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ABSTRACT

The purpose of this paper is to present a rank based approach to cross-sectional

linear factor modelling. The emphasis is on approximating factor exposures in a

consistent manner in order to facilitate the merging of subjective information

(from professional investors) with objective information (from accounting data

and/or state of the art quantitative models) in a statistically rigorous way without

needing to impose the unrealistic simplifying assumptions typical of more standard

time series models. We deal with the problems of identifying country and sector

returns by an innovative hierarchical factor structure. This is all discussed from

the perspective that investment models are not immutable but rather need to be

designed with characteristics that are fit for their purpose; for example, returning

aggregate county and sector forecasts that are consistent by construction.

Keywords: Linear Factor Models, Ranking, Robustness Exposures, Forecasting.

JEL Classification: G11
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1 Introduction

The purpose of this paper is to present a number of arguments favouring a robust

cross-sectional approach to forecasting alpha using financial models. We take it

as a given that financial markets do not exhibit sufficient regularity to allow us

to use the large-sample theory that mainstream statistics is based upon. In main-

stream statistics, stochastic processes possess such pleasing properties as station-

arity and ergodicity. These properties allow us to get closer to the true, unknown

data-generating process, simply by observing long enough time series. However,

financial markets are driven by innovation, evolution and exogenous events. Such

“one-offs” as leaving the European Monetary System, September 11th, October

1987, the Tequila crisis etcetera etcetera, may be capable of being modelled within

a conventional statistical structure but it is probably not helpful to do so in the

context of our particular audience, professional investors.

For government purposes, what is of interest is to establish equilibrium states

that can guide economic management toward a stable sustainable set of policies,

hence for these long term purposes, large sample theory is entirely appropriate.

For our audience of professional investors, the transient behaviour of the market

and how it moves between states, is all-important as this is what generates in-

vestment returns. Hence for this audience, by definition, the one off events are of

dominant importance because they are what disturb the equilibrium (if it is ever

fully achieved).

Our version of financial markets is that asset returns are highly state dependent

non-linear functions of underlying exogenous variables wherein the key parameters,

if they can be identified, exhibit profound degrees of time-dependence. Faced with

such a bleak description, it may be thought that quantitative finance has very little

to offer; in what follows, we describe a methodology that is both easy to use, highly

quantitative, and which takes into account the issues discussed above.

Much of what we shall say is motivated by the idea that while professional fund

management is practiced as an art and not a science, we can still build rigorous

quantitative frameworks within which we can organise our thoughts. The fact

that an event is a “one off” in a traditional frequentist sense does not mean that

we have nothing to say about its consequences; we bear in mind Fisher Black’s

aphorism “In the absence of data I rely on theory”. What is needed is a way to

merge theory and data in an effective manner. Whilst we would recognise that
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conventional time series analysis has an important role to play, we believe that it

was a better tool in 1995 after some years of reasonably regular price behaviour

than it is now in 2005 after some years of highly irregular behaviour.

Moreover while we cannot tame the markets, we can hope to design our invest-

ment models such that we make the most of all available information, record and

discuss our views as concisely and realistically as possible, avoid inconsistencies

and inefficiencies in our implementation, manage our risk exposure as realistically

as we can, and learn from our experience to maximise our performance in future.

We do not claim to be able to fully meet all these aspirations, they do however

provide the context for this paper which is primarily concerned with one stage

in this process design, that of forecasting. It is however connected with other

stages such as that of robust optimisation which we covered in an earlier paper

(see Satchell and Wright, 2003), we shall not delve into these other topics too

much; however, we shall refer readers to appropriate papers where necessary.

Our contention is that investment models can be designed to have certain

properties and that when you approach the task from this perspective you arrive

at some very interesting conclusions that are of crucial importance to the practicing

investment professional.

The properties that are of interest for the forecasting task are the ability to

merge subjective and objective information, the robustness of the model to noise

in the data, the flexibility to accommodate complex non-stationary behaviour and

ever changing model form and finally the simplicity and clarity to aid communica-

tion of, and build confidence in the conclusions. All of these topics individually are

covered by a substantial literature. What we cover here is an innovative approach

that brings these ideas together into a practical operational whole.

