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Abstract: 
 

The heuristic concept of learning curves describes cost reductions as a function of 
cumulative production. A study of the Liberty shipbuilders suggested that product 
quality and production scale are other relevant factors that affect costs. Significant 
changes of attributes of a technology must be corrected when assessing the impact of 
learning-by-doing. We use an engineering-based model to capture the cost changes of 
wind turbines that can be attributed to changes in turbine size. We estimate the 
learning curve and turbine size parameters using more than 1500 price points from 
1991 to 2003. The fit between model and empirical data confirms the concept.  

 
 
1. Introduction 
 
The concept of learning curves is based on the empirical observation that costs of a 
technology fall by a constant proportion with every doubling of cumulative production. The 
concept was not derived from fundamental principles, but describes a phenomenon that was 
first identified in aeroplane construction by Wright (1936). The concept implies that 
expensive new technologies might become cost competitive with conventional technologies 
once increased application of the technology has provided sufficient learning and hence 
reduced the cost. This is one of the drivers in many government support programmes for 
renewable energy technologies. Learning curves are also an integral part of energy sector and 
macro-economic models that aim to understand the costs of adapting our economies to low 
carbon futures.  
                                                 
1 Both Faculty of Economics, University of Cambridge. Contact: Karsten.neuhoff@econ.cam.ac.uk. We are 
grateful for financial support provided by the Carbon Trust and by UK research council under the TSEC 
programme. We would also like to thank Dr. Martin Junginger (University of Utrecht) for providing us with the 
bulk of our price data, Michiel Zaaier (TU Delft)  for his helpful comments on turbine scaling properties, and 
Richard Spencer  (World Bank) for providing us with our initial data set.  
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Many studies have used the concept of learning curves to assess cost evolutions of, for 
instance,  coal-fired power plants (Joskow and Rose, 1985), ethanol production (Goldemberg, 
1996),  PV modules (Watanabe, 1999) and wind turbines. Within the latter sector, studies 
have not only focused on different geographical systems, from global experience curves 
(Junginger et al.,  2005) to country-specific ones (Neij et al., 2003); but also on different 
system levels, from the price of electricity (Ibenholt, 2002; IEA, 2000) to the price of wind 
farms ( Klaasen et al, 2003; Junginer et al., 2005), to the price of wind turbines (Durstewitz 
and Hoppe-Kilpper, 1999; Neij et al, 2003). A good overview of wind energy learning curves 
can be found in Junginger et al. (2005).  

One of the classical examples of learning-by-doing can be found in the WWII Liberty 
shipbuilders data. Thompson’s (2001) careful analysis of the data revealed the need to 
compare homogeneous products in learning curve analysis; a significant portion of the ship 
building productivity increases could not be attributed solely to learning-by-doing, as had 
previously been assumed, but also to reduced product quality, measured in terms of fracture 
rates, and changes in available capital. Representing these changes improves the fit with 
empirical data and the ability to anticipate future cost trends.  

Thompson’s analysis illustrates the benefit of careful study of individual technologies. 
A technology can have multiple attributes; for instance, quality increases availability and 
reduces maintenance costs; durability reduces the risk of early decommissioning;  and 
innovative technology, such as  the new direct-drive (gearless) systems,  although generally 
more expensive for the same power rating, reduces subsequent maintenance costs. Changes in 
these attributes over time can impact the production costs of turbines, for example, if more 
expensive materials are used. If changes in these attributes are not reflected in the estimation 
of a learning-by-doing rate, then results can be biased 
  In the case of wind turbines, the average turbine size has increased from ~27m rotor 
diameter in 1990 to ~65m rotor diameter in 2003 (based on IEA, 2003). To ensure that the 
blades do not touch the ground, a higher tower also accompanies the bigger rotor diameter. 
Increased wind speed at higher tower heights, due to wind shear, increases the potential 
energy capture of a turbine. When we corrected turbine price data for this effect, the fit with 
observed price data was not improved proportionally because turbine size has non-linear 
effects on both turbine costs and energy captured.  

