to D’ induced by R&D. From the point of view 
of technology policy, it is of considerable interest to understand the relative effectiveness of 
R&D and capacity for a given technology at different stages of the process of technical 
change. This can, for example, to more efficient allocation of scarce resources earmarked 
for promotion of energy technologies. 
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3. Method and data 
 
3.1 Method 
 
Energy generation technologies produce a rather homogenous output in terms of effect and 
energy. The disciplinary and knowledge base among technologies can vary greatly. There 
are environmental variations across technologies such as differences in market-related 
conditions, policy, and the regulatory framework within which the technologies evolve. In 
addition, technologies can be at different stages of development. It then follows that the 
progress path of energy technologies can exhibit differences. Consequently, it is unlikely 
that there exists one standard learning model for all technologies that will produce the best 
estimates of learning rates. 
 
In addition, there is not an absolute or unique learning rate for a given technology. Rather 
estimated learning rates can be context-dependent and driven by model specification, 
variables, aggregation level, and time-period. Indeed, there is considerable variation in the 
empirical estimates of learning rates for some energy technologies (see e.g. McDonald and 
Schrattenholzer, 2001; Ibenholt, 2002). Moreover, estimated learning rates can vary over 
different time periods (Claeson Colpier and Cornland (2002). Also, due to the underlying 
differences, estimations of learning rates for different technologies may lend themselves, in 
terms of statistical significance, to different models and specifications. This can partly be 
expected as the technological characteristics of different energy technologies can vary. 
 
Also, models used for the estimation of learning rates should take the effect of learning by 
researching on reducing the cost of technology into account. As suggested in Söderholm 
and Sundqvist (2003), inclusion of R&D spending in learning curves not only adds a 
controllable or policy variable but also reduces the problem of omitted variables bias that 
would attribute some cost reduction achieved by R&D to cumulative capacity. In addition, 
learning rate estimations need to take into account the endogeneity of cumulative capacity 
and unit cost of technology. The notion of endogeneity suggests that while increased 
cumulative capacity can result in unit cost reduction, the cost reduction can in turn lead to 
market diffusion and encourage policies that lead to higher cumulative capacity. 
 
A system of simultaneous equations incorporating R&D and endogeneity of capacity and 
cost i.e. diffusion, transforms single-factor learning curves from a partial learning function 
to a learning-innovation-diffusion models that reflects the main elements and feedback in 
the invention, innovation, and diffusion paradigm. To our knowledge, the only example of 
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such approach is reported in Söderholm and Klassen (2003) which uses simultaneous 
learning and diffusion equations to estimate the effect of promotion policies for wind 
energy in the UK, Spain, Denmark, and Germany. The study finds evidence of a diffusion 
effect i.e. significant positive effect from cost reduction on cumulative generation capacity 
as well as the effect of policy type and design on cost development of wind power. 
 
The general specification used for estimation of the two-factor simultaneous learning-
diffusion model (Model-I) is represented by Equations (3) and (4) using the three-stage 
least-square (3SLS) estimation method. We estimate the model for each technology 
separately where the unit cost of a given technology C and the cumulative installed capacity 
Cap are treated as endogenous/instrumental variables. Other variables such as cumulative 
R&D spending RD and the time variable Y (when significant) are used as exogenous 
variables. Additionally, the cumulative number of patents for that technology Pat is used as 
additional instrumental variable. Those technologies for which Model-I do not return 
significant results we use two-factor learning model specification (Model-II). For these we 
use two-stage least squares (2SLS) estimations as specified in Equation (3) only together 
with cumulative patents Pat or time variable Y as instruments. 
 
Two-factor learning equation: 

nttntnnnt LogCapLogRDLogC ** κβα ++=     (3) 

 
Diffusion equation: 

nttntnnnt LogYLogCLogCap ** χωμ ++=     (4) 