The fundamental building blocks for our approach will be listed next. The prin-

cipal tool will be the linear factor model; this is central to all quantitative portfolio

analysis. Another important notion is what we could call local normality; this is

not to claim that returns are normal, but that returns over short periods of time

and/or conditional upon particular states of the world are normal. Such an ap-

proach allows for unconditional returns being non-normal; it also encompasses log

normality and the style of analysis used in the option pricing literature. The third

key idea we shall utilise is that of ranks. In previous work, we used ranked means

in mean variance analysis, see Satchell and Wright (2003). There, we showed

that using ranked forecasts was a robust procedure that dealt with many of the
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substantial difficulties encountered when constructing portfolios using knowledge

about forecast alphas. Here, we extend that principle to construction of linear

factor models, focusing on the use of rank information on the factor structure.

Building models based around these three ideas leads to a robust procedure that

is easy to implement and straightforward to understand whilst taking on board

many of the theoretical problems raised earlier. In section 2 we discuss our ap-

proach to linear factor models, in section 3 we consider issues of modelling the

returns distribution, in section 4 we investigate the ranking of factor information

and the interrelationship between accuracy of the approximation and quality of

the information availability. Section 5 discusses how these ideas can be put to-

gether in a model and discusses certain examples. Section 6 discusses problems in

model building such as lack of independence of our leading indicators and what

to do about them; our conclusions follow in section 7.

2 Linear Factor Models

In this section, we first review linear factor models.

Let yit be the return/rate of return to asset i at time t. Let βijt be the exposure

of the return of asset i to factor j at time t. Let fjt be the value of factor j at

time t. We assume n assets, i = 1, . . . , n. We assume k factors, j = 1, . . . , k. The

linear factor model (LFM) takes the following form

yit =
kX
j=1

βijtfjt + Vit (1)

The error terms Vit represent the idiosyncratic component of the LFM. This is

usually modelled as a random variable, Vit , which has a mean αit and a variance

σ2i . The key assumption of (1), other than linearity is that it is the factors fjt that

pick up the common covariation in yit, so that the Vit are uncorrelated. By use of

vectors and matrix notion, (1) can be re-written as

y
˜t

= β
˜ t

f
˜ t

+ V
˜ t

(2)

where y
˜ t

and Vt are (n× 1) vectors, β
˜ t

is an (n× k) vector.
It is clearly unlikely that such an attractive structure is an accurate description

of reality, however much we may wish it to be. Our perspective on this is that

of the mathematician interested in linearising highly non-linear dynamic equation
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systems. We are motivated by the fact that however complex and non linear the

real world may be, the operational decision facing the investment committee is

always the same i.e. “what do we do next given our understanding of current

local linearities”. A detailed discussion of such procedures can be found in Dutton

et al. (1997); here we shall content ourselves with an overview.

Generally, suppose that, following the notation of (2)

y
˜ t

= Ht

µ
f
˜ t

, ε
˜t

¶
(3)

Here Ht is a (n× 1) vector function of f
˜ t

and ε
˜t
, where εt is some (m× 1) source

of noise in the system.

By taking the usual Taylors-series expansions around zero vectors, we see that

y
˜t

= Ht(0
˜
, 0
˜
) +Ht1(0

˜
, 0
˜
)f
˜ t

+Ht2(0
˜
, 0
˜
)ε
˜t
+Remt (4)

where Ht1(0
˜
, 0
˜
) is the (n × k) matrix of partial-derivatives with respect to f

˜ t

,

Ht2(0
˜
, 0
˜
), is the (n×m) matrix of partial derivatives with respect to ε

˜t
; both are

evaluated at zero; and Remt corresponds to higher-order terms in the expansion.

To see the links between (4) and (2) we equate βt to Ht1(0
˜
, 0
˜
) and similarly,

V
˜ t
= Ht(0

˜
, 0
˜
) +Ht2(0

˜
, 0
˜
)εt +Remt (5)

It is immediate from the above that we can incorporate more complex schemes

than (3) i.e. where yt is implicitly connected to ft.

Furthermore, we can, and probably would want to expand, the Taylor’s series

around some point rather than (0
˜
, 0
˜
).

It is worth enquiring as to the origins of (3), where should such a complex

structure come from? The short answer is that if we start with data-generating

processes that are, in the short run, exogenous to the market such as productivity,

climate etc. and we know the utility/decisions functions of all individuals and

organisations that participate in the model we can compute an equilibrium which

will link return distribution parameters to utility characteristics. These will take

the form of highly non-linear restrictions which can be substituted back into the

data generating processes to arrive at an equilibrium pricing process, which is (3).