For this reason, we propose to use an engineering-based model to correct for the cost 
changes of wind turbines that can be attributed to the changing turbine size. We break down 
the turbine into components, with different scaling properties relative to turbine size; for 
example, the costs of generators varies with the square of the rotor diameter, while the mass 
of the  nacelle, and hence the cost, increases with the cube of the rotor diameter. Weighting 
the different components with their cost contribution to the turbine gives a non-linear 
relationship between turbine size and turbine costs, with reference size and reference price as 
two free parameters. Finally, combining the engineering model with the learning-by-doing 
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function adds the learning curve parameter to the equation. We estimate these three 
parameters using more than 1500 German list prices, power ratings, tower height and the 
global installed capacity of wind turbines for each of these years. Using the combined 
learning-by-doing and engineering model we obtain a good fit for all of the list price data. 
This confirms the concept of learning curves for energy technologies, but also the necessity of 
correcting for significant changes in turbine size.  

With our approach, we obtain a learning rate of about 12% using the German price 
data and global cumulative installed capacity for the period 1991-2003. Existing studies that 
examine learning curves for ex works turbine prices (ISET, 2005; Neij et al, 2003) calculate 
much lower learning rates (5-6%) based on yearly output-weighted average prices, using 
cumulative installed capacity for Germany (rather than the global capacity) to explain the 
price reductions. We consider international interaction in the observation period to be 
sufficiently active to justify the use of global installed capacity as an explanatory variable for 
cost reductions also within Germany.  

Initially we were puzzled as to why it did not suffice to simply correct turbine prices 
for the difference in energy delivered at different sizes (based on the power rating) to obtain a 
good match with list prices. We think that size of wind turbines is a significant attribute that 
influences the value of a turbine without being properly reflected in the turbine price. There 
are two main reasons for this.  

Firstly, the compound product “wind energy” consists not only of the wind turbines, 
but also of the complementary aspects of project development, grid connection, system 
balancing costs etc., which generally decrease (per kW) with increasing turbine size. Investors 
will therefore not necessarily choose the cheapest turbine but the turbine best suited for 
surrounding energy system, which includes the incentives created by renewable energy 
support mechanisms. Recent academic work has addressed some of these concerns by 
expanding the learning system being considered, calculating learning curves based on the 
price of wind farms (Klaasen et al, 2002; Junginer et al., 2005) or the tariff price of electricity 
produced (Ibenholt, 2002; IEA, 2000). 

Secondly, the range of turbines that is available in the market has increased over time. 
Turbine producers have gained experience and gradually increased turbine size. In the early 
1990s, this created economies of scale, but in recent years, our analysis suggests dis-
economies of scale for wind turbines. Part of the cost reductions from learning-by-doing did 
not reduce the turbine price but simply allowed for the bigger turbine sizes. Please note that 
the existence of dis-economies of scale at the turbine level does not imply that the size of 
current turbines is too large, because such a statement requires an assessment that includes all 
the costs and benefits of integrating the turbine into the energy system.  

Of these two points, only the second will be addressed in this paper, which deals 
exclusively with scale at the turbine level. We make the simplifying assumption that the 
production scale has not changed significantly over the last two decades as the continuous 
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increase in turbine size has prevented a shift towards mass production. A few studies have 
sought to distinguish production-scale effects from learning-effects in various technologies, 
ranging from PV and wind turbines (Isoard and Soria, 2001), and paper mills (Lundmark, 
2003).  

The paper is set out as follows: section 2 presents the theory of our combined 
engineering-learning model. Section 3 details the data used for the analysis; results are 
presented in section 4 and interpreted in section 5. Section 6 concludes.  
 
2 The model 

 

We first introduce the economic concept of the learning curve using the following 

notation: K is the cumulative capacity installed of a technology and c(.) the cost of one 

standardised unit of the technology, c0 the intercept for the cost of the initial unit and b the 

slope of the learning curve (on a log-log scale):  
bKcKc 0)( =  .          (1) 

The slope of the learning-by-doing function can be expressed as progress ratio, P: 
bP 2=            (2) 

or as the learning rate, L:  
bL 21−=           (3) 