 

ntnt LogCap ,LogC : variables Endogenous  

ntntnt LogY ,LogPat ,LogRD : variables Exogenous  

 
where: 
C total unit cost of technology (€1999/KW) 
RD cumulative private and public R&D spending (mill. €1999) 
Cap cumulative installed generation capacity (MW) 
Y time variable (years) 
Pat cumulative number of technology patents 
n technology 
t learning period (1, …, t, …w) 
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Figure 2 summarises the theoretical, practical, and policy conceptualisation of technical 
change and how these relate to different models of learning curves discussed in this section. 
As shown in the figure, single-factor learning curves (1-FLC) only reflect a particular 
aspect of technical change process i.e. the effect of diffusion or market pull on technology 
cost. Two-factor learning curves (2-FLC) incorporate the effect of innovation through R&D 
and technology push. The two-factor learning-diffusion models (2-FLDC) also incorporate 
the diffusion effect of technology/cost improvement and thereby reflect the main tenets of 
the Schumpeterian theory and model of technical change as depicted in dashed arrows. 
 

 
Figure 2: Technical change concepts and models of learning curves 

Invention Innovation DiffusionTheory 

Practice 

Policy 

Basic
research

Applied research /
demonstration

Commercialization

Technology push Market pull

Technology
(unit) cost

1-FLC2-FLC

2-FLDC 

 
We also calculate the elasticity of substitution between cumulative R&D spending and 
capacity expansion for the technologies studied here. Elasticity of substitution is a unit-
neutral measure of the ease with which the input factors can substitute each other. In a Cob-
Douglas specification, the elasticity of substitution can be calculated from Equation (5). 
 

nt

nt

n

n

RD
Cap

*
κ
βσ =      (5) 

 
An elasticity measure equal to unity represents the case of constant returns to scale. At the 
same time, the degree to which the elasticity deviates from unity show the degree of 
difficulty with which input factor can substitute each other. 
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3.2 Data 
 
Any attempt to estimate technology learning rates is faced with the choice of level of data 
aggregation. The appropriate level of analysis is dependent on the purpose of the study. For 
example, country or regional-level studies allow for examination of the effect of policies 
and local circumstances on technology cost. This paper aims to examine high-level patterns 
of technical change. Therefore, we utilize aggregated global data for a broad view of 
technological progress and to reflect the effect of unobservable factors such as spillover 
effects on costs. Table 1 summarises the technologies and time periods that are examined in 
this study. 
 

Table 1: Technologies and data summary (mean values) 

 Technology Year 
Unit cost  

of capacity 
($99/kW) 

Cumulative 
installed 

capacity (MW) 

Cumulative 
R&D 

(mill. $99) 

Cumulative 
patents 

(number) 
1 Pulverized fuel supercritical 

coal 
1990-1998 1,493 19,034 7,461 495 

2 Coal conventional technology 1980-1998 1,308 650,512 35,452 - 
3 Lignite conventional 

technology 
1980-2001 1,275 105,120 7,877 - 

4 Combined cycle gas turbines 1980-1989 
1990-1998 

573 
509 

1,524 
62,301 

15,438 
25,448 

3,324 
7,634 

5 Large hydro 1980-2001 3,426 452,558 17,881 - 
6 Combined heat and power 1980-1998 920 31,084 14,913 47 
7 Small hydro 1988-2001 2,431 23,708 1,171 - 
8 Waste to electricity 1990-1998 3,528 11,338 18,928 5407 
9 Nuclear light water reactor 1989-1998 3,090 328,391 97,211 13,198 

10 Wind - onshore 1980-1998 2,094 2,913 7,099 1,634 
11 Solar thermal power 1985-2001 4,990 256 4,498 - 
12 Wind – offshore 1994-2001 2,066 82 261 - 

 
We examine the learning effect in thirteen different energy technologies. The choice of 
technologies studied here have been driven by availability of suitable data i.e. the key 
variables that allow derivation of learning rates using simultaneous two-factor learning and 
diffusion models. However, this preferred model specification has had the effect of limiting 
the number of years for which some of these technologies could be analysed. The data for 
the technologies used for the purpose of this analysis were compiled based on the 
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information available in the database of the POLES model.1 The unit cost and R&D 
spending figures for the technologies are expressed in 1999 US dollars. The R&D data 
comprise estimated government and private spending. The technology patent data are from 
the European Patent Office. 
 
 
4. Results 
 
In this paper, we allow for the possibility that the underlying differences among 
technologies can result in different suitable models for estimation of learning rates. We use 
two alternative model specifications to a set of technologies in the following order of 
preference. Where possible, we estimate simultaneous two-factor learning and technology 
diffusion equations (Model-I). In those cases where the first approach does not yield 
significant and reasonable results, we have estimated the simpler single-equation models of 
two-factor learning curves (Model-II) and where suitable used together with exogenous 
variables. 
 