Equation (3) will also encapsulate all the heterogeneous assessments of probability

and behavioural quirks of the participants, not to mention the current state of

institutions. An example of the above which is still highly simplified is Cox,

Ingersoll and Ross (1985).
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Inspecting the previous argument, we see that local linearity seems both rea-

sonable and plausible except that:

1. The point about which the linearisation occurs will change with time.

2. The partial derivatives that become the coefficients in the linear system will

change their values as the points in 1. change.

Using linear models successfully requires one to be aware of 1. and 2.. In

particular, procedures that assume that coefficients in the linear factor model

are fixed are likely to suffer from severe inaccuracies through time, unless the

underlying structure is actually linear. Practitioners are aware of these difficulties

and build their models using rolling windows; this means that models will change

their linear coefficients through time. However, this will not always work. For

example, virtually all linear factor models failed in the late nineties due to their

inability to pick up the internet factor. With a rolling window of say seven years

of monthly data, it will take several years for the internet factor to manifest itself

in the model. Even when it does, the factor may have then ceased to be of any

importance. The industry response to this has been to move to higher frequency

data to make the models more responsive to evolutionary changes. This brings its

own problems of increased sensitivity to noise and fails to accommodate the fact

that these parameters may not vary smoothly over time, but exhibit jumps from

one value to another.

Furthermore measuring at high frequency measures something different i.e.

correlation of hourly data is not the same as correlation of monthly data because

for example the hourly data will pick up the end of day effects where traders

need to leave their books balanced over night. These dynamics are entirely absent

from monthly data, hence we can see the technical issue which is that of temporal

aggregation; it is not always possible to recover the density of daily prices by

convoluting the density of hourly prices.

The approach that we shall advocate essentially allows the factor exposures to

be recalculated every period while being agnostic as to how the recalculation is

done. This accommodates all three types of assumption at the user’s discretion,

i.e.

1) Stationary parameters.

2) Smoothly varying parameters over time.
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3) Discontinuous parameter behaviour.

In this way our model structure can be thought of as a way of summarising the

conclusions about “the state of the market” at each moment in time, derived from

a much wider set of possible model forms either explicitly quantitative in form or

implicitly so having being constructed by a mixture of theoretical inference and

quantitative support. In fact it can be shown how a range of modelling techniques

that are often thought of as independent of each other actually lie on a spectrum

of increasing complexity as your simplifying assumptions are relaxed from 1) to

3) above.

Some readers may at this point conclude that we are in some sense cheating

in that our proposed model form throws no additional light on how the markets

work. However our contention is that the only certainty in forecasting is change,

and the only decision that is necessary to take at each rebalancing point is what

to do next. From our perspective we wish to design an investment process that

accommodates the former and illuminates the latter in a simple understandable

manner. Hence we are agnostic as to which detailed model structure may best

model market conditions over time, or even which model is currently performing

best. What we aim to provide is a standard form that summarises (and allows

the user to compose and/or merge) the conclusions from different models in a

systematic and statistically rigorous manner while still being widely intelligible to

all the participants in the investment decision i.e. our approach is a framework

for comparing contrasting and communicating the results of other models rather

than a model in its own right.

In its basic form, our approach results in a vector of relative preferences for

each asset at each rebalancing period to feed into that period’s diversification

calculation. In Section 4 and 5 we show how these relative preferences can be

calculated using a rank score card. In the next section we will see how it can be

extended to cover the risk input to these calculations as well as the return inputs.

3 A Mixture of Normals Approximates Risk

In this section we discuss return distributions. The usual assumption of multi-

variate normality for conditional or unconditional returns does not strike us as

reasonable although it may hold at the level of well-diversified portfolios with

a long investment horizon due to the operation of the central limit theorem. We
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prefer to assume that conditional expected returns are multivariate normal, condi-

tionally for each single period. We could weaken this assumption to allow returns

to follow mixtures of multivariate normals. Thus we can structure the problem

by assuming that there are S states of the world, and conditional upon each state

we get a multivariate normal distribution but with different means and variances.

Practitioners are probably aware of this framework without the necessary formal

mathematics. A simple but important example might be where S = 4.

The four states being:

1. High alpha, high risk

2. High alpha, low risk

3. Low alpha, high risk

4. Low alpha, low risk.

Each such state would have a probability attached to it. One may be able to

identify the states, as we could in the above example, or the states may be hidden,

as in the examples of hiddenMarkov models, or as they are more frequently known,

regime-switching models, see Hamilton (1989). Arguably in the above example,

we are currently in a low alpha, low risk environment (regime 4). However, circa

2000-2002 we were in a low alpha, high risk environment (regime 3).