 If, for example, the progress ratio is 80%, a cost reduction of 20% occurs for each 
doubling of capacity and thus costs are reduced by a learning rate of 20%.  
  Besides learning, the size of the turbine also affects the costs of turbines. This is 
particularly relevant for wind turbines which are inherently susceptible to scale dis-
economies.  This is reflected in the square-cube law – often cited as a rule of thumb for the 
up-scaling of wind turbines: energy capture increases with the square of the rotor diameter, 
whereas mass (and, by simplification, cost) increases with the cube of the rotor diameter.   
 A turbine scale model that captures this effect begins with a  linear relation between cost 
and mass for individual  components of a wind turbine (Burton et al., 2001). Let m(D) 
describe the mass of the turbine with rotor diameter D; μ the proportion of cost that varies 
with mass and Dref a reference diameter with cost c0 C(D) then gives the cost of a turbine with 
rotor diameter D:  

      

⎟
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 The mass function, m(D), is not uniform for the various components of a wind turbine. 
Following Burton et al. (2001), we assume that the weight of the generator scales with the 
energy and thus quadratically with D. Assuming a constant tip speed, the rotational speed of 
the blades decreases proportionally with D, and therefore the torque at the nacelle increases 
with the cube of D and thus the mass of the rotor and the stress-bearing components of the 
nacelle also scale with the cube of D.  
 The change of the turbine cost with size can now be described as the sum of the changes 
to the components. For this purpose, we define xi as the fraction of turbine mass which scales 
with the rotor diameter with exponent i. As we aim to compare turbines of different sizes, we 
“normalise” the turbine costs by dividing through captured energy, which  scales with the 
square of D (given in the denominator): 
 

2

1

2

2

3

3

0

1

)(

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

ref

refrefref

D
D

D
Dx

D
Dx

D
Dx

cDc

μμμμ
    (5)  

 
  While there is some variation in the cost share of different components from turbine to 
turbine, there is no significant shift in the cost structure of turbines with increasing size of the 
turbine (Hau, 2000); thus, a constant component cost structure can reasonably be assumed for 
all turbine sizes (see Table 1.).  
 We can now combine the learning curve function (1) with the engineering-based scale 
model (5):   
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 The tower height increases proportionally with the rotor diameter, and wind speed 
increases with hub height due to wind shear. The typical exponential approximation for the 
wind speed profile at hub height H, relative to a reference wind speed Vref , at reference height 
Href  is: 
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 The wind shear exponent (α) is about one-seventh for onshore sites. Wind turbine 
designers have two options to capitalise on the increase in wind speed with increasing hub 
height. Firstly, they can retain the combination of turbine diameter and rated power of the 
generator and thus increase the energy produced with the same turbine – typically designated 
by the capacity factor: the ratio between the actual energy produced per annum, and the 
theoretical potential at rated power. Secondly, they can increase the capacity of the generator. 
What is generally done is a combination of both, optimised to maximise energy yield. 
  At high wind speeds, the wind turbine with a generator of higher power rating can 
capture a bigger fraction of the energy and translate it into electricity. The benefits during 
these times of high wind speeds come at the expense of an increase in costs for higher rated 
power and a possible loss of power at lower wind speeds. Figure 1 illustrates that turbine 
designers on average increase the power rating by 30% of the increased wind energy provided 
at higher  tower heights. 
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Figure 1 Relation between rated power over swept area, and energy capture (due to increased tower height) over 
swept area. 

 
 The remaining 70% of the increased wind energy captured at higher tower heights is not 
reflected in the price of wind turbines per installed capacity (measured in kW) but remains 
“concealed” in the capacity factor. We, therefore, adjust the observed cost per installed kW, 
cobserved(D,H), for the additional energy provided at higher tower height, H. Given that energy 
scales with the cube of wind speed we can write: 
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 The remaining 30% of increased wind energy captured at higher tower heights is used to 
increase the power rating by installing bigger generators per area swept by the rotor. We can 
now  adjust (6) accordingly (see the denominator): 
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 Equations (7) and (9) form the basis of the regression analysis we use to determine the 
simultaneous learning and turbine scale effects.  
 The 70% of the additional energy captured at higher hub heights is “concealed” in the 
capacity factor and thus not reflected in the power rating or turbine price. Learning curve 
analysis based on installed capacity (the sum of turbine rated power; kW) as the energy 
benchmark - but in which the rated power is not adjusted to account for this effect - omit an 
important contribution. Other studies avoid this problem by using kWh as the energy 
benchmark; here, a reference wind site is selected, and the annual theoretical energy 
production of all turbines that constitute the installed capacity is determined. The problem 
with the latter approach is that, while it more accurately reflects the progress in energy 
production, the energy benchmark, kWh, makes comparison  with other energy technologies 
difficult. For this reason in particular, we selected a method in which the kW benchmark is 
retained, and the additional energy capture is at least partly reflected.  
 