As discussed in the above, moving from single-factor learning curves to two-factor 
learning-diffusion models is methodologically preferable. However, this may pose certain 
empirical issues. While the former always return some significant result, the latter models 
do not necessarily do so. Technology learning rates are based on econometric estimations 
of often relatively short time-series data where all the series generally exhibit strong trends. 
The results of regression analysis can, therefore, be spurious and the R-squares can 
overestimate the relationship between the dependent and independent variables. Moreover, 
it is possible that some estimated coefficients can be statistically insignificant or even have 
the wrong sign.2

 
In the following we present the results for estimation of technology learning rates in four 
categories (mature, reviving, evolving, and emerging technologies) which are broadly in 
line with their perceived level of maturity and stage of development as discussed in the 
previous section(s). We also point to contextual similarities and differences across these 
                                                           
1 The TECHPOL database has been kindly provided by the LEPII-EPE, Grenoble, France. This database has 
been assembled in the framework of the SAPIENT project (DG Research) to inform the world energy 
simulation model, POLES. 
2 Cory et al. (1999) estimate two-factor learning curves for wind turbines in the United States between 1981 
and 1995 find the unintuitive result of positive sign for the coefficient of number of turbines. They suggest 
that this can be the results of large changes in the market growth and find plausible results by splitting the 
data into two separate periods. 
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technologies such as capital intensity, unit size, and market opportunities. In addition, we 
calculate elasticity of substitution for the technologies over the period under the study as 
measure of substitution possibility between and independence of the effect of learning by 
doing and learning by researching on cost reduction. 
 
4.1 Mature technologies 
 
The first category of technologies discussed here comprises a set of established and mature 
generation sources in our sample (Table 2). The technologies in this category have been 
developed and utilised over a long period of time and have had a major role in the 
expansion of electricity sectors worldwide. As shown in the results, the mature technologies 
have similar learning characteristics and exhibit low learning by research and learning by 
doing rates. 
 

Table 2: Learning elasticities and rates for “mature” technologies 

  Learning Model Diffusion Model Inst./ 
Exogen.

Technology 
 Method Capacity 

Elasticity 
Learning by 

Doing 
Research 
Elasticity 

Learning by 
Research Diffusion Year Var. 

Pulverized fuel 
supercritical coal 
 

Model-I -0.0551* 3.75% -0.0897 6.03% -11.05*** 0.045*** RD, Y, 
Pat  

Coal conventional 
technology 
 

Model-I -0.1909*** 12.39% -0.0182 1.25% -2.33*** 0.15*** RD, Y 

Lignite conventional 
technology 
 

Model-II -0.0842*** 5.67% -0.0250* 1.72%  
- 

 
- 

 
- 

Combined cycle gas 
turbine 1990-98 
 

Model-I -0.0321*** 2.20% -0.0347*** 2.38% -16.465 0.601 RD, Y, 
Pat 

Large hydropower 
 
 

Model-II -0.0285*** 1.96% -0.0384* 2.63%  
- 

 
- 

 
- 

*** 5% significance     ** 10% significance    * 15% significance 

 
Due to their mainstream position and widespread use, these technologies has meant that 
they have faced less market constraints in terms of commercial and expansion opportunities 
than other technologies. The mature technologies are, per unit of capacity, also relatively 
less capital intensive than the newer technologies. This is partly due to the relatively large 
size of the units. 
 
A notable exception is the conventional coal technology, which shows a somewhat higher 
learning by doing rate. While the learning coefficients are statistically significant, the 
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reasons for this are not immediately clear. However, given the existing high levels of 
installed capacity for established technologies, a doubling of capacity and further cost 
improvements can take place rather slowly and over a long period of time. 
 