Formally, our returns model could be described by the following:

Suppose there arem regimes, l = 1...m. For each regime, returns are described

by the following probability density function (pdf).

pdfl(x) ∼ N(µl, Ωl) (6)

where µl and Ωl are the mean vector and covariance matrix of returns in regime l

and N(.) denotes multivariate normality.

For each regime l, there is a regime probability πl such that
mP
l=1

πl = 1. The

unconditional returns pdf follows a mixture of normals; symbolically,

pdf(x) =
mP
l=1

πl pdfl(x). (7)

Such a specification follows naturally in a Bayesian framework with multiple priors,

in which case the prior and the posterior follow (7), assuming that the data are

multivariate normal.

Another important property of mixture of normal and log-normal distribu-

tions is their ability to approximate, with very close accuracy, arbitrary return

distributions.
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This approximation property is widely used in the options pricing literature to

construct estimates of risk-neutral distributions and also in the stochastic volatility

literature where many of the joint densities whose formulation is not known in

closed form are replaced by low-order mixtures of normals or log-normals.

From the perspective of a cross-sectional linear factor model regression, all of

the above adds no complexity to the econometrics as long as we are implicitly or

explicitly conditioning on the regime information.

Of course, if there are dynamics in the system, this regime information will

itself be serially correlated as with GARCH or Kalman filter models, see Diderrich

(1985). Conceptually this is little different to the regime switching models above

except that the parameters are assumed to move smoothly through a series of

states (or adjacent regimes), hence needing a larger number of such states to

adequately represent a mixture of normals approximation to the risk. (In practice

of course this does complicate the parameter estimation as the quantity of data

for each state is reduced but that is a practical consideration outside the scope of

this paper.)

Last but by no means least, we started the discussion in this paper talking

about the importance of one off events and the difficulties that these presented

to frequentist modelers. In the discussion so far we have in the main discussed a

model evolving through time hence generating a mixture of normals. An alterna-

tive view is where we may have a number of candidate models but not be confident

which applies at any moment in time. If we give each alternative a degree of belief,

then we are again in a mixture of normals environment. This also provides an en-

try into the world of Bayesian statistics where we update our model not just over

time, but from a parsimonious prior to our posterior probability in a cumulative

manner as we successively take into account each piece of information (subjective

or objective) we hold together with our confidence in that item of information. In

this case, we would arrive at equation (7).

From this we can see that the basic mixture of normals formulation provides

a standard mathematical form that is compatible with a range of underlying risk

models. In particular it allows us to systematically include subjective informa-

tion in our analysis and merge it with all our information from other sources. In

practical terms, we might have a precise scorecard based on our subjective infor-

mation which is updated by detailed model information where it is present, and

in proportion to the confidence in that model.
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Hence we have achieved for our risk input a similar generalised form which

can capture the conclusions on risk from a range of underlying models while being

agnostic about each particular source. Unfortunately the standard form in its most

general incarnation is not designed for manual interpretation in that multivariate

normal distributions are intimidating when presented in isolation, when presented

as a mixture, simply interpreting the numbers to identify the detailed behaviour

implied therein becomes unrealistic. Fortunately because the underlying structure

is conceptually simple, flexible, and easy to describe, computer aided tools can

come to our aid by letting the user work with the key investment interpretations

while hiding the necessary but confusing detail. This is after all routine algebra

that can be safely taken as read.

The main advantage of this unifying form is that it allows us to see the strengths

and weaknesses of different approaches not as unconnected alternatives but as part

of a spectrum with properties that vary smoothly as we move along it and where

we can change our position on this spectrum as our circumstances change over

time without needing to radically change our underlying philosophy or support

tools.

In practice we will often adopt some simplifying assumptions to radically sim-

plify this presentation. E.g we might choose to model the four state model above

by having four rank scorecards one for each scenario, give each a probability,

and assume that the covariance structure is the same for each. We can then

add increasing degrees of sophistication when and only when they are needed to

adequately reflect important detail in the underlying problem.

4 Information, Quality and Model Resolution

In this section we focus on the components of the linear factor model described

in equation (1) and ask ourselves which elements we are likely to have useful

information about so that we can construct a working model. The answer depends

upon who we are. Considering the three entities in turn we have the exposures,

we have the parameters of the factor distribution, and we have the volatilities of

the error terms.