3 Data 
 
 Our principal data source is list prices from the catalogues of the German Wind Energy 
association for the period 1991-2003 (BWE). The data set also provides the rotor diameter 
and tower height for the over 1500 listed turbines (see Figure 2). We exclude all turbines with 
a rotor diameter of less than 10m: this represents less than 10 data points. These very small 
turbines have somewhat different engineering characteristics and control characteristics and 
would thus require additional parameters for their representation. In a robustness test, we 
included these data points and obtained higher learning rates and a lower reference rotor 
diameter. Given the sensitivity of the results to these few points and the fact that the bulk of 
our data lies at approximately 20m rotor diameter and above, we deem it justifiable to exclude 
these points.    
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Figure 2. Turbine list prices from 1991-2003. Source: from BWE editions 1991-2003 (1991-2000, based on data 
compiled by M. Junginger). Adjusted using German 2003 GDP deflator (IMF, 2005), and exchange rates 
1EU(2001) =1.956DM.  

 
Price is considered a good proxy for cost when the ratio between the two remains 

constant over the timeframe examined (IEA, 2000). Three main factors can result in 
deviations from this. Firstly, excess demand; for example, the large US demand for wind 
turbines in 2005, driven by high natural gas prices, is creating scarcity and is allowing turbine 
manufacturers to charge higher prices. Secondly, the number of producers is significantly 
reduced; oligopolistic conditions could allow players to make market-power mark-ups, an 
effect that is likely to level out over time (Duke, 2002). Thirdly, list prices might not be a 
good proxy for average prices paid if project developers can negotiate significant rebates 
relative to the listed price. After 2000, some manufacturers no longer publicly listed their 
sales price; anecdotal evidence suggests that, from about the this time, period project 
developers were able to negotiate prices below listed prices. This would, if confirmed, imply 
that recent prices have declined further than assumed in our estimations and therefore learning 
rates are higher than in our estimation. 

We use global cumulative capacity as the explanatory variable for the price reductions 
achieved from learning-by-doing. We do not follow studies by Durstewitz and Hoppe-Kilpper 
(1999) or Neij et al. (2003), as they use installed capacity in Germany as the explanatory 
variable for cost reductions in Germany. We think that wind turbine learning occurs at a 
global rather than national scale. The international interaction at the level of research, 
manufacturing and deployment is strong. Neij et al. argue that in the 1990s, the learning 
process associated with producing wind turbines developed from being national to 
international, for example, through the development of multinational companies in Germany 
and Denmark (2003). In 2002, 41% of wind turbines installed in Germany were imported 
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(Klaassen et al, 2003). Furthermore, the case for international learning has been made in a 
number of studies, for instance, Junginger et al. (2005).  
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Figure 3 Global cumulative installed capacity  Source: BTM-Consult, 2000, 2005; EWEA and Greenpeace, 
2004; DEWI (1991-2004) 

 
The functional relationship between turbine size and costs is determined by the engineering-
based scaling model for individual turbine components. Table 1  lists the fraction of total 
costs that are attributed to individual components. The last column gives the exponent with 
which mass (and therefore costs) of the component scale with the rotor diameter. 