4.2 Reviving technologies 
 
The second category of technologies comprises a set of “reviving” generation sources. The 
technologies in this category have been utilised for a relatively long time and as such they 
do not represent radical innovations (Table 3). The results find also common learning 
characteristics among the technologies. They exhibit low levels of learning by doing while 
showing a fairly high degree of learning by research. The rate of research by doing 
achieved in these fairly established technologies is significant. The learning rates for the 
technologies suggest that there is limited scope for future cost reductions through learning 
by doing. At the same time, the learning by research rates show considerable potential for 
further cost reductions. The existing high levels of installed capacity for these technologies 
suggest that they have limited scope for more cost reductions. Although, the extent to 
which that such learning rates can sustain in the future is uncertain. 
 

Table 3: Learning elasticities and rates for “reviving” technologies 

  Learning Model Diffusion Model Inst./ 
Exogen.

 
Technology 

 

 
Method Capacity 

Elasticity 
Learning by 

Doing 
Research 
Elasticity 

Learning by 
Research 

 
Diffusion 

 
Year 

 
Var. 

Combined cycle gas 
turbine 1980-89 
 

Model-I -0.0094*** 0.65% -0.2815*** 17.7% -8.451 0.227 RD, Y, 
Pat 

Combined heat and 
power 
 

Model-I -0.0033*** 0.23% -0.1351*** 8.9% -26.23*** - RD, Pat

Small  
hydropower 
 

Model-II -0.0070*** 0.48% -0.3333*** 20.6% - - 
 

- 

*** 5% significance     ** 10% significance    * 15% significance 

 
During the periods studied here, the reviving technologies have achieved technical progress 
which, combined with their environmental advantages, have created favorable policies and 
market opportunities. Small hydropower benefited from increased research as a result of a 
strong drive to develop renewable sources. Availability of smaller and more efficient 
combined heat and power units have expanded the market for this technology by 
facilitating industrial and commercial applications of this technology. Combined cycle gas 
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turbines achieved technical progress in increasing the efficiency and reducing the cost 
effective size of turbines. 
 
Another shared characteristic among the reviving technologies is that R&D and technical 
change has lowered the efficient size threshold and has enabled them to be built in smaller 
and economic units. Further, similar to mature technologies, the technologies in this 
category are not highly capital intensive. Therefore, the required initial capital investments 
in these technologies have decreased which, in the liberalised electricity markets, has given 
an additional comparative advantage to these technologies. 
 
4.3 Evolving technologies 
 
The third category of technologies comprises “evolving” generation resources. The 
technologies in this category consist of nuclear power (light water reactor), waste to 
electricity, and wind energy. These technologies have existed for a shorter time than the 
reviving technologies and have experienced improvements during the period under 
consideration. The estimated learning rates for these technologies show that they share the 
characteristics of rather high levels of learning by doing as well as learning by research 
(Table 4). 
 

Table 4: Learning elasticities and rates for “evolving” technologies 

  Learning Model Diffusion Model Inst./ 
Exogen. 

 
Technology 

 

 
Method Capacity 

Elasticity 
Learning by 

Doing 
Research 
Elasticity 

Learning by 
Research 

 
Diffusion 

 
Year 

 
Var. 

Nuclear power  
(light water reactor) 
 

Model-I -0.6517*** 36.3% -0.4485*** 26.7% -0.910*** -  

Waste to electricity 
 
 

Model-I -0.7738*** 41.5% -0.8286*** 43.7% -0.762*** - RD, Pat 

Wind energy 
 
 

Model-I -0.2021***

 

13.1% -0.4502** 26.8% -3.458*** - RD, Pat 

*** 5% significance     ** 10% significance    * 15% significance 

 
Nuclear power has not been a priority area in energy policy and environmental concerns 
with accidents and radioactive waste has significantly reduced the market opportunities for 
the technology. Wind energy has enjoyed a favorable policy environment in many countries 
and, as a result of various promotion schemes, has shown considerable growth in recent 
years. However, due to its reliance on public subsidies and lack of full cost competitiveness 
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in relation to established conventional technologies, wind technology still faces market 
constraints in reaching a significant share of electricity resource mix. Waste to electricity 
technology is in a middle position. Environmental concerns associated with emissions and 
siting constraints have meant the technology has not been priority area and has not become 
a major energy source. Moreover, the trend toward liberalisation of the electricity sectors in 
many countries has further limited the market potential for the evolving technologies, as 
these have not been the obvious choice for private investors operating in competitive 
markets. 
 