From the perspective of institutional investors it seems to us that it is the

exposures that are of the greatest importance, but even this answer could be

conditioned on the choice of factors.
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All of these factors are likely to vary by sectors, regions, styles. For insti-

tutional stock selection models, regions and sectors are probably of the greatest

importance, followed by styles. The macroeconomic factors tends to be of greater

interest at the asset class level and also to regulators and academics. The poor

quality of macroeconomic data, and its low frequency, tend to make it less useful

for monthly or weekly stock returns. However, most news that impacts upon ana-

lysts and strategists is in fact macroeconomic which may not be easily quantified

but sensitivity of asset returns to those inputs might be and so, in an ideal world,

we would like to be able to merge this qualitative information with a quantitative

model. We also need to note that many factors are only relevant at certain times

and so we need the ability to “switch” factors on and off and to consider them in

a range of combinations and proportions. For example, it is conventional wisdom

that momentum factors are more closely watched by the market during Bull mar-

kets, and quality factors are more important in bear phases of the market cycle.

This leads us to the cross sectional form of our linear factor model as described

in Section 5 which allows the user to enter projected macroeconomic scenarios

or one-off events as well as allowing the user to explore the effect of changing

individual factor relevance over time,

We now consider sectors and regions as our factor choice and ask how we might

be able to present information about exposures. One possible solution might be

to assign a value of one for a stock in a particular region or sector, or zero if it is

not in that region or sector. Variations of this methodology are quite widespread,

see for example Heston, Rowenhorst and Wessels (1995). The difficulty with this

is that it may not necessarily capture all country or regional effects, since for

example, a particular company in the UK may buy its inputs in Australia and sell

its products in France. Its exposure to both these countries would be non-zero.

Again, region and sector returns data can be contaminated by the fact that many

companies have multi-national and multi-sectoral activities. Notwithstanding the

comments above, most institutional investment companies organize their research

around countries and sectors, sometimes sectors within countries. In the next

section we show how some of these problems can be mitigated by introducing

more structure into our factor assumptions. For example, by having separate

terms for costs and sales we can assign different sensitivities to Australian wage

inflation and French GDP growth for the same stock. There have been attempts

to purge regions of their global content but these methods seem computationally
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demanding; region and sector definitions remain a substantial problem. In, the

next section we propose a model structure where the user can vary the region and

sector aggregation level and detailed definition to reflect the quality of information

available and the underlying dynamics being modelled.

Similarly, styles, such as value and growth, are clearly factors of great im-

portance to investors and computing exposures to these styles can be done in a

number of ways, the detailed discussion of which is beyond the scope of this paper.

All we need to observe here is that style and sector can be used interchangeably

in linear factor models. So all our observations on sectors apply equally to style.

Summarizing the above discussion, we see that the structure of research and

the flow of information in institutional investment companies is focused on regional

sector and style research and responds to a mixture of macroeconomic information

and company accounting data. The challenge we shall address in Section 5 is how

to construct methodologies that merge this diagnostic information in a consistent

and easily understood manner.

There are deeper issues to do with information that may be relevant to this

discussion. These focus on where information is produced/processed within finan-

cial organisations. It is not possible to deal in detail with this vast topic but we

will look at a related topic, which is the quality of information.

In the world of the full time series model, we have histories to all our inputs

which are either asset and factor returns or asset returns and factor exposures.

Typically this will involve five or more years of monthly data or a shorter amount

of weekly data. What is required for the above is a certain constancy of data

definition. However, such models will suffer greatly, whenever there is a reform in

data definition. Unfortunately these revisions are all too frequent, for example;

we are about to experience a huge change in accounting information, known as

International Financial Reporting Standards (IFRS). In 2005, 7000 EU companies

are expected to comply with IFRS; this will change in profound ways such hoary

old chestnuts as earnings - revisions and book values. Time series models will

have major problems with this; cross-sectional models should be able to deal with

these problems relatively easily. Our format allows one to combine the best of

both worlds by using time series models to calculate exposures where this can be

done reliably and fill in the rest from the cross sectional results where needed.