 

Component Cost structure Rotor diameter scaling 
exponent 

Source 
Adapted from: 

Hau, 2000 

Adapted from: 
Dresdner Kleinwort 
Wasserstein, 2001 

Fuglsang and 
Thomsen, 1998 

Burton et al., 2001; Hau, 
2000; Harrison et al., 2000; 

Nijssen, 2000 
Hub 5% 3% 3% 3 

Main shaft - 5% 5% 3 
Gearbox 5% 22% 15% 3 

Generator 6% 8% 9% 2 
Nacelle 7% 12% 13% 3 

Yaw System 12% 2% 5% 3 
Controller 13% 4% 5% 1 

Tower 17% 20% 20% 3 
Brake System 4% 2% 2% 3 

Assembly 5% 3% 2% 1 

Turbine rating  30 kW 600 kW 1500 kW  

Table 1. Turbine cost structure and component scaling exponent (with rotor diameter). Where data for specific 
components were not available,  values based on Fuglsang and Thomsen (1998) were assumed.  
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In our analysis, we assume a cubic relationship between costs of the tower and rotor diameter. 
Nijsen (2000) argues that tower design is governed principally by fatigue; the cubic relation 
assumed is a conservative estimate based on the maximum moment at the tower base. We also 
include  assembly and erection costs in the cost model, as they are included in the quoted 
prices; we assume these scale linearly with rotor diameter. 

Table 2 gives the remaining assumptions for the base case of the regression analysis.  
 
  value Comments 
μ - Proportion of cost mass 
dependent 

90% Source: Burton et al., 2001 

Shear exponent 1/7 Typical for onshore terrain 

Minimum rotor diameter 10m 
The inclusion of these data bias the results 
towards higher learning rates 

Href 50m this value is arbitrary and only affects c0 
Quality adjustment ratio 70% See section 2 
Cost structure See  Table 1 Source: Fuglsang and Thomsen, 1998 

Table 2 Base case input parameters 
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Figure 5. Results of fits for datasets corresponding to specific years 
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4. Model analysis 
 We estimate the learning rate and reference diameter for which our model (9) best fits 
the data, using a non-linear least square estimation. Table 3 gives the estimated reference 
diameter and learning rates. In the first row, all observation points receive equal weighting. 
However, both the early and late years of the observation period were characterised by fewer 
observation points per year. In the second row, observation points are weighted in such a way 
that the aggregate observations for each year receive the same weighting.  
 

Estimation c0
Standard 
deviation 

Dref
Standard 
deviation 

b 
Standard 
deviation 

Log 
likelihood 

Equal weight per 
observation 

4018 570 52.4 1.1 -0.158 0.016 -11137 

Equal weight per 
year 

5744 860 50.3 1.1 -0.197 0.017 -11229 

Table 3.  Regression results for the base case, based on different data weighting approaches  

 
Please note that the log likelihood cannot be compared between these cases, as the 

different weighting of observations effectively implies an estimation of a different data set. 
Figure 4 illustrates that it is difficult to fit all the observed data with a model for only 

turbine scale or only learning-by-doing. Figure 5 shows data fits for specific years from 1991 
to 2003. Table 4 translates the results from Table 3 into learning rates and a typical power 
rating. The optimal power rating is based on the rotor diameter for which for the model yields 
the lowest costs per turbine. Grid connection and planning contribute additional costs, which 
are less dependent on turbine size. If we assume, for instance, that such costs are € 200,000 
per turbine, the optimal turbine size increases (see Table 4).  

 

Estimation learning rate std 
Optimal power 

rating 
turbine 

Optimal power 
rating turbine + 

€200,000 fixed costs 

Equal weight per 
observation 

10.4% 1% 400-500 kW 900-1000 kW 

Equal weight per year 12.7% 1% 400-500 kW 900-1000 kW 

Table 4 Learning rates and optimal power rating 

 
A series of tests have been performed in order to determine the robustness of the 

results. They are related to the base case with equal weighting on different years (which 
implies different weighting of observations  within each year). 

The first robustness test, Table 5, considers the parameter μ, which represents the 
proportion of the cost that varies with mass, and hence rotor diameter. Engineering literature 
suggests that between 75% and 95% of mass is turbine scale dependent (Burton et al, 2001; 

 12



Fuglsang and Thomsen, 1998). Table 5 illustrates that the scaling parameter has limited 
impact on the learning rate but does shift the reference rotor diameter from 34 to 51m rotor 
diameter . The latter only adjusts the scale functions so that the shape remains constant; this is 
evident in the fact that the rotor diameter for which the scaling shape yields the lowest cost 
per kW is consistently 34m, which corresponds to about 400-500kW. 