As noted, the evolving technologies have been evolving under the condition of market 
constraints that has limited their growth potential. It is, therefore, plausible that these 
technologies still poses significant potential for further cost improvement through learning 
by doing through, for example, increase in manufacturing scale and design standardisation. 
Also, their existing moderate and low levels of installed capacity suggest that these 
technologies still have further scope for significant capacity increases and cost reductions 
through learning by doing. 
 
Moreover, the estimated learning by research rates shows considerable potential for cost 
reduction. Nuclear power and wind energy are capital intensive technologies and the 
required initial capital investments in these technologies are comparatively higher than 
those of fossil fuel based technologies. As a result, the main potential for further cost 
improvements in these technologies is likely to be from learning by research and in the 
form of lowering the capital investment requirements. 
 
4.4 Emerging technologies 
 
The final category of technologies examined is “emerging” generation sources and includes 
thermal solar power and offshore wind energy. The emerging technologies have existed for 
a relatively short time and have achieved a lesser degree of technical progress during the 
period under consideration. The estimated learning rates for thermal solar power and 
offshore wind show low levels of learning by doing and learning by research for both 
technologies (Table 5). 
 
Also, both technologies examined here have clear environmental advantages and have 
benefited from promotion policies. However, limited progress in technical change and cost 
effectiveness relative to other technologies has limited the market opportunity and diffusion 
for these technologies. This is also reflected in our results as, due to lack of capacity 
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responsiveness to cost improvement, learning-diffusion models did not return results that 
were acceptable. As a result of market constraints and lack of cost competitiveness, the 
diffusion of emerging technologies has been slow and they are yet to gain a noticeable 
share of energy mix. 
 

Table 5: Learning elasticities and rates for “emerging” technologies 

  Learning Model Diffusion Model Inst./ 
Exogen. 

 
Technology 

 

 
Method Capacity 

Elasticity 
Learning by 

Doing 
Research 
Elasticity 

Learning by 
Research 

 
Diffusion 

 
Year 

 
Var. 

Solar power –  
thermal 
 

Model-II -0.0320*** 2.2% -0.0779*** 5.3% - - 
 

- 

Wind energy – 
offshore 
 

Model-II -0.0151 1.0% -0.0720*** 4.9% - - Cap, Y 

*** 5% significance     ** 10% significance    * 15% significance 

 
Similar to evolving technologies, the liberalisation of the electricity sectors has increased 
the dependence of the emerging technologies on public R&D and promotion schemes. In 
the light of the existing low levels of installed capacity and presence of market constraints, 
the emerging technologies are likely to have significant potential for cost improvement 
through learning by doing and learning by research. Another similarity to evolving 
technologies is that emerging technologies are capital intensive and as a result, the main 
potential for further cost improvements in these technologies, from learning by research 
and learning by doing, is likely to come in the form of reductions in investment 
requirements. 
 
As mentioned earlier, single-factor learning curves not only do not reflect the effect of 
R&D on technical change but can also misestimate the effect of learning by doing that they 
aim to measure. Table 6 shows the learning by doing rates for the same technologies and 
dates examined in the above using simple single factor learning curve specifications as in 
Equations (1)-(2). As shown in the table, the learning by doing rates estimated by single-
factor learning curves are higher than those estimated by two-factor learning curves and 
two-factor learning-diffusion curves. Moreover, the overestimation tends to be larger for 
evolving and emerging technologies, which are of particular interest to current technology 
and energy policy debates. An implication of devising policies based on overestimated 
learning by doing rates such as those shown here is that they can shift scarce innovation 
resources from more productive R&D activities and to less productive and perhaps more 
costly capacity-promotion policies. 
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Table 6: Learning by doing rates using single-factor curves 

 Technology 
Learning by Doing 

Elasticity 
Learning by Doing  

Rate 
1 Pulverized fuel supercritical coal -0.071 4.8% 
2 Coal conventional technology -0.237 15.1% 
3 Lignite conventional technology -0.117 7.8% 
4 Combined cycle gas turbines (1980-89) 

Combined cycle gas turbines (1990-98) 
-0.040 
-0.046 

2.8% 
3.3% 

5 Large hydro -0.042 2.9% 
6 Combined heat and power -0.030 2.1% 
7 Small hydro -0.041 2.8% 
8 Waste to electricity -1.247 57.9% 
9 Nuclear light water reactor -1.048 51.6% 