Even where the definitions are stable the accuracy of exposures may be ques-

tionable. It is an interesting feature of various proprietary stock-selection models
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that exposures are computed at an integer level, typically values between 3 and

−3. The actual factors are not explicitly known but their returns are computed
by cross-sectional regression for each period. Likewise, hedonic models use firm

specific characteristics, typically based on accounting information, to implicitly

specify factors, the factor returns being again estimated by similar methods. The

characteristics are often ranked, or normalized to have within group mean of zero

and standard deviation of 1 at each point in time, where the group is often a region

or sector. The key point that comes out of these practises is that cross-sectional

models seem to work without requiring a precision or accurate representation of

the exposures.

To take this last point forward more formally consider at time t the vector

yt and the columns of βt as defined in equation (2). We can number them as

β1t,β2t...βkt and i is a vector of ones. We can then as a purely theoretical exercise

consider the best linear prediction (blp) of yt on the columns of βt and i. This is

in effect a calculation determined by the joint cross-sectional distributions of the

exposures and (the asset) returns. Changes to βt via approximations, smoothings

and rankings will change the coefficients of the blp and the residuals. Non-singular

transformations of the columns of βt and i will leave the residuals unchanged and

the forecast of yt unchanged.

Formally, we can compute “risk-premia” as implied factor returns λ0t,λ1t...λkt
by the blp.

yit = λ0t +
kX
j=1

βijtλjt + εit i = 1, N (8)

where
NX
i=1

εitβijt = 0 for j = 1, ..., k

and
NX
i=1

εit = 0

Our forecast of the mean of yit is yit − εit.

Adequate forecasts for yit seem to follow from robust choices of βijt. Overspec-

ification of βijt seems to lead to poor forecast measurement, perhaps due to the

measurement of noise rather than signal when calculating the exposures. Hence we

see that ranking, n-tile, or simple scores can be seen as an effective way of reflect-

ing the quality of information in a measure and avoiding over fitting or spurious

accuracy.
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However practical they may prove in day to day application, this diversity of

scoring conventions complicates model comparison and the choice of theoretical

justification can be somewhat arbitrary. Simple ranking of our assets is not perfect

either. As well as the possibility of spurious accuracy discussed above, it can

distort the information that we do have by forcing us to distinguish between assets

that may be essentially identical in the context under consideration. Equally, it

gives us no way of capturing the information that there may be much bigger

differences between some assets than others.

Both of these problems can be addressed by choosing to rank groups of assets

rather than single assets. If these groups are allowed to have an arbitrary number

of members (including zero members), then we can smoothly vary the precision

of our description from simple binary scores through to near linearity. The choice

of resolution is chosen with a consistent justification linked to the quality of the

information contained in each model term. We refer to this scoring convention as

stylised ranking.

5 Our Scorecard Format

So far we have argued that a cross sectional linear factor model with coefficients

represented in a stylised ranking form provides the simplest and most versatile way

of representing the user’s views on short term investment return and its drivers.

In order to complete the derivation of the details of our rank scorecard format

we need to now discuss how our format is affected by our assumptions about the

chosen asset set.

A typical use of our scorecard format is to calculate return expectations across

a global country sector portfolio (i.e. where our asset set consists of all possible

permutations of countries and sectors) so we will couch our discussion in these

terms even though it could equally apply to a sector versus style or a region

versus asset class analysis.

If we had to calculate a beta for every country sector and factor permutation,

then compared to a simple regional (or sector) split, this structure would vastly

expanded the number of coefficients that we are trying to calculate in our model

with all of the dangers of over fitting and lack of clarity that that brings with it.

To restore some parsimony to our model we restrict ourselves to considering only

betas that are independent of each other (i.e. the same sector has the same beta
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in all regions) or where the ratio of the betas is independent of each other (i.e.

the overall beta is the product or interaction of a country term and a sector term

which are independent of each other).

The logic of allowing this type of interactive structure is perhaps most clearly

seen in macroeconomic analysis. Here a macro-factor like consumer spending

varies with geography, while the sensitivity to that variable varies by sector. E.g.

the consumer discretionary sector is likely to be much more sensitive to variation

in consumer spending than is the utility sector. Hence the product of these two

terms allows an approximation to be made for a factor beta for each country sector

permutation while still requiring a small number of user inputs.

Of course some factors vary independently by sector or region rather than

interacting as discussed above. However from a purely presentational point of

view these are a special case of interaction where one of the dimensions, either

region or sector, has zero variation so can still be captured in the same format

scorecard.