Mass dependence (μ) 75% 80% 85% 90% 

Learning rate 14% 13% 13% 13% 

Dref (m) 35 39 44 51 

Dmin (m) 34 34 34 34 

Table 5.  Robustness test: varying fraction of costs are mass dependent (μ) 

 
The second test, Table 6, deals with the convergence of the learning rate with 

increasing size of the data set. As the data set increases from 1991-1998 to 1991-2003, the 
learning rate converges, while the Dref remains more or less constant, supporting the idea that 
there is a fundamental scale shape which is constant in time. 
 

Data set up from 1991 to 1998 1999 2000 2001 2002 2003 
Learning rate 17% 16% 14% 13% 13% 13% 

Dref (m) 49 50 50 50 51 51 

Table 6.  Robustness test: varying observation period 

 
A third test, Table 7 examines the effect of wind shear. A shear factor of 0 implies that 

wind speeds are height-independent, while positive shear factors suggests that higher towers 
allow turbines to harvest wind with higher wind speeds. Even with a broad range of wind 
shear exponents testing unrealistic extremes, the learning rate and Dref  vary relatively little. 
 

Wind shear 0.00 0.11 0.14 0.28 

Terrain no wind shear large expanses of water
Farmland and grass 

plains woodland and forest 
Learning rate 11% 12% 13% 13% 

Dref (m) 49 50 51 51 

Table 7.  Robustness test: varying wind shear 

 
Table 8 summarises the results of various scenarios and compares them with recent 

studies by Neij et al. (2003) for the EXTOOL project and ISET (2005). 
 

Case Adjust for Capacity Data Period Dref std learning std Log likelihood 
 Scale Shear        data 1 data2 data3 

Base  X X World individual 1991-2003 50.3 1.1 12.7% 1.0% -11,229   
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1 X  World individual 1991-2003 49.1 20.9 10.9% 0.9%  -11,123  
2  X World individual 1991-2003   17.2% 0.5% -11,851   
3   World individual 1991-2003   11.0% 1.1%  -11,593  
4   Germany individual 1991-2003   7.2% 0.6%   -11,534

ISET   Germany annual av. 1990-2003   5.0%     
EXTOOL   Germany annual av. 1990-2000   6.0%     
EXTOOL   Germany annual av. 1987-2000   4.0%     

Table 8 Comparison of different scenario runs with results from recent studies. Note: Extool values are 
for rated power ≥ 55kW 

 
First, we note a decrease of the log-likelihood value that results from excluding scale 

effect as the explanatory variable: in the model with wind shear 622 (base case and case 2), 
without wind shear 470 (cases 1 and 3). Both differences exceed single digits and therefore 
the model is significantly poorer in explaining the observations than if these factors were not 
included. We cannot use the same approach to compare a model with and without shear 
effect, as the corresponding representations are not nested.  

It is interesting to observe that all the models that include wind shear produce significantly 
higher learning rates. The difference can be explained as follows. Assume a model does not 
capture the wind shear: it  only compares turbines based on their rated power. The model 
ignores the fact that between 1991 and 2003, tower height has increased significantly, thus 
exposing wind turbines to higher wind speed and increasing their load factor by 
approximately 30%.2 In the same period, the global installed wind capacity doubled 4.2 times. 
This would suggest that, with every doubling of global wind capacity, the load factor 
increased by 6%. This can also be interpreted as showing that, with every doubling of global 
installed capacity, the effective costs of wind turbines decreased by an additional 6%. This 
number roughly corresponds to the impact, which the shear factor has when no scale effect is 
modelled (case 2 vs. case 3). If the scale effect is modelled, then exclusion of the shear factor 
has less impact on the learning rate but reduces the fit of the scaling function, as illustrated by 
the significantly larger standard deviation calculated for Dref. 