10 Wind - onshore -0.247 15.7% 
11 Solar thermal power -0.368 22.5% 
12 Wind – offshore -0.126 8.3% 

 
Table 7 summarizes the main results and characteristics of the four technology categories. 
The results indicate that emerging technologies can initially experience a relatively long 
period during which they respond slowly to R&D and capacity expansion and as a result 
their technical progress evolves rather slowly. In the next development stage, evolving 
technologies exhibit both high learning by doing and learning by research. It is noteworthy 
that reviving technologies only show considerable potential for technical improvement 
through learning by doing although they do not face significant market constraints. At the 
final development stage, mature technologies exhibit rather similar learning characteristics 
to emerging technologies in the form of low learning by doing and learning by research 
rates. 
 

Table 7: Technology development stage, learning rate, capital intensity, and market 

 
Learning by 

Doing 
Learning by 

Research 
Capital 

Intensity 
Market  

Opportunity 
Mature  
technologies 

Low Low Low High 

Reviving  
technologies 

Low High Low High 

Evolving  
technologies 

High High High Low 

Emerging  
technologies 

Low Low High Low 
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As expected, some of the results show that unit cost reductions tend to increase diffusion 
and adoption of technologies. However, we only find high rates of learning by doing in the 
evolving technologies. With a view to a stylized technical progress and diffusion path, high 
capital intensity and limited market opportunities can constrain the pace of technical change 
in emerging and evolving technologies. 
 
An interesting technology policy question is the extent to which learning by doing and 
learning by research may substitute each other and whether such substitution is dependent 
on the stage of the development of a technology. Such knowledge would be useful in 
allocation of government technology promotion funds between technology push and market 
pull measures. Figure A1 in the Appendix exhibits the elasticity of substitution and its 
development over time for the same set of technologies and for the same periods as those 
used to derive the learning rates. As shown in the figure, the results generally deviate from 
unity and thus only indicate weak substitution possibility between learning by doing and 
learning by research across the technologies. A notable exception is, however, wind energy 
technology where we find evidence of ease of substitution between innovation input 
factors. 
 
 
5. Conclusions 
 
A better understanding of the role of learning by doing and learning by research at different 
development stages of technologies is important for developing a theory of innovation and 
designing more effective technology policies. This paper presents a comparative analysis of 
energy technology learning and progress within the framework of invention, innovation, 
and diffusion paradigm. Some conclusions and lessons can be drawn form the empirical 
analysis towards this aim. 
 
We estimated the learning by doing and learning by research rates for a range of energy 
technologies in four stages of technical progress. Overall, the observed patterns of learning 
by doing and learning by research are broadly in line with the perceived view of the process 
of technological progress and diffusion. We find that emerging technologies experience a 
period during which they respond slowly to R&D and capacity expansion. Evolving 
technologies exhibit both high learning by doing and learning by research. Reviving 
technologies show considerable potential for technical improvement through learning by 
research although they do not face significant market constraints. Mature technologies 
exhibit similar learning characteristics to emerging technologies. 
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The relative importance and the relationship between R&D and capacity expansion is a 
rather important question and, at the same time, little understood aspect of technical 
change. The results generally point to the relative importance of R&D in the process of 
technological progress. We generally find higher learning by doing rates (although not 
always statistically significant). In addition, we did not find any development stage where 
learning by doing alone was the dominant driver of technology cost improvement. 
 
At the same time, we found little scope for potential substitution between learning by doing 
and learning by research across the technologies as well as in different stages of their 
development path. The effects of learning by doing and learning by research on technology 
cost improvement can be regarded as independent from each other. 
 
A crucial question, in terms of technology learning, is how technologies pass from one 
stage of development to another. This is in particular important in the passage from the 
“emerging” to “evolving” technology stage. There remains an ample need for more 
extensive and accurate data on energy technologies. Better data will enable more elaborate 
models of technology learning. This will in turn enhance the contribution of empirical 
studies towards the formulation of theories of innovation. 
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Appendix A: Elasticity of substitution between technology R&D and 

capacity expansion - development over time 
 
 
Figure A1: Elasticity of substitution for energy technologies over time. 
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