The assumption of independence of beta ratios across region and sector may

be seen as a limitation, however. In the same way that we argued that the relative

importance of factors varies with time, and that quality of informational content

varies between those factors, we now argue that choice of appropriate aggregation

structure is also factor- dependant. Hence we argue that the aggregation structure

of the model should be varied until the independence assumption is an acceptable

approximation.

An example of this issue could be in the industrial sectors where aggregation is

traditionally based on the type of production skills needed. For example, aircraft

and washing machines both use engineering and assembly skills and so are often

put together in the same broad sector. For a cost shock such as engineering labour

wage inflation, this might be quite appropriate, but the markets for their products

are totally dissimilar. Here the supply side is common but the demand side is

different. For a shock to consumer spending or defence procurement aggregating

them together is entirely inappropriate. Similarly, factor models will often have

an interest rate sensitivity term, but what do you do when US interest rates are

moving in a different direction to European rates? In our model, the answer is

simple, you disaggregate the factors and each asset then has a beta to US rates

and another to European rates.

In this way we have arrived at all the main features of our scorecard format.
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It is a cross-sectional linear factor model with betas represented in a stylised

ranking form where the ratio of the factor betas across sectors are assumed to be

independent of region and vice versa.

More formally, the details of our Scoring System are described as follows.

We slightly alter equation (1); we now write,

yit = αi +
kX
j=1

βijtfjt + Vit, (9)

where “yit” is the current return, “αi” is the long term average return for each

asset “i”. “βijt” is the sensitivity of that asset return to the factor “fj” and “Vit”

is a noise or disequilibrium term. Our objective is to construct asset (or stock)

forecasts based on αi +
P

βijtλjt as in (8).

In our suggested model all the individual assets are classified by sector and

country, and ranking them over these dimensions captures our description of how

those betas coefficients vary across both dimensions. Hence we can expand equa-

tion (9) above by indexing over “p” and “q” to re-create the conventional index

“i”. This then allows us to write

βijt = spjt gqjt (10)

and hence substituting into (9) and dropping time subscripts for Betas.

yit = αi +
nX
j

X
p,q

spj gqj fj + Vit (11)

Where “p” is the sector index, “q” is the region index, and “j” is the factor

index. “s” and “g” are the sector and geographic terms for each factor. “n” is the

number of factors.

As we are interested in relative performance over our investment horizon, we

can drop the constant term “ai” and the unknown noise term, “Vit” from our

return calculation, although of course the magnitude and correlation of the latter

will figure prominently in our later risk calculations.

The terms (spj gqj fj) above can now be conveniently collected together in the

matrix [S:G:f] . This matrix describes the relative importance of each factor, and a

first order approximation to how the sensitivity to this factor varies by geography

and sector.

At this point in our derivation [S:G:f] is comprised of linear coefficients, however

as explained earlier, these can now be approximated to any appropriate level of
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precision using a stylised ranking convention combined with a mapping from score

space back into coefficient space.

While this mapping can be described in a number of ways, we have chosen

a simple convention where the coefficient values of the maximum and minimum

ranks are provided so that all the intermediate coefficients can be recovered by

interpolation. As we are applying our stylised ranking to both sectors and regions

for each factor we can construct a (4 by “n”) matrix “M”.

In practice, the factor sector and region terms are multiplied together. Hence

the combined scaling implicit in this can, as a matter of convenience, be left to the

final mapping between scores and return expectations described in equation (12).

In this case, the coefficients chosen for “M” will usually be a zero to one range,

or a simple permutation on it such as minus one to plus one. By normalising the

scores in this way, the investment interpretation is clear without requiring the user

to keep track of numerous intermediate-scaling factors. However, by retaining the

full “M” matrix in the rank scorecard format, users can choose to use a more

detailed convention if for instance they want to compare intermediate variables

with a standard linear model.

We can now collect “M” together with the ranked version of [S:G:f] to give our

full rank scorecard format [bS : bG :M : bf ]
While the intermediate calculation of return scores for each permutation of

region and sector was driven by the need to cater for interaction between region

and sector effects, it has a very useful additional consequence. Viz when we re-

aggregate our country and sector views, because we know the weights of each

country sector combination, we can ensure that our aggregate country and sector

views are consistent by construction.

6 Independence of Factors

Ex post we can fill in our scorecard from achieved relative performance using

simple linear regression. When we do this, we have the problem that our factors

are not always independent of each other. In these circumstances if we do a

stepwise regression the fitted value of the coefficients will depend on the order in

which the different terms are introduced.