Both Extool and ISET used the cumulative installed capacity in Germany to explain the 
evolution of German list prices. Between 1991 and 2003, installed capacity in Germany 
doubled 7.2 times, as it increased from 0.1GW to 14.6GW. In the same period, global 
installed capacity only doubled 4.2 times as it increased from 2.2GW to 40.3GW. Thus the 
learning that can be attributed to any one doubling is smaller if we use the German installed 
capacity as an explanatory variable, as illustrated by comparison of cases 3 and 4. Once again, 
changing  the input data means that a comparison of the log-likelihood values to determine 

                                                 
2 If we assume rotor diameter corresponds to turbine height and 67% of additional wind energy results in 
additional wind output (see section 2), then the increase of rotor diameter from 27m to 65m results in an increase 
of 30% of the load factor. i.e. (1-(65/27)^α*67%) 
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which model fits better is not possible. As discussed above, we decided to use global installed 
capacity as the input variable for our analysis because of the international, scientific, 
industrial and market interaction during the observation period.  Using the German input data 
and ignoring scale and shear effects, we observe similar learning rates to those of  ISET and 
EXTOOL  (case 4). We note, however, that both these studies first calculate an annual 
average turbine price by weighting the turbine list prices with the installation volume of each 
turbine type. The experience curve is then fitted to the annual average prices reducing the 
regression data set to the numbers examined, i.e. 10-15 values. Much information contained 
in the diverse set of prices within each year is aggregated, and thus lost, in their study.  
 
5 Conclusions. 

We test the heuristic concept of learning by doing with the example of wind turbines. 
Following the careful analysis of Thompson (2001), we ensure that significant changes in 
attributes of the turbines are represented in the model. As the size of wind turbines has 
increased during the observation period, we use an engineering-based model to represent the 
cost changes as a function of turbine size. In combination with the learning-by-doing model, 
we obtain an excellent fit with 1500 price observation points for the period 1991-2003. This 
extends existing literature, which has used output-weighted average annual wind turbine 
prices and has ignored much of the structure present in the data. 

Our estimation shows that with every doubling of global installed capacity, costs of 
wind turbines per installed capacity have fallen by 10.9%. However, this estimation   ignores 
the fact that bigger turbines are exposed to higher wind speeds at higher tower heights and 
therefore produce more energy per installed capacity. Allowing the model to correct for this 
effect, we estimate that costs for wind turbines have fallen by 12.7% with every doubling of 
installed capacity.  

The model also allows us to estimate economies of scale at the unit turbine level. 
Turbine costs fall with size below approximately 400-500 kW and increase for bigger 
turbines. Additional costs related to project development, civil works, grid connection etc., 
only exhibit limited size dependence, and thus increase the optimal size of turbines as part of 
the overall system. The optimal turbine size from the perspective of a project developer is 
therefore bigger, as confirmed by the large-scale application of 2MW turbines.  

We observe that learning-by-doing in wind turbines has allowed the simultaneous 
processes of cost reductions and increases in turbine size. This creates two non-convexities 
that can inhibit competitive markets from developing a new technology. Firstly, the new 
technology would initially be more expensive because of less historic learning-by-doing and 
would thus capture a smaller market share. Secondly, if the new technology requires 
manufacturers to experiment with small turbines and then gradually increase their size, then 
the economics of scale imply that early turbines are more expensive than later turbines.  
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This study does not propose an optimal turbine size. As has been discussed, such a 
statement would necessitate the examination of the larger system that describes the cost of 
producing electricity from wind, which includes not only wind turbines, but the costs of 
project development, grid connection, foundation works, etc. However, it is conceivable that 
turbines will converge on an optimal turbine size. Subsequently, we would no longer observe 
the current dis-economies of scale at the turbine level, resulting in faster cost reductions. 
Furthermore, the demand for increasing turbine size implied that engineers had to satisfy two 
objectives: increasing turbine size and reducing costs. At a constant turbine size, more focus 
can be attributed to cost improvements.  

In our study, we do not assess economies of scale in the production of wind turbines, 
nor changes of quality, durability and availability of wind turbines during the observation 
period. If these have resulted in significant changes, then additional corrections are required to 
obtain an unbiased estimate of the learning-by-doing rate. Correcting for turbine size already 
significantly improves the fit with observed data and further confirms that the heuristic 
concept of learning by doing provides a good description of the cost evolution of wind 
turbines. 
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