Suppose two factors are highly correlated. In this case whichever explanatory

factor is introduced first will pick up most of the variation that is associated with
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both of them. Hence the matrix of partial derivatives is not a unique set of values

even for a known fixed set of relative returns. Ex ante the same problem manifests

itself in a similar way in that if you enter high scores for two correlated factors

you are in effect double counting that score.

There are a number of palliative actions which can be adopted to minimize

these problems. These range from careful selection of your factor set to be as

independent as possible through to the formulation of Grinold and Kahn (“Active

Portfolio Management” second edition page 263) where you assume that you have

a knowledge of the full covariance between forecast and returns. As follows

E(y|g) = E(y) + Cov (y, g). V ar−1(g)(g − E(g)) (12)

Where g is the vector of raw forecast scores and y is the return vector. In

words this is saying that our expected return given our scores is consensus ex-

pected return plus a scaled term proportional to the deviation of our score from

its consensus value. The scaling term being derived from the covariance of ob-

served return with the forecast scores.

A detailed discussion of how best to minimize problems of correlated factors

in linear factor models is outside the scope of this paper. However having demon-

strated the equivalence of our rank scorecard formulation with a standard linear

factor model, all of the recognized techniques can be applied as appropriate.

7 Conclusions

In this paper we have assumed that an ever-changing kaleidoscope of factors and

one off events drives equity returns. Hence the forecasting of these returns must

involve a mixture of objective analysis for those aspects that are amenable to

quantitative modelling combined with theory, experience and judgement for those

aspects that are not.

This perspective has led us to focus not on an individual fixed model of return,

but on how to design an investment process or modelling framework in order to

track this evolving problem most effectively.

From this perspective, the key characteristics of this framework are flexibility

to accommodate different model forms, robustness to noise in the data, simplicity

and parsimony and an intuitive accessible reporting format to aid comprehension

and communication of the results, combined with theoretical rigour to maximise
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confidence in the output from the process. In this context we have discussed four

main ideas in this paper.

1. The role of cross sectional linear factor models as a standard intermediate

form (or scorecard) that allows presentation discussion and merging of in-

formation from a variety of different sources, without needing to introduce

stationarity as a simplifying assumption.

2. The mixture of normals approach to approximating return distributions of

arbitrary form, and how this allows cross sectional linear factor models to be

constructed that are consistent with a range of more complex Bayesian (e.g.

Black Litterman, Scenario or subjective models) or other non stationary

time series models (Kalman filters, GARCH or Hidden Markov models etc)

in order to present a reduced form relevant to the operational decision of

“what do we do next”.

3. Ranking or binning of data to reflect the quality of the underlying informa-

tion

4. Construction of hierarchies in region, sector, style and factor aggregation

structure to allow the user to select the most relevant level of resolution in

both value and scope for each factor.

These ideas have then been brought together in the form of an innovative rank

score card approach that exploits the fact that the sensitivities to each factor may

themselves be approximated as a linear combination of sector style and regional

terms which specifically avoids the need for explicit return forecast. This com-

bination of hierarchical presentation, and implicit factor construction combine to

allow a highly parsimonious practical representation of the information available

at a point in time without needing to make unrealistic assumptions about wider

market behaviour, or limiting the user’s ability to adopt more detailed structure

where this is called for.

This cross sectional rank scorecard form then allows us to build sector style

and region forecasts that are inherently consistent with each other by construction

as they are derived by aggregation of our disaggregate scores. This seems to us,

at least, to be a highly desirable feature particularly for large organisations where

inconsistencies in investment policy often reflect communication problems rather
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than intellectual differences and where the lack of consistency can result in reduced

investment performance at higher cost.

This work complements the forecast structure work of Sefton, Bulsing and

Scowcroft (2002) by including the aspects of non parametric representation of

data and the need for simple intuitive reduced form models as a key component of

an operational forecasting and diversification process. It also broadens the range

of model forms that can be represented within the framework.

What it does not do is to provide any “miracles” in the continual search for

predictability and understanding of market behaviour. The efficient market theory

tells us that this will always be a confusing non-stationary and non-linear world.

However by proposing a simple understandable and statistically rigorous frame-

work in which we can organise our thoughts, while avoiding spurious accuracy

and implausible simplifying assumptions, it does increase the chance that we will

be able to apply our experience and judgement to add value to the investment

process.
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